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Abstract Commonly applied in satellites and other complex systems, the Kalman
filter (KF) is an optimal estimation strategy and many nonlinear variants have been
introduced in practice. A trade-off commonly exists between optimality and robust-
ness. In the presence of unmodeled disturbances, modeling errors, or sub-system
failure, non-robust strategies can fail to correctly estimate states, resulting in failure
across the system. In the context of Earth observing satellites, this can materialize as
internal or environmental disturbances, operational faults, or changes to the system
properties, resulting in communication or data loss with performance decline. In this
paper, estimation strategies for a nonlinear satellite system are derived and evaluated.
Introducing disturbances, modeling errors, and sub-system faults to the simulated
dynamics, the state estimation error for each filter is calculated and compared to each
other, quantifying robustness. The extended KF and extended sliding in- novation
filter (ESIF) are applied, as well as two nonlinear extensions of the second-order SIF
and alpha SIF, not previously applied in literature. Computational simulations are
performed on an ideal satellite system undergoing an attitude regulation maneuver
subjected to selected com- plications. From the results of the experiment, it was
concluded that the robust strategies out-performed the conventional EKFwhen faults
were injected, having less error between the estimated and true states.
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1 Introduction

For spacecraft applications, the reliability of the control system is paramount. Satel-
lites and spacecraft must be able to determine the position of themselves and their
target, and orient and track those targets with precision. In orbit, satellite systems
must be exceptionally accurate to maintain essential Earth operations, such as radio
broadcasting and communication, climatemonitoring, defense applications, andGPS
tracking. Modern satellites are able to achieve short term sub micro-radian accuracy
and rotational stability within 10−4 deg/s [1, 2], obtaining more accurate and there-
fore more useful data. Their performance in this regard is dictated by a variety of
design factors on both hardware and software levels. Such factors include control,
computational efficiency, and specifically, the onboard filtering and state estimation
algorithm of the system.

The fundamental objective of estimation is to determine the true state values from
measurements. In satellites, states that are typically desirable to have knowledge of
are attitude (i.e., quaternion), spacecraft motion, and actuator states. Using system
and noise models, a variety of techniques can be applied to extract these true states
fromnoise corruptedmeasurement signals. Forwarding this information to the control
system, a system can achievemore precise control authority over its states with better
estimation methods.

Developed by R. Kalman in the 1960s, the Kalman Filter (KF) [3] is the most
popular and extensively researched of estimation strategies. The KF is a minimum
mean-square error (MMSE) estimator, providing the optimal solution to the linear
estimation problemwith stochasticity. A recursive process, theKF algorithm predicts
the states and error covariance initially based on the system model (i.e., A and B
matrices) and the system noise model. Those predictions are then updated/corrected
with the Kalman gain matrix, based on measurements and the sensor noise model
[3]. For nonlinear systems, the KF equations can be modified such that the time
varying system and measurement matrices are incorporated, providing near opti-
mality (though there is no truly optimal nonlinear estimation method). The Extended
KF (EKF) is one of the most commonly used nonlinear estimation methods, though
more accurate strategies exist, such as the Unscented KF (UKF), the Cubature KF
(CKF), and particle filter (PF) [4–6].

Though the EKF provides an near-optimal solution to the estimation problem for
a nonlinear dynamic system, it lacks robustness. In the presence of unmodeled distur-
bances, incorrectly modeled dynamics or noise, or system failure, the KF and EKF
methods fail to provide sufficient knowledge of the system.As such, robust estimation
methods have been explored in literature to counteract this common issue. Though
many methods exist, the following method being explored is the Sliding Innovation
Filter (SIF) [7], a relatively new approach to sub- optimal, robust estimation.

In the following paper, robust estimation strategies are examined for a nonlinear
satellite system subjected to a variety of faults. The standard EKF is applied and
compared to alternative formulations of the robust SIF. The Extended SIF (ESIF),
Extended Second-Order SIF (ESIF2), and Extended Alpha SIF (EASIF) are used in
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experiments, where the latter two are novel formulations for the satellite application.
In Sect. 2, a brief literature survey is conducted on robust estimation methods and
previous applications of the SIF. Section 3 derives the rigid satellite model being
applied, where Sect. 4 derives the estimation strategies being implemented. With
Sect. 5, the experiment is conducted and performance is compared by metric of
root mean-square error. (RMSE) and ability to estimate the fault. Section 6 offers
concluding thoughts and prospects for future work.

2 Literature Review

Addressing the problemof accurate estimation in the presence of uncertainties, robust
estimation is introduced. Where optimal estimators fail, robust estimation strategies
are sub-optimal, guaranteeing a certain degree of performance for uncertainties under
a given bound [8]. Methods such as the robust KF [8] and H∞ filtering [9] were
relatively early adopters of this notion. Hybrid methods were subsequently applied
for increased accuracy, integrating the PF and UKF [10, 11]. In 2007, Habibi [12]
proposed the Smooth Variable Structure Filter (SVSF) based on variable structure
systems. Similar to sliding mode observers [13], the SVSF uses discontinuity hyper-
planes, and then the gain of the predictor–corrector estimator is based on a switching
term and errors in measurements [7, 12].

Since being established, the SVSF has been improved upon, including a co-
variance derivation [14], the addressing of chattering effects [15], and the formula-
tion of two-pass and square root variations [16]. Additionally, Gadsden and Al-Shabi
derived the SIF, a robust estimation method based on the SVSF [7]. The gain struc-
ture of their method was simpler than that of the SVSF, featuring the same variable
structure methods utilized in the previous filter, with higher accuracy. Alternative
formulations of the SIF have been since introduced based on Interacting Multiple
Models (IMM) [17], hybridization with PF and KF [18, 19], and adaptivity in the
boundary width definition [20]. Different gain formulations have also been intro-
duced in [21, 22]. The variations of the SIF have been applied to a variety of dynamic
systems, up until this work, none of which have been a satellite. Additionally, the
methods outlined in [21, 22] have not been extended to nonlinear dynamics.

3 Satellite Model

The satellite under study is modeled as a rigid spacecraft without consideration
for passive control methods or environmental disturbances. For control and estima-
tion, the kinematic equations of the attitude quaternion and the dynamic relationship
between the reaction wheel momentum contribution and the body spin rate of the
satellite are utilized. They are expressed as a time-varying state space model.
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3.1 Kinematic Equations

The kinematic equations of the satellite provide a relationship of how the attitude
quaternion q changes based on the body angular velocities about the Cartesian axes
ω, and the current quaternion vector. The quaternion is essential in attitude deter-
mination since it expresses the attitude matrix as a homogeneous quadratic function
of its elements [23], implying that the attitude can be evaluated without transcen-
dental trigonometric functions or singularities [23]. The definition of a quaternion is
provided in [23], where in this work the identity quaternion is defined as qI = [0 0
0 1]T . The attitude kinematic equation is presented below as Eq. 1, which is derived
in [23].

qḂI(t) = 1

2

[
ωBI
B ⊗]

qBI(t) (1)

where the values are in terms of the body frame B with respect to the inertial frame
I. The skew symmetric matrix term of the satellite body angular velocities is used
to preserve the quaternion norm after derivation [23]. The definition is presented
below as Eqs. 2 and 3. Theω term is the body angular velocity vector about the three
principal axes.

[
ωBI
B ⊗] =

[ −[ω×] ω(t)
−ω(t)T 0

]
(2)

[ω×] =
⎡

⎣
0 −ωz(t) ωy(t)

ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

⎤

⎦ (3)

3.2 Dynamic Equations

The dynamic model of the satellite considers the angular momentum, inertia, and
how external and internal forces impact the attitude of the satellite. For the type of
attitude control under analysis, the satellite can only rotate in three axes about itself,
and lateral movements/perturbations are not considered.

We can define the angular momentum of the satellite with respect to the body
frame, H, as the product of the moment of inertia (MOI) matrix of the satellite with
respect to the body center of mass, Jc, and the body rotational velocity vector, ωBI,
which is the net torque acting on the system [23]. It can be rearranged to the more
convenient form of Eq. 4.

ωBI
B (t) = (

J c
B

)−1
Hc

B(t) (4)
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The rigid body dynamics of the satellite with respect to the body frame (de- noted
by B) are more simply calculated than that of the inertial frame (denoted by I), since
the MOI matrix becomes time variant in the latter case. Applying time derivative
rules for vectors and the fact that

.

H
c

I = Lc
I , Eq. 5 can be used to describe the rate of

angular momentum of the satellite with respect to the body frame [23].

.

H
c

B(t) = Lc
B(t) − ωBI

B (t) × Hc
B(t) (5)

Note that in Eq. 5 the term, L acting on the body represents external torques.
Using Eq. 4, we can define the overall angular momentum about the satellite CoM as
the combination of the angular momentum of the body and the angular momentum
contributed by the reaction wheel actuators [23], as Eq. 6.

HB(t) = HB
B(t) + HW

B (t) = JBω
BI
B (t) + HW

B (t) (6)

The angular momentum of the four reaction wheels (terms denoted by W) is then
defined as Eq. 7, as a function of each individual wheel’s inertia and angular velocity,
J and ω respectively [23]. Applying a redundant configuration, the spin axis of each
wheel is mapped with respect to the body frame through the dimensionless matrix,
WN .

HW
B (t) = WNHW

W (t) = WNJ
W
W ωW

W (t) (7)

We can observe in Eq. 8 that the time rate of change of the term HW is the torque
vector in the three principal directions imposed on the satellite body, generated by
the reaction wheels. Since we have direct authority over the momentum magnitude
for each wheel, this is also referred to as the control input, typically defined as u.

.

H
W

B (t) = LW
B (t) = u(t) (8)

Deriving the dynamic relation in terms of the time rate of change of the angular
velocity of the satellite body. Using Eq. 4, we can substitute in Eq. 6 to produce
Eq. 9, the total angular momentum of the satellite.

HB(t) = JBω
BI
B (t) + WNJ

W
W ωW

W (t) (9)

Differentiating and isolating for the derivative of the body angular velocity vector,
we produce the final dynamic model for the satellite [23] as Eq. 10.

ω̇BI
B = (

J c
B

)−1[
Lc
B − u − ωBI

B × (
J c
Bω

BI
B + WNJ

W
W ωW

W

)]
(10)

For a representation of how the designed control torque relates to the reaction wheel
dynamics, we can apply Eq. 8 [24] and the mapping between wheel and body axes.
Equation 11 is incorporated into the state space.
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ω̇W (t) = J−1
W TW (t) = J−1

W WNu(t) (11)

4 Filter Derivation

4.1 Extended Kalman Filter

The recursive discrete EKF algorithm is separated into the prediction and update
stages. The prediction stage (a priori) estimates the state vector xˆk+1|k and the state
error covariance, Pk+1|k , using Eqs. 12 and 13 below [3].

x
∧

k+1|k = f
(
x
∧

k|k ,uk
)

(12)

Pk+1|k = AkPk|kAT
k + Qk (13)

The nonlinear model for the system (Eq. 12) can also be expressed in terms of the
system and control matrices, Ak and Bk , where Ak is applied in Eq. 13. For improved
accuracy, the nonlinear Eq. 12 is used for the a priori state estimate. The system
noise covariance is denoted as Qk . The up- date stage (a posteriori) determines the
corrected covariance Pk+1|k+1 and state xˆk+1|k+1 values through the computation of
the Kalman gain, Kk+1. Applying this gain produces the optimal estimate (in linear
systems) and the process is illustrated by the following equations [3]. The parameters
Rk+1 and Sk+1 are the measurement noise covariance and the innovation covariance,
respectively.

Sk+1 = Ck+1Pk+1|kCT
k+1 + Rk+1 (14)

Kk+1 = Pk+1|kCT
k+1S

−1
k+1 (15)

x
∧

k+1|k+1 = x
∧

k+1|k + Kk+1
(
zk+1 − h

(
x
∧

k+1|k
))

(16)

Pk+1|k+1 = (I − Kk+1Ck+1)Pk+1|k(I − Kk+1Ck+1)
T + Kk+1Rk+1K

T
k+1 (17)

4.2 Sliding Innovation Filter

Originally proposed by Gadsden and Al-Shabi [7], the SIF is a predictor–corrector
estimation strategy like the KF and utilizes most of the same equations (Eqs. 12, 13,
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14, 16, 17). The Extended SIF (ESIF) was derived in the same publication, for the
nonlinear system case.

For the gain, it is instead calculated as a function of the innovation z˜k+1|k (i.e.,
the difference between the measurement and estimated measurement, Ck+1 xˆk+1|k),
the measurement matrix C, and the width of the sliding boundary layer δ. The sub-
optimality is a consequence of omitting the state error covariance in this calculation
[7].

Illustrated in Fig. 1 above, the estimated state is driven towards an existence
subspace (defined by the boundary layer width, δ) and bounded close to the true
trajectory [7]. The estimate is maintained within the boundary due to the switching
characteristic of the gain, defined in Eq. 18. Note also that the prediction stage must
be augmented with Eq. 19 to calculate the innovation.

Kk+1 = C+sat

(∣∣̃zk+1|k
∣∣

δ

)

(18)

z̃k+1|k = zk+1 − Ck+1x
∧

k+1|k (19)

The stability of this gain is proven, provided the boundary layer is equal to or
greater than a specifiedmagnitude, defined in [7]. The size of δ canbedeterminedwith
this equation or tuned. A width larger than the maximum value of uncertainties will
provide smooth estimates, where widths smaller than this value results in chattering
[7].

Fig. 1 SIF behaviour illustration (adapted from [7])
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4.3 Extended Second-Order SIF

Following the successful application of the SIF, alternative formulations and hybrid
methods have been derived [18, 19, 25]. A variation that features an alternate gain
formulation is theSecond-Order SIF (SIF2) [21].Deriving the gainwith an alternative
Lyapunov function found in [26], the method was proposed to increase the accuracy
of the robust sub-optimal estimator, using innovation terms from two separate time
steps. This notionwas verified in the simulation of a linear electrohydrostatic actuator
(EHA) model. The gain for the SIF2 is calculated based on Eq. 20, and the update
stage is augmented with 19.

Kk+1 = C+sat
(∣

∣∣∣
z̃k+1|k

δ
− z̃k|k

2δ

∣
∣∣∣

)
(20)

The stability of this gain is proven in [21]. In the following section, the SIF2 is
proposed to be extended to nonlinear systems, where the gain expressed in Eq. 20 is
utilized in the aforementioned EKF equations for the satellite system.

4.4 Extended Alpha-SIF

In addition to the SIF2, the alpha SIF (ASIF) was derived to improve the performance
of the SIF with a simple adjustment mechanism based on a forgetting factor, α
[22]. The forgetting factor optimizes measurement confidence, reducing the lack of
confidence as a result of noise. The simplified mechanism is beneficial for high order
systems, as boundary layer width definition is necessary for each state [22]. In the
simulations from Al-Shabi and Gadsden, the ASIF was demonstrated to perform
better than the KF in the presence of uncertainties, where the superiority to the SIF
was slight.

Kk+1 = αC+ (21)

The gain determination is represented by Eq. 21 for the ASIF, again extended
to a nonlinear satellite system in the subsequent section for the novel application.
The constraint applied to the forgetting factor α is that it must be between 0 and 2
(including). The characteristics of forgetting factor values was determined in [22].
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5 Experimental Results

5.1 System Parameters

In this section, the EKF, ESIF, ESIF2, and EASIF are applied to a nonlinear satellite
attitude control experimentwith faults andnoise. The system is based on the geometry
of a lab nanosatellite simulator, and is linearized to a time-varying state space form
and discretized, with an eleven-entry state vector and constant MOI and control
matrix B. The full nonlinear system is presented below as Eqs. 22 and 23, abusing
notation for brevity. Note as well that the system measurements are assumed to
correspond exactly with the states, where the measurement matrix C is identity.

.
x
k

=
⎡

⎣
1
2

[
ωB
k ⊗]

qk
J−1
B

[
ωB
k × (

JBωB
k + WNJWωW

k

)]

04×11

⎤

⎦ +
⎡

⎣
04×3

−J−1
B

J−1
W W+

N

⎤

⎦uk + wk (22)

zk = Cxk + vk (23)

The system is simulated in Matlab using a sampling rate T of 10 ms. The w and v
terms are the process and sensor noise of the system. For the ideal case, the reaction
wheel and system inertia, and geometric reaction wheel mapping are known, with
noise modeled as zero-mean Gaussian, with known noise co- variances, Q and R.
The ideal known parameters are defined below as Eq. 24.

JB =
⎡

⎣
0.0196 −0.0033 −0.0010

−0.0033 0.0217 0.0009
−0.0010 0.0009 0.0287

⎤

⎦kgm2

JW = 1.740138 × 10−5kgm2 (24)

WN =
⎡

⎣
0.5 0.5 −0.5 −0.5

−0.5 0.5 −0.5 0.5
−1/

√
2 −1/

√
2 −1/

√
2 −1/

√
2

⎤

⎦

Q = 1 × 10−9I R = 10Q

The reaction wheel inertias are assumed identical. The reaction wheel mapping
WN was derived considering the four wheel pyramidal configuration utilized. The
maximum velocity of the reaction wheels is 10 000 rpm and the system is subjected
to this constraint. The initial condition of the state error covariance P was defined as
10Q, and there is no error between the first estimate and the initial state. The entries
of the state vector x correspond to the quaternion, body angular rates, and reaction
wheel speed, respectively.
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x0 = [
q0 ωB

0 ωW
0

]T
(25)

For the control scheme, a simple PD controller was designed to achieve the desired
state with minimal overshoot, reasonable rise time, and no steady state error, as a
function of body angular velocity error ωe and quaternion error δq. The gains were
tuned as Kp = 0.025 and Kd = 0.05, where the control law is presented as Eq. 26.

uk = Kpδq1:3
e,k + Kdωe,k (26)

where the first three entries of the error quaternion are utilized, calculated based
on the current and desired quaternion, with normalization (essential in quaternion
computation). Further details can be found in [23].

5.2 Experiment Methodology and Results

The experiment is a 5000 data point simulation of a simple state regulation attitude
control maneuver, with integrated estimation. A desired attitude described by quater-
nion and angular velocity is given to the system, made achievable from some initial
condition provided the control law in Eq. 26.

The attitude control simulation without system faults is presented in Figure 2. For
the four estimation strategies tested, the system was evaluated for the ideal case, as
well as for four different types of faults:

UnmodeledDisturbanceA constant sinusoidal perturbation is applied to the system
to simulate some unmodeled disturbance that the estimator has no knowledge of. This
could represent some combination of gravity gradient, magnetic, or aerodynamic
torque, common in spacecraft. The arbitrary disturbance vector is presented as Eq. 27
below.

Satellite Body Angular Velocity
1 Satellite Attitude Quaternion1

0.8 0.8

0.6
0.6

0.4
0.4

0.2

0.2
0

0-0.2

-0.4
0 10 20 30 40 50

-0.2
0 10 20 30 40 50

x

y

z

q 1

q 2

q 3

q 4

q

,r
ad

/s

Fig. 2 Attitude control maneuver
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LB = [
0.001 sin(2π t/5) 0.001 sin(2π t/5) 0.001 sin(2π t/5)

]T
(27)

System Modeling Error In the system model utilized by the estimator, a large
discrepancy is introduced between the modeled and real inertias. To inhibit perfor-
mance, themodel body inertiawas defined as being 5 times greater than the trueMOI.
Modeling errors such as these can manifest themselves from mischaracterizing the
system elements or materials.

System Fault For this type of fault, the alternate inertia is instead applied to the
plant partway through the simulation, resulting in unexpected (but stable) control
performance. The body inertia, JB is increased by 0.1 kgm2 on the Jxx element,
simulating some sudden imbalance on the system, which can represent payload
deployment or spacecraft damage.

ReactionWheel FrictionAsimple viscous andCoulomb frictionmodel is applied as
a disturbance to the system, fk as a function of the reactionwheel velocity. Parameters
c and b were obtained as 0.8795 10−3 and 5.16 10−6 Nms/rad, respectively, from
[24]. The disturbance is unmodeled in the estimation stage, and constant through the
simulation. The torque on the system as a result of this friction is modeled below
as Eq. 28, where the reaction wheel mapping is applied to express its impact in the
body frame. Equation 29 shows how the torque generates the disturbance f k , which
is added onto the system dynamics in the same manner as process noise wk .

uf
k = −bWNωW

k − cWN sign
(
ωW
k

)
(28)

fk =
⎡

⎣
04×3

−J−1
B

J−1
W W+

N

⎤

⎦
(−bWNωW

k − cWN sign
(
ωW
k

))
(29)

The RMSE tables for each fault situation are presented in the following section.
Though the state and associated RMSE are an 11 entry vector, for the purposes
of presentation, only the RMSE of the angular velocity will be tabulated, as they
consisted of the largest inaccuracies and affect the quaternion directly. For each fault
case, the estimation error between the strategies in the x axis (typicallymost affected)
are presented, highlighting the main result, as well as a snapshot of the estimated
and true angular velocity waveforms for that axis.

For the ESIF and ESIF2, the boundaries were tuned to yield the smallest error.
For the EASIF, the parameter α was chosen according to [22]. It is known for the
simulation that the measurement noise covariance R is larger than that of the process
noiseQ, therefore α should be less than one. This parameter varies across simulations.
Tunable filter parameters for each simulation case are presented in Table 1, where
the δ values are constant for each state. Since the noise levels are relatively low, the
simulation results were not averaged across a batch and are fairly repeatable.
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Table 1 Simulation case parameters

Parameter Ideal Case 1 Case 2 Case 3 Case 4

δESIF 5 × 10–4 5 × 10–5 5 × 10–4 5 × 10–4 5 × 10–4

δESIF2 5 × 10–4 5 × 10–5 5 × 10–4 5 × 10–4 5 × 10–4

α 0.5 0.9 0.95 0.95 0.99

For the ideal case, the results are presented in Table 2. As expected, with assumed
knowledge of the system and process noise covariance, the EKF out- performs the
sub-optimal SIFs.

In the presence of some unmodeled external disturbance, the superiority of the
EKF is surpassed by the robust methods, evident in Table 3. In the error profile
between the true and estimated states, the EKF could not achieve convergence for the
angular velocity, where the error oscillated at a similar waveform to the disturbance.
The performance of tuned SIF variations was highly accurate, though the difference
between variations was minimal. High frequency gain switching was evident as a
consequence of its accuracy, a factor of 10 over the EKF (Fig. 3).

For the case of the system model being subjected to modeling errors in the esti-
mator, the SIF variations demonstrated to have significantly less maximum and
root mean-square error. Table 4 below summarizes the performance. It should be
noted however that the largest EKF errors were at the start of the simulation and
converged quickly and well (see Fig. 4), accounting for the inertia discrepancy
through the Kalman gain. After convergence, the average maximum error ampli-
tudes were approximately 2 × 10−4, on par with the SIF error waveforms. The
EASIF featured the same behavior as the EKF, and as such the estimates were not
as accurate as the ESIF and ESIF2, each having negligible difference.

Table 2 Ideal case estimation performance (no faults)

RMSE (×10–4) EKF ESIF ESIF2 EASIF

ωx 0.49565 0.58098 0.60751 0.60950

ωy 0.52179 0.60246 0.59073 0.59673

ωz 0.52541 0.60497 0.60550 0.60281

�RMSE 1.54285 1.78842 1.80374 1.80903

Table 3 Unmodeled external disturbance estimation performance

RMSE (×10–3) EKF ESIF ESIF2 EASIF

ωx 1.22626 0.10026 0.10127 0.10325

ωy 1.02012 0.10036 0.10027 0.9903

ωz 0.67894 0.09998 0.09893 0.09434

�RMSE 2.92531 0.30061 0.30047 0.29663
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Satellite Body Angular Velocity
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Fig. 3 Estimation performance (external disturbance)

Table 4 Modeling error estimation performance

RMSE (×10–3) EKF ESIF ESIF2 EASIF

ωx 3.89879 0.07114 0.07065 0.12599

ωy 3.16071 0.07495 0.07637 0.11635

ωz 3.73808 0.08471 0.08426 0.12039

�RMSE 10.7976 0.23079 0.23128 0.36273

When the plant is subjected to an unexpected fault causing an alteration to system
geometry, the robust estimationmethods againwere demonstrated to surpass the EKF
in terms of performance. The results are presented in Table 5. Note again however,
the same phenomena as in the previous test case, where errors were initially large
but convergence occurred within the same small bounds as the SIFs (approx. 2 10−4

amplitude, see Fig. 5). As expected, the error on the body x axis is the largest. The
performance of ESIF and ESIF2 was very similar, slightly better than the EASIF.

Considering reaction wheel friction, robust methods are able to reject the constant
disturbance, where if the friction is unmodeled in the EKF, a constant error results,
as seen in Fig. 6. The results of this experiment are presented in Table 6. With the
control law selected, steady state error results and the difference in performance
across the SIF variations was negligible.



552 A. McCafferty-Leroux et al.

5

0

-5

17.8 17.9 18 18.1 18.2 18.3 18.4 18.5

Estimation Error
0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06
0 5 10 15 20 25 30 35 40 45 50

10 -3 Satellite Body Angular Velocity

x

x EKF

x ESIF

x ESIF2

x EASIF

x EKF

x   ESIF

x ESIF2

x EASIF

,r
ad

/s
,r

ad
/s

Fig. 4 Estimation performance (modeling error)

Table 5 System fault estimation performance

RMSE (×10–3) EKF ESIF ESIF2 EASIF

ωx 2.82871 0.09142 0.08955 0.11311

ωy 0.60520 0.07740 0.07725 0.09615

ωz 0.38843 0.07262 0.07218 0.09622

�RMSE 3.82234 0.24144 0.23899 0.30548

6 Conclusions

In this paper, three robust estimation strategies were simulated and compared to the
standard EKF. For the satellite attitude control experiments, the alternate nonlinear
formulations of the SIF demonstrated robustness to a variety of common spacecraft
faults, yielding more accurate results than the more optimal estimator. The founda-
tions of these estimation strategies were first formulated by Gadsden and Al-Shabi
in [7, 21, 22]. Two of these estimation strategies, the SIF2 and ASIF have not been
extended to nonlinear systems in previous literature. A background on optimal and
robust estimation was first provided, where the satellite dynamics and filter equations
were subsequently outlined.

The four estimation strategies under study were applied to four different fault
cases, of unmodeled external and internal disturbance, modeling error, and system
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Table 6 Reaction wheel friction estimation performance

RMSE (×10–4) EKF ESIF ESIF2 EASIF

ωx 4.08997 0.10034 0.10121 0.09879

ωy 3.02464 0.09907 0.10105 0.09973

ωz 9.11852 0.10071 0.10033 0.10305

�RMSE 16.2331 0.30012 0.30259 0.30157

fault. The results demonstrated that the SIF variations are significantly more robust
to these faults, specifically the unmodeled disturbances. The modeling and system
errors introduced large initial state estimation errors for the EKF and EASIF, but
converged to small magnitudes. For the ideal case, the optimal EKF outperformed
the SIFs. Across the SIFs in fault cases 2 and 4, the difference in performance was
negligible. In those cases, the fine tuning of δ and α might yield improved results.
For cases 1 and 3, the EASIF was out- performed by the ESIF and ESIF2. The results
demonstrated the applicability of computationally light robust estimation strategies
for spacecraft and fault identification.

In terms of future work, the implementation of an adaptive boundary width would
add to the performance of the estimator, not having to manually tune the vector δ.
The change in this width could also be used to detect faults, as discussed in [20].
These formulations of SIF could also be applied to a real system, either in-loop or
to experiment data. Additionally, it is worth noting that the EKF was observed to
perform significantly worse than the SIF and variations when a lower sampling rate
was simulated. It is suggested that a future avenue of work could involve exploring
robust estimation with the SIF for systems that are lacking computational power
or under the influence of denial-of-service (DoS) cyberattacks, or other threats that
artificially decrease the computation ability of the system.

References

1. Li L, Yuan L, Wang L, Zheng R, Wu Y, Wang X (2021) Recent advances in precision
measurement and pointing control of spacecraft. Chin J Aeronaut 34(10):191–209

2. Yoshida N, Takahara O, Kodeki K (2013) Spacecraft with very high pointing sta bility: expe-
riences and lessons learned. In: IFAC proceedings volumes, vol 46, no 19, pp 547–552, 2013,
19th IFAC symposium on automatic control in aerospace

3. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME–J
Basic Engin 82, Series D, pp 35–45

4. Julier SJ, Uhlmann JK (1997) New extension of the kalman filter to nonlinear systems. In:
Signal processing, sensor fusion, and target recognition VI, vol 3068. Spie, pp 182–193

5. Arasaratnam I, Haykin S (2009) Cubature kalman filters. IEEE Trans Autom Control
54(6):1254–1269

6. Djuric P,Kotecha J, Zhang J,HuangY,Ghirmai T,BugalloM,Miguez J (2003) Particle filtering.
IEEE Signal Process Mag 20(5):19–38

7. Gadsden SA, Al-Shabi M (2020) The sliding innovation filter. IEEE Access 8:96 129–96 138



Robust Estimation Strategies for a Nonlinear Satellite System 555

8. Xie L, Soh YC (1994) Robust kalman filtering for uncertain systems. Syst Control Lett
22(2):123–129

9. Berman N, Shaked U (2005) H-infinity filtering for nonlinear stochastic systems. In: Proceed-
ings of the 2005 IEEE international symposium on, mediterrean conference on control and
automation intelligent control, 2005, pp 749–754

10. Li W, Jia Y (2010) H-infinity filtering for a class of nonlinear discrete-time systems based on
unscented transform. Signal Process 90(12):3301–3307

11. Wang Q, Li J, Zhang M, Yang C (2011) H-infinity filter based particle filter for maneuvering
target tracking. Progr Electromagn Res B 30:103–116

12. Habibi S (2007) The smooth variable structure filter. Proc IEEE 95(5):1026–1059
13. Yan X-G, Edwards C (2007) Nonlinear robust fault reconstruction and estimation using a

sliding mode observer. Automatica 43(9):1605–1614
14. Gadsden S, Habibi SR (2010) A new form of the smooth variable structure filter with a

covariance derivation. In: 49th IEEE conference on decision and control (CDC), pp 7389–7394
15. Al-Shabi M, Gadsden S, Habibi S (2013) Kalman filtering strategies utilizing the chattering

effects of the smooth variable structure filter. Signal Process 93(2):420–431
16. Gadsden SA, Lee AS (2017) Advances of the smooth variable structure filter: square-root and

two-pass formulations. J Appl Remote Sens 11(1):015018
17. Lee AS, Wu Y, Gadsden SA, AlShabi M (2024) Interacting multiple model estimators for fault

detection in a magnetorheological damper. Sensors 24(1)
18. HilalW, Alsadi N, Gadsden SA, AlShabiM (2023) An adaptive SIF and KF estimation strategy

for fault detection based on the NIS metric. In: Chen G, Pham KD (eds) Sensors and systems
for space applications XVI, vol 12546, International Society for Optics and Photonics. SPIE,
p 125460S

19. Alsadi N, Hilal W, Gadsden SA, Al-Shabi M (2023) Derivation of the sliding innovation
information filter for target tracking. In: Kadar I, Blasch EP, Grewe LL (eds) Signal processing,
sensor/information fusion, and target recognition XXXII, vol 12547, International Society for
Optics and Photonics. SPIE, p 1254708

20. Lee AS, Gadsden SA, Al-Shabi M (2021) An adaptive formulation of the sliding innovation
filter. IEEE Signal Process Lett 28:1295–1299

21. Gadsden SA, AlShabi MA, Wilkerson SA (2021) Development of a second- order sliding
innovation filter for an aerospace system. In: Chen G, Pham KD (eds) Sensors and systems
for space applications XIV, vol 11755, International Society for Optics and Photonics. SPIE,
p 117550T

22. AlShabi M, Gadsden SA (2022) Formulation of the alpha sliding innovation filter: a robust
linear estimation strategy. Sensors 22(22)

23. Markley FL, Crassidis JL (2014) Fundamentals of spacecraft attitude determina tion and
control, vol 1286. Springer

24. Castaldi P, Nozari HA, Sadati-Rostami J, Banadaki HD, Simani S (2022) Intelligent hybrid
robust fault detection and isolation of reaction wheels in satellite attitude control system. In:
2022 IEEE 9th international workshop on metrology for aerospace (MetroAeroSpace), 2022,
pp 441–446

25. Lee AS, Hilal W, Andrew Gadsden S, Al-Shabi M (2003) Combined kalman and sliding
innovation filtering: An adaptive estimation strategy. Measurement 218:113228

26. Afshari HH, Gadsden SA, Habibi S (2019) A nonlinear second-order filtering strategy for state
estimation of uncertain systems. Signal Process 155:182–192


