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Abstract This paper presents an investigation into the utilization of physics-
informed neural networks for parameter identification in the domain ofmagnetorheo-
logical dampers.MRdampers are known for their controllable rheological properties,
making them integral components in various engineering applications such as vibra-
tion control and structural dynamics. Efficient utilization of MR dampers relies on
accurate characterization of their material properties, necessitating robust parameter
identification techniques. The proposed methodology integrates physics-informed
neural networks, a class of neural networks that embed physical principles into
their architecture, enabling the incorporation of governing equations and boundary
conditions during the training process. This fusion of physics-based constraints with
machine learning facilitates the extraction of meaningful parameters from experi-
mental data, enhancing the accuracy of the identification process. Through a series
of simulations and experiments, this study assesses the efficacy of physics-informed
neural networks in capturing the complex nonlinear behaviour exhibited by MR
dampers. The neural network is trained on a dataset comprising experimental obser-
vations of the damper’s response under varying conditions. The results demonstrate
the capability of physics-informed neural networks to discern and infer key material
parameters. The findings presented herein contribute to the growing body of research
on the application ofmachine learning techniques in structural dynamics and control.
The demonstrated results of physics-informed neural networks in parameter identi-
fication for MR dampers showcase their potential as a valuable tool for engineers
and researchers seeking to optimize the design and control of these adaptive devices
in real-world engineering applications.
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1 Introduction

Magnetorheological (MR) dampers are pivotal in engineering systems requiring
dynamic response control due to their adaptive and tunable properties. However,
accurately determining the material characteristics of MR dampers poses challenges
due to their inherent complexity and nonlinearity [33]. Traditional methods for iden-
tifying parameters often struggle to manage these complexities, resorting to iter-
ative techniques or local search algorithms that may necessitate substantial prior
assumptions or system simplifications [7].

In addressing these challenges, this study investigates the integration of Physics-
Informed Neural Networks (PINNs) as a potential approach to improve parameter
identification accuracy in the context of MR dampers. PINNs utilize deep neural
networks as solvers for differential equations, enabling relatively precise predic-
tions for unknown terms even with limited data [25]. Their capacity as universal
function approximators allows them to handle nonlinear problems without the need
for predefined assumptions or system simplifications [11, 22, 26]. Additionally,
PINNs leverage automatic differentiation to effectively explore parameter spaces
and enhance model performance [2, 5, 21].

For MR dampers, characterized by significant nonlinearity in their rheological
processes and the simultaneous estimation of multiple parameters, PINNs offer
several compatible characteristics for the estimation process. The commonly used
modified Bouc-Wen model [27], describing MR damper behaviour with a set of
differential equations and multiple parameters, often poses challenges for traditional
approaches in identifying satisfactory parameters due to initial value setting difficul-
ties and high-dimensional parameter spaces [14, 32, 36]. PINNs present a promising
solution by integrating physical principles and experimental data into the learning
process, enabling accurate parameter estimation for MR dampers [26]. Results indi-
cate strong alignment between PINN predictions and experimental data, although
inherent noise in the data introduces some discrepancies. Factors contributing to this
noise include the composite loss function used during training, the complexity of
the model, and variations in voltage inputs. Further refinement of network architec-
ture, loss weighting schemes, and consideration of system dynamics are crucial for
improving the prediction accuracy of parameters, especially in capturing hysteresis
behaviours and responses to low voltage inputs.

The paper is organized as follows: Sect. 2 provides an overview of currentmethod-
ologies used for mathematically modelling MR dampers. Following this, Sect. 3
explores background information related to PINNs, which have shown promise
in solving complex physics-based problems. The proposed parameter estimation
scheme is then explained in Sect. 4, detailing how the model parameters are esti-
mated using the PINNs framework. Subsequently, Sect. 5 presents the results of
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the parameter estimation scheme and discusses these findings. Finally, the paper is
concluded in Sect. 6, summarizing the key points discussed and suggesting directions
for future research in this area.

2 Parametric Modelling for Magnetorheological Dampers

Magnetorheological dampers are devices designed to provide variable damping in
response to changes in an applied magnetic field, relying on the unique rheological
properties exhibited by MR fluids. Beyond their fundamental contributions to the
understanding of controllable damping systems,MRdampers have foundwidespread
applications in civil engineering for structural vibration control [23, 44], seismic
mitigation [6, 8], and adaptive suspension systems in automotive engineering [9, 37,
39]. Moreover, MR dampers have found their way into robotics, offering precise
control over the damping characteristics in robotic joints and limbs [3, 34, 40]. This
adaptability contributes to improved stability and maneuverability in various robotic
applications. Key to their operation is the MR fluid itself, which is composed of a
suspension of micron-sized ferrous particles within a liquid carrier. The dynamic
behaviour may be actively controlled by adjusting the alignment of the aforemen-
tioned ferrous particles through the application of an external magnetic field, typi-
cally induced through an externally applied voltage [10]. The responsiveness of MR
dampers to changes in voltage stems from the magnetic flux-induced alignment of
ferrous particles along the field lines. As the applied voltage increases or decreases,
corresponding adjustments in the magnetic field strength occur, leading to alter-
ations in the alignment of particles and, consequently, changes in the rheological
properties of the MR fluid [8]. Through this property, the damper may be adjusted
to provide varying levels of resistance to motion, thereby influencing the damping
characteristics of the overall system.

The mathematical modelling of MR dampers poses considerable challenges,
primarily attributed to the intricate dynamics arising from force–velocity hysteresis
and history dependency [37, 41, 46]. The nonlinearity inherent in these dampers
results from complex interactions involving magnetic field strength, particle distri-
bution, and rheological properties of the fluid. Force–velocity hysteresis, a key char-
acteristic of MR dampers, brings in a complicated connection between the loading
and unloading phases, making it challenging to develop a precise mathematical
representation. Moreover, the history-dependent nature of these dampers implies
that their response is influenced not only by the current state but also by preceding
loading conditions [28]. To address these complexities, researchers have turned to
phenomenological approaches, employing parametric models to capture the intri-
cate nonlinear dynamics. Phenomenological models are empirical or semi-empirical
models that are developed based on observed phenomena and experimental data,
rather than being derived from underlying physical principles. These models aim to
capture the essential features of a system’s behaviour without necessarily delving
into the detailed internal mechanisms or physics governing the phenomena. Various
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authors have proposed models based on empirical observations and experimental
data, aiming to characterize the system’s behaviour using parameters that encompass
the interplay of magnetic, fluid, and structural elements [15, 27, 43]. However, the
identification of these parameters remains challenging, involving navigation through
a high-dimensional parameter space and necessitating comprehensive experimental
data to ensure the accuracy of model predictions.

Prominent among the various mathematical models proposed for describing the
behaviour of MR dampers is the modified Bouc-Wen model introduced by Spencer
and colleagues [27]. This model has gained recognition for its effectiveness in
capturing the intricate dynamics, especially in addressing the roll-off region, an
aspect that posed challenges in the original Bouc-Wen model [12, 27]. The modified
Bouc-Wen model is a phenomenological mathematical model extensively utilized to
describe the behaviour of MR dampers. An illustration of the model is provided in
Fig. 1 [27]. Spencer’smodification has demonstrated improved accuracy in predicting
the damping force over awide range of velocities. However, it is essential to acknowl-
edge that the modified Bouc-Wen model comes with a notable degree of complexity.
The model involves a system of differential equations, necessitating a comprehen-
sive understanding of the underlying physics and intricate interactions within the
damper system [12]. Furthermore, the model demands the identification and tuning
of 14 parameters, adding a layer of complexity to the calibration process. While the
modified Bouc-Wen model has proven its efficacy in capturing the nonlinearity of
MR dampers, its complexity raises challenges regarding computational implemen-
tation and the requirement for extensive experimental data to accurately identify and
finetune the numerous model parameters [28, 35]. The modified Bouc-Wen model
is characterized by the following equation:

F = αz + c0(ẋ − ẏ) + k0(x − y) + k1(x − x0). (1)

Equation (1) may also be simplified as

F = c1ẏ + k1(x − x0), (2)

where the evolutionary variable z (also denoted as the hysteretic displacement in
certain publications), and the intermediary displacement y is represented in the
following differential equations:

ż = −γ |ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ), (3)

ẏ = 1

c0 + c1
(αz + k0(x − y) + c0ẋ). (4)

whereas the model outlined above is static for a set magnetic field strength within
the damper, the model may be extended to incorporate the changes in magnetic field
strength through varying applied voltage. Parameters α, c0, and c1 were shown to be
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Fig. 1 The modified Bouc-Wen model. Adapted from [27]

changing linearly with an efficient voltage u, whereby u represents the filtered input
voltage v [1, 16, 42]. The relations are given as follows:

α = αa + αbu, (5)

c0 = c0,a + c0,b u, (6)

c1 = c1,a + c1,bu, (7)

u̇ = η(u − v), (8)

whereby parameters
[
αa, αb, β, γ, η,A, c0a, c0b, c1a, c1b, k0, k1, n, x0

]
are system

parameters to be identified prior to simulations with the modified Bouc-Wen model.
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3 Physics-Informed Neural Network for Parameter
Estimation

In recent years, PINNshave emerged as a powerful paradigm for solvingpartial differ-
ential equations and elucidating complex physical phenomena. This section delves
into the application of PINNs within the context of identifying solutions to partial
differential equations, building upon the foundational work conducted byRaissi [26].
PINNs seamlessly integrate neural network architectures with the governing physics
of a system, offering a data-driven approach to characterize latent solutions. Specifi-
cally, we explore themethodology employed in prior works of various authors, which
involves utilizing PINNs to discern optimal parameters λ that effectively describe
observed data [4, 13, 25, 26].

In the initial study conducted, the investigation primarily centred on the utiliza-
tion of data-driven methodologies for the identification of the solution u(t, x) to
partial differential equations in a generalized form [26]. The considered equations
are expressed concerning spatial and temporal variables, denoted as x ∈ � and
t ∈ [0,T ], respectively.

0 = δu

δt
− N [u; λ]. (9)

Here, the variable u symbolizes the latent solution of the differential equation, while
N signifies the nonlinear operator parameterized by λ. In the context of a system
with a hidden state u(t, x), characterized by a sparse and potentially noisy set of
observations, the authors employed the PINN to discern the optimal parameters λ
that effectively characterize the observed data. This endeavour involved determining
the parameters λ through the PINN methodology, which is designed to efficiently
handle scattered and potentially noisy observations of the hidden state u(t, x).

In the subsequent section, the framework established by Raissi, which was origi-
nally designed for the solution of partial differential equations, undergoes adaptation
to address a system of ordinary differential equations (ODEs). The adaptability of the
methodology becomes apparent as we extend its application from partial to ordinary
differential equations, catering to a broader range of dynamical systems.

4 Parameter Estimation Framework Utilizing PINNs

To address the challenges associated with the complexity of the modified Bouc-Wen
model, we propose to integrate this model into a PINN framework for parameter
estimation. PINNs leverage the power of neural networks to learn the underlying
physics of a system while simultaneously incorporating physical principles in the
form of partial differential equations. By integrating the modified Bouc-Wen model
into a PINN, we aim to harness themodelling accuracy of the former while benefiting
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from the data-driven capabilities of neural networks for parameter identification. It is
worth noting that various authors have recognized the potential of PINNs for param-
eter estimation in diverse engineering applications [24, 29, 31, 38, 45]. The capability
of PINNs to seamlessly integrate physical laws with data-driven approaches has been
harnessed to identify and tune parameters in complex dynamical systems efficiently
[26]. In the context of MR dampers, the application of PINNs for parameter estima-
tion has gained traction due to the inherent challenges associated with the complexity
ofmodels such as themodifiedBouc-Wenmodel. Leveraging the strengths of PINNs,
we aim to contribute to this growing body ofwork by employing the network architec-
ture to accurately estimate and fine-tune the 14 parameters of themodifiedBouc-Wen
model.

The challenge of parameter estimation is commonly formulated as an inverse
problem, wherein the objective is to infer the parameters of a given model based on
observed data [30]. In the context of parameter estimation, the utilization of NNs
is particularly advantageous due to their inherent ability to be configured as inverse
models [20]. In many real-world scenarios, the physical parameters of a system
are often challenging to directly measure or quantify [45]. However, by casting
these parameters as neural network parameters, the neural network can efficiently
learn and approximate their values through the optimization of weights and biases.
This approach aligns with the inherent capability of neural networks to adapt and
generalize complex patterns from data. The neural network, equippedwith the task of
minimizing discrepancies between its predictions and the training dataset, naturally
extends its ability to handle additional parameters. By incorporating the physical
parameters into the architecture, the neural network explores various combinations
to achieve the best fit with observed data.

Neural networks have emerged as powerful tools for approximating complex
functions in various fields, owing to their universal approximation capabilities. The
universal approximation theorem states that a neural network may approximate
any continuous function to arbitrary precision, given a sufficiently large number
of neurons in its hidden layers [22]. In the context of dynamical systems, ordinary
differential equations (ODEs) represent a ubiquitous framework for describing the
evolution of physical systems over time. The ability of neural networks to approxi-
mate functions renders them suitable candidates for approximating the solutions to
systems of ODEs, as illustrated in the work of Lagrais and colleagues, who initially
conceptualized the idea [17]. A specific implementation considered in this investiga-
tion involves employing a PINN to tackle the parameter estimation task, integrating
ODEs governing the behaviour of the modified Bouc-Wen model, as illustrated in
Eqs. (1), (2), (3), (4), (5), (6), (7) and (8). A visualization of the workflow adhered
to herein is presented in Fig. 2.

For a neural network denoted as N
(
x, dx

dt , v, t
)
, where x, dx

dt , v, t represents the
input variables. Leveraging the universal approximation property, it is possible to
express the neural network function as a suitable approximation for the solution to a
system of ODEs. In this study, we focus on a specific scenario where the universal
approximative capabilities of a neural network are employed to obtain the solution
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Fig. 2 Workflow of proposed physics-informed neural network for estimation of parameters

vector
[
uNN , yNN , zNN

]T
, representing the dependent variables of the system:

N

(
x,

dx

dt
, v, t

)
≈ [

u, y, z
]T

(10)

where the subscript NN denotes predictions via the neural network. To facilitate the
analysis of the dynamical system, it becomes necessary to determine the derivatives
of the neural network function with respect to the independent variable t, such that
variables duNN

dt ,
dyNN
dt , and dzNN

dt are available for computation of Eqs. (3), (4), and
(8). This differentiation process is accomplished through automatic differentiation,
a technique that efficiently computes the derivatives of a function with respect to its
input variable.

Thus, Eqs. (3), (4), and (8) may be reformulated in this context as

0 = duNN
dt

− (η(uNN − v)) (11)
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0 = dyNN
dt

−
(

1

c0 + c1

(
αzNN + k0(x − yNN ) + c0

dx

dt

))
(12)

0 = dzNN
dt

−
(

−γ

∣∣∣∣
dx

dt
+ dyNN

dt

∣∣∣∣zNN |zNN |n−1

−β

(
dx

dt
+ dyNN

dt

)
|zNN |n + A

(
dx

dt
− dyNN

dt

))
(13)

Thus, for a set of parameters to be identified:

λ = [
αa, αb, β, γ, η,A, c0a, c0b, c1a, c1b, k0, k1, n

]
, (14)

the above equations outlined are in alignment with the original formulation byRaissi,
whereby the network is trained to minimize discrepancies between predicted time
derivatives of solution space, with the calculated value of time derivatives utilizing
governing differential equations:

0 = δN

δt
− N [N ; λ] (15)

From the above, the physics-based mean squared error (MSE) loss functions are
defined, and subsequently minimized by the network. The loss function is defined
for each sample point i of total samples taken N for the sequence parsed:

Lu = 1

N

N∑

i=1

[(
du(i)

NN

dt

)

−
(
η
(
u(i)
NN − v(i)

))]2

(16)

Ly = 1

N

N∑

i=1

[(
dy(i)

NN

dt

)

−
(

1

c(i)
0 + c(i)

1

(
α(i)z(i)

NN

+ k0
(
x(i) − y(i)

NN

)
+ c(i)

0

dx(i)

dt

))]2

(17)

Lz = 1

N

N∑

i=1

[
dzNN
dt

+ γ

∣∣∣∣
dx

dt
− dyNN

dt

∣∣∣∣zNN |zNN |n−1

+β

(
dx

dt
− dyNN

dt

)
|zNN |n − A

(
dx

dt

dyNN
dt

)]2

(18)

Asdirect observations of y and z are difficult, the data-driven section of the network
will be reformulated such that the object of comparison is the force instead. From
Eqs. (1) and (2), force may be represented as a function of variables from both the
prediction and input space. The data-driven loss may then be derived as the MSE
between observed force at each time point F(i), and the function of predicted and
input variables. The new physics-informed data-driven loss is given as follows:
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Ldata,1 = 1

N

N∑

i=1

[(
F (i)

)
−

(
α(i)z(i)

NN + c(i)
0

(dx(i)

dt
− dy(i)

NN

dt

)

+ k0
(
x(i) − y(i)

NN

)
+ k1

(
x(i) − x0

))]2
(19)

Ldata,2 = 1

N

N∑

i=1

[(
F (i)

) −
(
c(i)
1 ẏ(i)

NN + k
(
x(i) − x0

))]2
(20)

The total loss by which the network is trained is thus a composite loss comprising
the aforementioned component losses. The loss is given as

L = φdataLdata,1 + φdataLdata,2 + φphysLu + φphysLy + φphysLz (21)

The learning process incorporates weights, denoted as φ = [
φdata, φphys

]
, to

achieve a balanced optimization between adherence to physically derived differen-
tial equations and alignment with observed measurements, specifically pertaining to
force. The training process for the PINN involves the minimization of the overall loss
function, which encompasses both the physical loss and data loss components. To
ensure the model’s robustness, a training and validation process was conducted with
an 80–20 data split for training and validation data. Subsequently, the model was
evaluated on a novel dataset that had not been seen during training. A Bayesian opti-
mization strategy was employed to tune the hyperparameters of the PINN developed.
Bayesian optimization was chosen over its counterparts such as grid and random
search for its pragmatic utility in validation and hyperparameter optimization. This
approach systematically explores the parameter space by leveraging probabilistic
models, efficiently balancing the trade-off between exploration and exploitation. This
approach allows for the navigation of high-dimensional parameter space efficiently,
facilitating the convergence of our neural network model.

5 Results and Discussion

In this section, we present and discuss the results obtained from employing the PINN,
as discussed in Sect. 4 for the estimation of key parameters within a modified Bouc-
Wen model for MR dampers. Employing a Python environment with PyTorch, we
constructed and tested the neural network framework to ascertain key parameters.
Table 1 presents the parameters determined through the aforementioned processes.

Force–time, force–velocity, and force–displacement curves were plotted to
compare the estimated values obtained from the neural network against the measured
data from physical experimental setups. Notably, the curves generated by parameters
identified by the neural network were found to be in agreement with the observed
data. A sample of the predicted results, with varying voltage applied to the MR
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Table 1 List of parameters
and their corresponding
values, as determined by the
PINN parameter estimation
algorithm outlined in Sect. 4

Parameter Value Units

αa 1.92114100e+03 N
m

αb 5.88251000e+03 N
m V

β 3.63320700e+04 m−2

γ 3.63320700e+04 m−2

η 6.00043108e+01 s−1

A 1.55320000e+02 −
c0a 1.65073317e+05 N s

m

c0b − 3.33399584e+05 N s
m V

c1a 7.73465300e+01 N s
m

c1b 2.40504070e+04 N s
m V

k0 2.60786039e+04 N
m

k1 1.72270067e+02 N
m

n 1.99999659e+00 −
x0 0 m

damper, are illustrated in Figs. 3, 4 and 5 for force–time, force–displacement, and
force–velocity plots, respectively.

Upon examining the outcomes, it is apparent that the PINN has shown promising
performance in estimating the parameters of the modified Bouc-Wen model.
Figures 3, 4 and 5 illustrating the results reveal a significant correspondence between

Fig. 3 Sample of predicted and observed force over time, with varying voltages applied to the MR
damper
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Fig. 4 Sample of predicted and observed force plotted with damper displacement, with varying
voltages applied to the MR damper

the PINN predictions and experimental data, indicating the effectiveness of the
physics-informed data-driven approach. However, it is important to note the presence
of inherent noise in the experimental data used to train the PINN, which contributes
to some level of noise in the obtained results.

The predictions obtained from the PINN exhibit some level of noise, which may
be attributed to several factors. One potential reason for the noise in the predictions
could be the composite loss function utilized during the training process. Since
the PINN aims to simultaneously satisfy the governing equations of the physical
system and match the observed data, tuning the weights of the loss function becomes
crucial.However, achieving anoptimal balance between these objectives is inherently
challenging. The composite loss function’s weighting scheme may inadvertently
prioritize one aspect over the other, leading to discrepancies between the predicted
and observed outputs. Moreover, the inherent complexity of the modified Bouc-
Wen model for MR dampers introduces nonlinearities and uncertainties that further
contribute to the noise in the predictions. Despite these challenges, efforts to fine-tune
the network architecture and training parameters could potentially mitigate the noise
and improve the accuracy of the predictions. Further investigation into the network’s
sensitivity to different loss weighting schemes and regularization techniques may
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Fig. 5 Sample of predicted and observed force over time, with varying voltages applied to the MR
damper

also offer insights into enhancing the predictive capabilities of the PINN in complex
physical systems.

Theobserveddiscrepancy in the accuracyof predictions at different voltage inputs,
particularly the notable deviation in capturing aspects of hysteresis at low voltage
inputs, can be attributed to several factors inherent to both the physics of the system
and the limitations of the machine learning approach employed. Root mean Squared
Error (RMSE) of force predictions for a set sampling period of 100 s may be seen in
Table 2. At higher voltage inputs, where the predictions demonstrate greater accu-
racy, the increased voltage likely induces amore pronounced response within theMR
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Table 2 Root mean squared
error obtained at various
voltages

Applied voltage (V) RMSE of force prediction

0 18.7936

0.1 17.7621

0.2 13.8159

0.3 11.8298

0.4 16.8806

0.5 10.0988

damper, leading to clearer and more distinguishable patterns in the force–displace-
ment, force–velocity, and force–time curves. This heightened response facilitates
the learning process of the PINN, resulting in more accurate parameter estimations.
Conversely, at lower voltage inputs, the response of the MR damper is relatively
weaker, potentially leading to smaller signal-to-noise ratios and increased suscepti-
bility tomeasurement inaccuracies. One potential explanation for these discrepancies
could be attributed to the effect of the accumulator within the MR damper. Addi-
tionally, considering the low velocities and extended stroke lengths examined in
our study, it is important to acknowledge that the force exerted by the diaphragm
and compressed nitrogen gas becomes non-negligible, potentially influencing the
observed discrepancies in predictions, as explored in other publications on the subject
[18, 19].

These observations underscore the importance of considering various factors,
such as voltage inputs and the physical characteristics of the MR damper compo-
nents when interpreting and refining the performance of machine learningmodels for
parameter estimation in complex systems. Further investigation into these nuances is
warranted to enhance the accuracy and robustness of future predictions. Additionally,
it is essential to consider the inherent limitations of the machine learning approach
itself. Despite its capabilities in learning complex relationships from data, the PINN
relies on the quality and representativeness of the training dataset. If the dataset does
not encompass a diverse range of operating conditions, including scenarios with low
voltage inputs and intricate hysteresis behaviours, the networkmay struggle to gener-
alize effectively to such conditions during inference. As a result, the discrepancies
observed in the predictions at low voltage inputs may reflect the inherent challenges
in training machine learning models to accurately capture the full range of dynamics
exhibited by MR dampers, particularly under conditions of low excitation.

6 Conclusion

This study explored the application of PINNs for parameter identification in MR
dampers, crucial components in engineering applications like vibration control and
structural dynamics. Through the integration of physical principles into the neural
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network architecture, PINNs enabled the incorporation of governing equations during
the hybrid physics-informed data-driven training process, enhancing the accuracy
of parameter identification. The study assessed the efficacy of PINNs in capturing
the complex nonlinear behaviour exhibited by MR dampers. The results illustrated
the ability of PINNs to discern and infer key physical parameters from experimental
data, providing insights into the underlying physics governingMRdamper behaviour.
Notably, the PINN framework demonstrated promising performance in estimating
parameters within the modified Bouc-Wen model, as evidenced by the alignment
between PINN predictions and experimental observations. In addition, results reveal
that PINNs exhibit promising performance in discerning and inferring key mate-
rial parameters from experimental data, despite encountering challenges such as the
representation of hysteresis at low voltage inputs. Notably, there was greater accu-
racy in predictions at higher voltage inputs, indicating the network’s proficiency in
capturing pronounced system responses. However, the limitations in capturing subtle
nuances of hysteresis underscore the need for further refinement in both network
architecture and dataset representation.
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