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ABSTRACT

An inherent property of dynamic systems with real applications is their high degree of variability, manifesting
itself in ways that are often harmful to system stability and performance. External disturbances, modeling
error, and faulty components must be accounted for, either in the system design, or algorithmically through
estimation and control methods. In orbital satellite systems, the ability to compensate for uncertainty and detect
faults is vital. Satellites are responsible for many essential operations on Earth, including GPS tracking, radio
communication/broadcasting, defense, and climate monitoring. They are also expensive to design and fabricate,
to deploy, and currently impossible to fix if suddenly inoperable. In being subjected to unforeseen disturbances
or minor system failures, communications with Earth can cease and valuable data can be lost. Researchers
have been developing robust estimation and control strategies for several decades to mitigate the effects of these
failure modes. For instance, fault detection methods can be employed in satellites to detect deviations in attitude
or actuator states such that error or incorrect data does not propagate further across its long life cycle. The
Kalman Filter (KF) is an optimal state estimation strategy with sub-optimal nonlinear variations, commonly
applied in most dynamic systems, including satellites. However, in the presence of aforementioned uncertainties,
these optimal estimators tend to degrade drastically in performance, and must be replaced for more robust
methods. The newly developed sliding-innovation filter (SIF) is one such candidate, as it has been demonstrated
to perform state estimation robustly in faulty systems. Using an in-lab Nanosatellite Attitude Control Simulator
(NACS), an adaptive hybrid formulation of the SIF and EKF is applied to a satellite system to detect faults
and disturbances in experiments, based on the normalized innovation squares (NIS) metric. This strategy was
demonstrated to improve state estimation accuracy in the presence of multiple faults, compared to conventional
methods.

Keywords: Estimation theory, Kalman filter, Sliding Innovation Filter, optimal estimation, robust estimation,
adaptive estimation, machine learning, CubeSat

1. INTRODUCTION

Satellites and spacecraft are reliant on their attitude control and determination system (ADCS) to perform
essential operations. Unifying control and estimation/determination strategies, with this system they are able
to maintain attitude accurately and under the influence of minor disturbances. Modern satellites have a wide
variety of applications and constraints, some requiring short-term sub micro-radian accuracy and stability within
10−4 deg/s.1,2 Responsible for GPS tracking, communication/broadcasting, defense, and scientific observation,
orbital satellites rely on the functionality and accuracy of the ADCS (among other systems), otherwise valuable
data or services can be lost.

The causes of satellite failures exist on a broad spectrum and occur often. An analysis from S.A. Jacklin3

determined that the failure rate of deployed small satellites from 2000 to 2016 was as high as 41.3%. These
events, known commonly as satellite anomalies, can exist as temporary outages, complete and instant failure,
or slow degradation over time.4 Sensor degradation, for instance, presents significant issues for estimation and
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control, imposing noise or bias in measurements. Factors that have been known to be the cause of such effects are
mostly environmental, discussed extensively by Bedingfield et al.5 Ambient charged particles, electromagnetic
interference (EMI), cosmic rays,6 or object collision7–9 are examples of these environmental disturbances. Human
interaction factors, such as command error10 or cyber-attacks,11 are also prevalent, resulting in unexpected
behaviour. The Hubble Space Telescope (HST) is an example of how such issues can be avoided without
correction, where it ceases operations while passing over a certain region of Earth that induces high-energy
particle background (South Atlantic Anomaly, SAA), causing its sensors to fault.12 Sensor faults can result in
situations like the failure of India’s Small Satellite Launch Vehicle (SSLV) rocket, where high frequency vibrations
caused accelerometers to saturate and satellites to be deployed incorrectly.13

In the case of sensor degradation, or system upset due to failures or debris, robust estimation algorithms must
be employed to mitigate significant errors and prevent failures. More conventional methods in nonlinear system
state estimation, such as the extended Kalman filter (EKF) or unscented Kalman filter (UKF), produce near-
optimal solutions but typically lack in robustness facing these issues. Failure to provide sufficient knowledge of
the system can have further detrimental effects on the system, especially in high-precision applications. Though
sub-optimal, robust estimation strategies can guarantee performance with bounded uncertainties.14 Popular
strategies in target tracking include H∞ methods,15 or hybridized frameworks with the UKF or particle filters
(PF).16,17 The literature surrounding this field is numerous, having been extensively researched.

The smooth variable structure filter (SVSF) is one such method introduced by Habibi,18 based on variable
structure systems theory and sliding mode observers (SMOs).19 Like the SMO, the SVSF is a recursive predictor-
corrector estimator that utilizes discontinuity hyperplanes and an alternative gain formulation. The gain is
calculated based on the estimation error and a switching term, which stabilizes the estimation process and
bounds estimates.20 The SVSF has since been modified for improvement in reducing chattering,21 including
a state error covariance,22 higher-order formulations,23 and fault detection.24 For SVSF applications of fault-
robust estimation and detection, an adaptive approach was implemented where the KF was applied in non-faulty
situations, and the robust SVSF when a fault occurred.24,25 The switching mechanisms applied to determine
whether a fault occurred were the variable boundary layer (VBL) and the normalized innovation squares (NIS)
methods. A recent alternative to the SVSF is the sliding innovation filter (SIF), which applies similar principals
to the SVSF, utilizing a simpler gain formulation that resulted in higher accuracy.20 Augmentations for nonlinear
systems also exist, the most common of them the extended SIF (ESIF).20 Among the many notable extensions
of the SIF,26–28 Hilal et al.29 implement the SIF in the same manner as24 for adaptive linear filtering based on
the NIS metric, which has been shown to eliminate the effects of chattering by the VBL-based SVSF.

Of the following publication, the main contributions are as follows:

1. The ideas of Goodman and Hilal24,29 are expanded on, extending their adaptive NIS-based filtering strategy
to nonlinear systems.

2. The Nanosatellite Attitude Control Simulator (NACS) is used to validate the proposed design via laboratory
experiment with data obtained across multiple fault trials.

3. The adaptive EKF-ESIF is applied for fault detection and robust state estimation in a simple satellite
attitude tracking control scenario with comparison to conventional methods.

The remainder of this paper is organized as follows. Section 2 derives the satellite system model and Section
3 the proposed estimation strategy. Section 4 defines the parameters of the system and methodology of the
experiment. Section 5 discusses the results of the experiment, and Section 6 provides conclusions and suggestions
for future research.

2. SATELLITE MODEL DERIVATION

The satellite is modelled as a three rotational degree of freedom rigid body, considering the body frame B with
respect to the North-East-Down (NED) inertial frame I, as the convention of,30 denoted BI. This relationship
is represented in Figure 1. The following section derives attitude kinematics and dynamics based on angular
momentum H(t), along with the actuator dynamics related to the control input u(t). Vectors are time-varying,
t for t ≥ 0.
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Figure 1: Orbital Satellite Diagram

2.1 Satellite Attitude Kinematics

The quaternion q(t) ∈ R4 is utilized to express the satellite attitude without singularities or trigonometric func-
tions. The attitude matrix is expressible as a homogeneous quadratic function of its elements in this manner,30

where the quaternion identity is expressed as qI = [0 0 0 1]
T
. The quaternion derivative is presented as Equation

1.

˙qBI(t) =
1

2

[
ωBI
B ⊗

]
qBI(t) (1)

Where ω(t) ∈ R3. is the angular velocity of the satellite body. The skew symmetric matrices required for
preserving the quaternion norm are also defined in Equations 2 and 3.

[
ωBI
B ⊗

]
=

[
− [ω×] ω(t)
−ω(t)T 0

]
(2)

[ω×] =

 0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 (3)

2.2 Satellite Attitude Dynamics

The dynamics of the body due to inertial and applied forces are derived based on the net angular momentum
H(t) ∈ R3, producing the rate of change equation for ω(t). The net momenta around the center of mass (CoM)
c is generally represented as Equation 4. From this, its time derivative is also computed in the following forms,
presented in Equation 5.

Hc
B(t) = Jc

Bω
BI
B (t) (4)

Ḣc
B(t) = Lc

B(t)− ωBI
B (t)×Hc

B(t) = Jc
Bω̇

BI
B (t) (5)

Where Lc
B(t) ∈ R3 are the internal and external torques acting on the satellite. The total moment of inertia

(MOI) matrix of the satellite is constant and expressed as Jc
B ∈ R3×3. The satellite under study is based on the

lab experimental setup previously mentioned, the NACS. The setup uses a reaction wheel (RW) configuration
for actuation, oriented in the pyramidal arrangement (see Figure 2).
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Figure 2: Reaction Wheel Actuator Frame Representation (Left: Top View, Right: Side View)

The velocity of the RW actuator (RWA) in the wheel frame W is represented as ωW
W (t) ∈ R4. To map

each respective wheel frame to the body frame B, the constant matrix W4 ∈ R3×N is applied, where N ∈ Z+,
corresponding to the number of RWs. The general equation for W4 is defined in Equation 6, where for the setup,
α = β = 45◦.

W4 =

 cosα cosβ cosα cosβ − cosα cosβ − cosα cosβ
− sinα cosβ sinα cosβ − sinα cosβ sinα cosβ

− sinβ − sinβ − sinβ − sinβ

 (6)

This relationship is expressed in Figure 2. The column elements of W4 are the unit orientations of each
wheel and must satisfy unity magnitude.30 As a rotating mass, the RWs therefore have their own momentum
contribution H(t)W ∈ R4, which augments Equation 4 as Equations 7 and 8.

Hc
B(t) = HB

B(t) +HW
B (t) = HB

B(t) +W4H
W
W (t) (7)

Hc
B(t) = JB ωBI

B (t) +W4 JW
W ωW

W (t) (8)

As previously mentioned, the net torque Lc
B(t) has external and internal components. The external component

LB(t) ∈ R3 is representative of some disturbance, such as gravity gradient or aerodynamic forces in low Earth
orbit (LEO). In the lab environment, lacking certain equipment, this is generalized as small process noise. The
internal torque LW (t) ∈ R4 is generated due to the rate of momentum of the wheels (i.e., torque is generated
in acceleration). Since the actuators are controllable, LW (t) is transformed with W4 into the body frame, and
alternatively represented as u(t) ∈ R3, the common convention for control input. The separation of Lc

B(t) is
substituted into Equation 5, and then 8, where the satellite attitude dynamics are derived as Equation 9.

ω̇BI
B (t) = (JB)

−1 [
LB(t)− u(t)− ωBI

B (t)×
(
JB ωBI

B (t) +W4 JW
W ωW

W (t)
)]

(9)

2.3 Reaction Wheel Dynamics

The rotational dynamics of the RWs are a function of the control torque u(t). Equation 5 in the frame W is
expressed as Equation 10, where the relationship to the control torque on the body frame B is obtained with
the pseudo-inverse of W4.

ω̇W
W (t) = J−1

W LW (t) = J−1
W W+

4 u(t) (10)
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The satellite system expressed by Equations 1, 9, and 10 can be generally represented by the nonlinear
function ẋ(t) = f (x(t)) ,u(t)), or by its discrete form xk+1 = f

(
xk|k ,uk

)
. It is worth noting that the state

vector is structured as x(t) = [qB(t) ωB(t) ωW (t)]T ∈ Rn, where n = 11, and the control vector u(t) ∈ Rr,
where r = 3 corresponding to the principal axes of the body frame B.

3. ESTIMATION METHOD DERIVATION

3.1 Extended Kalman Filter

The EKF is commonly applied in spacecraft as a predictor-corrector estimation strategy in nonlinear systems.
A recursive process, the EKF predicts true states from the discrete model of the system in two stages: the a
priori and a posteriori. The following section outlines the EKF process, the SIF, and the proposed EKF-SIF
augmentation for fault detection.

The a priori is the first stage in estimation, using the nonlinear and linear approximations of the model
to determine the state vector x̂k+1|k ∈ Rn and state error covariance Pk+1|k ∈ Rn×n. The a priori process
is outlined in Equations 11 and 12 below.31 The system and control matrices Ak and Bk that describe the
linearized system are determined from the nonlinear equations via Jacobian and are time-varying. The system
noise covariance is represented by Qk ∈ Rn×n.

x̂k+1|k = f
(
x̂k|k ,uk

)
(11)

Pk+1|k = Ak Pk|k AT
k +Qk (12)

The a posteriori equations are then applied to correct predictions, decreasing the estimation variance based
on a measurement zk+1 ∈ Rm. Equations 13, 14, 15, and 16 are representative of this step.

Sk+1 = Ck+1 Pk+1|k CT
k+1 +Rk+1 (13)

Kk+1 = Pk+1|k CT
k+1 S−1

k+1 (14)

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
zk+1 − Cx̂k+1|k

)
(15)

Pk+1|k+1 = (I −Kk+1 Ck+1) Pk+1|k (I −Kk+1 Ck+1)
T
+Kk+1 Rk+1 KT

k+1 (16)

The corrected state and error covariances are defined x̂k+1|k+1 and Pk+1|k+1, respectively, with the innovation
and measurement noise covariances, Sk+1 ∈ Rm×m and Rk+1 ∈ Rm×m. All system states are measurable for the
application (n = m), with C ∈ Rm×n = In×n.

3.2 Sliding Innovation Filter

The proposed fault detection method utilizes the extended SIF for robust state estimation.20 The SIF follows the
same predictor-corrector equations as the EKF (Equations 11 - 13, 15, 16), but modifies the gain of Equation 14.
The correcting gain Kk+1 ∈ Rn×m is derived primarily as a function of the innovation z̃k+1|k ∈ Rm (Equation
17) and omits the state error covariance.

Featuring a switching mechanism, with the alternative gain the robustness of the state estimation of the
system subjected to modeling error, disturbances, etc. is realized. The switching is achieved with the saturation
function, keeping estimates enclosed within a defined constant boundary layer, denoted δ ∈ Rm, and forcing
estimates to an existence subspace. Illustrated by Figure 3, this enables estimates to converge to the trajectory
with minimal error. The SIF gain is then defined as Equation 18, as originally formulated in.20

z̃k+1|k = zk+1 − Ck+1 x̂k+1|k (17)

Kk+1 = C+ sat
(∣∣z̃k+1|k

∣∣ /δ) (18)
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Figure 3: SIF Behaviour Illustration

3.3 EKF-SIF Hybrid Formulation

It was originally proposed by Goodman et al.24 for the SVSF and by Lee et al.32 for the SIF that the boundary
layers of these respective filters can be made variable. Considering that the rate of change of the variable boundary
layer (VBL) is formulated to be proportional to the absolute value of the innovation, under the presence of a fault
the VBL will increase to a relatively large value. The fault can be detected from this mechanism, specifically
when the VBL surpasses a predetermined threshold. Utilizing this method with the standard KF in non-faulty
cases, a robust adaptive SIF-KF is applied. It was observed, however, that chattering can result from high-
frequency switching between these two filters.24,29 To address this issue in linear systems,24 the NIS metric was
applied to detect faults robustly without chattering. In this paper, it is proposed that the NIS-based SIF-KF be
extended to nonlinear systems.

The EKF assumes a zero-mean Gaussian noise model with assumed covariances and the model defined in
Section 2. In the presence of harmful faults, the EKF estimates will diverge from the measurements, increasing
the innovation as a consequence. From Equation 19, it can be concluded that the NIS value will increase with the
innovation, resulting in a fault detection mechanism from monitoring its state. Similar to the VBL case described
above, the NIS-based method proposed as the NIS EKF-ESIF utilizes thresholding. Below the threshold, the
EKF gain of Equation 14 is utilized and above the threshold, the ESIF gain of Equation 18 is utilized to estimate
the system robustly. The NIS metric is defined as the time-varying parameter rk ∈ R1, Equation 19.

rk = z̃Tk S
−1
k z̃k (19)

The NIS filter is optimal and matched, characterized by the chi-squared distribution with N degrees of
freedom (DoF), where N is the number of measurements.29 To avoid the occurrence of erratic switching about a
single threshold, two thresholds are employed. Applying a hysteresis approach, false SIF triggers can be avoided
with a higher ”on” point and a lower ”off” point is applied for switching when innovations are typical.29 The
gain applied when the NIS metric is between these two thresholds is therefore based on the most recent threshold
crossed.

The robustness can also be improved if the history of the innovations is considered as opposed to each instance.
The addition of this consideration will reduce the false triggering from anomalies that are not characterized as
faults, such as noise.24,29 Two methods can be considered for this application, the windowed average and fading
memory approaches. These methods are applied for a comparative analysis in Section 5.

The windowed or moving average NIS, rwk ∈ R1 averages the innovations across a defined number of past
sequences w ∈ R+ from the current time step k. With k > w, the innovations that occurred before k−w+1 are
not considered, having a finite consideration horizon. The windowed average NIS is determined from Equation
20.
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rwk =

k∑
j=k−w+1

rj (20)

The fading memory NIS, rαk ∈ R1 on the other hand considers the entire history of innovations. Utilizing a
forgetting factor α ∈ (0, 1), more distant innovations from the current time step k are weighted exponentially
lower.29 The fading memory NIS is determined from Equation 21.

rαk = α rαk−1 + rk (21)

The threshold values are defined based on the chi-squared distribution. Specifically, the DoF n and the
significance/tail probability p are used to determine the critical value from a chi-squared table. The critical
value is taken as the threshold (before switching modification), as this value signifies the threshold for statistical
significance. For the windowed average, the chi-squared DoF is defined as Equation 22 and Equation 23 for the
fading memory.33

χ2
nw = wN (22)

χ2
nα =

N

1− α
(23)

4. METHODOLOGY

To validate the fault detection method, the NACS will be utilized. A trajectory-tracking attitude control
experiment will be performed under the specified scenarios, where faults are introduced artificially. The satellite
simulator will actuate itself to follow sinusoidal attitude signals, simulating a moving target. The estimation
strategies will be applied to the collected data afterward.

Required for estimation is a model of the system. For a priori estimation, the nonlinear system is applied,
presented as Equation 24. The system is then linearized via Jacobian to obtain the time-varying system and
control matrices, Ak and Bk. For completeness, the measurement equation is presented as Equation 25, where
C is assumed to be constant identity.

ẋk =

 1
2

[
ωB
k ⊗

]
qk

J−1
B

[
ωB
k ×

(
JB ωB

k +WN JW ωW
k

)]
04×11

+

 04×3

−J−1
B

J−1
W W+

N

 uk +wk (24)

zk = Cxk + vk (25)

For the modeling, it is assumed that the simulator is balanced and the effect of gravity is minimal. The airflow
past the air bearing to the automatic balancing system (ABS) plate is not modeled, though exists as small process
noise. For filtering, the process and sensor noise is assumed to be sufficiently modeled with a zero-mean Gaussian
process. The associated covariance matrices are defined in Section 5, experimentally determined.

The constant parameters of the simulator are the system and RW inertias, JB and JW , and the RW mapping.
W4 can be determined utilizing Equation 6 and the provided α and β values at 45◦. It is assumed for modeling that
the physical alignment of these actuators coincides with the pyramidal geometry. The inertias were determined
from the Solidworks model as the following:

JB =

 0. 021867 −0. 001532 −0. 000631
−0. 001532 0. 172994 −0. 000781
−0. 000631 −0. 000781 0. 0316484

 kg m2

JW = 1. 740138× 10−5 kg m2

(26)
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For the experiments, actuator and disturbance faults are applied to the system. In disabling one or more
actuators, or reducing its operation efficiency, the performance of the system will be diminished as the satellite
loses a significant portion of its controllability. Large disturbances can also result in unrecoverable tumbling. In
Section 5, four experimental cases are presented for a variety of estimation methods, demonstrating the respective
performance under fault-free, and various temporary fault scenarios. The EKF, ESIF, and proposed ESIF-EKF
with the different NIS metrics are compared for experimental validation, where each experiment is performed 10
times to enhance the reliability of the results. For attitude control u(t), a proportional-derivative (PD) controller
(Equation 27) is implemented, with experimentally determined gains of Kp = 0.4 and Kd = 0.075.

u (t) = −Kp sign (q4 (t)) q1:3 (t)−Kd ωBI
B (t) (27)

The experiment runs for 1000 iterations, where the entire loop samples at approximately 0.1 seconds on
average. The trajectory for the attitude tracking control scenario is governed by a time-varying quaternion with
sinusoidal form, based on the initial condition. A sample of the trajectory is provided in Figure 4.
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Figure 4: Desired Quaternion Trajectory

The NACS is presented in Figure 5, with the CubeSat and ABS units. The main components of the mock
CubeSat unit are the RWAs, their respective ESCON motor drivers, the VN-100 inertial measurement unit
(IMU), power supplies and onboard computer (OBC), and the motherboard. Control actions are computed
on the Raspberry Pi 3A+ OBC. The ABS is fixed to the mock CubeSat, consisting of its translatable masses
and associated control electronics, and a hemispherical air bearing. The pseudo ’zero-gravity’ environment for
satellite simulation is facilitated by the ABS, where the center of mass of the system can be automatically tuned
to be coincident with the center of rotation of the air bearing, effectively nullifying gravitational forces. Note
that for fault detection, the system had to be correctly balanced, elsewise the disturbance torque due to gravity
would result in false triggers. As a consequence of geometry, the range of motion for the system is ±360◦ in
the yaw, and ±30◦ in the pitch and roll. The air pressure for the bearing is regulated to 1 bar (approx. 14.5
psi) while running, tuned to be the minimum pressure without binding or excessive flow forces. Experiment
operations are controllable with a graphical user interface (GUI).

5. EXPERIMENTAL RESULTS

To validate the proposed hybrid EKF-ESIF method with NIS-based gain switching, the performance is compared
to the EKF and SIF. The two methods of NIS calculation described in Section 3.3, windowed average and fading
memory, are compared as well. The filters will be evaluated in four experiment cases: no fault, disturbance
fault, temporary RWA effectiveness loss, and temporary RWA failure. For analysis, the root mean squared error
(RMSE) of the attitude states (q and ω) is individually presented, along with the sum of all RMSE. The RMSE
data is averaged across 10 data sets for each of the four cases.
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Figure 5: Nanosatellite Attitude Control Simulator

For the fault-free case, the CubeSat unit tracks the trajectory of Figure 4 with minimal disturbance. Excess
disturbances are due to process noise and a small imbalance in the system. It is important in selecting NIS
thresholds and the system noise covariance Q that normal operation is established correctly and dos not trigger
switching due to a detected fault. For the disturbance case, one or more planar disturbances are applied to the
system part-way through the experiment. Due to the geometry of the simulator, the disturbances are bounded
in their resultant displacement. The temporary loss of effectiveness of all actuators is considered next, where the
commanded RW torque is 75% less than was calculated from the control law. This fault occurs between iteration
200 and 400 of the simulation. The RW failure case considers the complete loss of power to a single actuator,
from iteration 200 to 600.

The measurement noise covariance matrix R was assumed constant, where its diagonal entries were estimated
to be the variance values reported in the VN-100 IMU and ESCON 24/2 data sheets. For the quaternion and
body angular velocity, the gyroscope variance values of 3 × 10−6 rad2/s2 were implemented, and for the RWA
velocity, the output voltage variance of 2.42 × 10−3 V was applied. In choosing Q, a trial and error method
was applied, as it related to the overall magnitude of NIS values. For instance, with smaller Q entries, the
NIS intensity was far higher than the alternative, due to high reliance on the model and minimal process noise
expectancy. A constant diagonal Q with identical entries of 4 × 10−5 was selected. The boundary layer of the
SIF was chosen through trial and error to have constant entries of δ1:4 = 0.0004, δ5:7 = 0.008, and δ8:11 = 0.02.

The tail probabilities for the on and off thresholds were chosen to be 0.001 and 0.05, respectively. For the
windowed average, the window size w was chosen as 45 and the fading memory coefficient α was selected as
0.965, giving preference to past NIS values. These parameters were tuned to consider past measurements and
provided sufficient smoothing of typically stochastic NIS values. With a measurement size of 11, the DoF of the
chi-squared value and the associated critical point can be evaluated with Equations 20 and 21.
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5.1 No Fault

The results of the fault free case are presented in Table 1, along with sample NIS plots of each hybrid method
as Figure 6. The NIS values are plotted on top, where the dotted orange represents the standard NIS and the
solid blue is the smoothed NIS. The fault state is plotted below, where a ’0’ signifies no fault and a ’1’ is a fault.

For the fault free case, the EKF achieves the best overall estimation accuracy, where the system is adhering to
the expected behaviour of the model with stochasticity. From Table 1, since no faults were detected, the NIS EKF-
ESIF achieves essentially the same error results. Small deviations due to imbalance in the system generating a
small torque at inclinations was observed in some data sets, creating a brief false fault event. Elsewise, the results
should theoretically be exactly the same and the false triggers at small scales do not significantly deteriorate the
performance. The windowed average NIS exhibited the false fault more often than the fading memory. The NIS
thresholds were calibrated based on the fault free performance. No significant difference was observed between
the results of the two NIS smoothing methods, since no true faults were present. As expected, the sub-optimal
SIF exhibited the poorest performance in this case.

Table 1: Fault Free Case

RMSE ×10−3 EKF SIF WA NIS FM NIS

q1 0.01749 0.06840 0.02204 0.01954

q2 0.02863 0.05824 0.03122 0.02973

q3 0.01743 0.06949 0.02172 0.01895

q4 0.00892 0.05995 0.01598 0.01232

ω1 0.59486 1.21634 0.63080 0.59702

ω2 0.47755 1.24777 0.52556 0.50529

ω3 0.66156 1.24744 0.67281 0.64219

ΣRMSE 1.80643 3.96762 1.92013 1.82504
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(a) Windowed Average NIS
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(b) Fading Memory NIS

Figure 6: Sample NIS Plots for Hybrid EKF-SIF in Fault-Free Case

5.2 Disturbance Fault

The results of the disturbance case is presented in Table 2, along with sample NIS plots of each hybrid method
as Figure 7. For the disturbance case, one or more planar disturbances of variable magnitude were temporarily
applied to the system. It was observed that with the relatively large faults of Figure 7, the EKF had the worst
performance overall, which was expected as a non-robust estimation method. The SIF performed the next best,
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Table 2: Disturbance Fault Case

RMSE ×10−3 EKF SIF WA NIS FM NIS

q1 0.05302 0.06325 0.03077 0.03268

q2 0.07430 0.05415 0.03763 0.03749

q3 0.02638 0.06522 0.03601 0.03768

q4 0.01685 0.06071 0.03719 0.03877

ω1 1.55941 1.09099 0.66113 0.64653

ω2 2.22498 1.13685 0.74969 0.63434

ω3 1.17942 1.13987 0.70874 0.70401

ΣRMSE 5.13437 3.61104 2.26117 2.13152

accounting for the fault well, but still featured higher errors due to its constant sub-optimal estimation when the
system was not recovering from the disturbance. The NIS EKF-ESIF methods result in the best performance,
able to detect the fault and switch to the SIF gain, and switch back to the more optimal gain when the system
recovered. It was observed throughout trials that the fading memory NIS computation resulted in the faulty
state lasting longer than the NIS with the windowed average. This can be observed in Figure 6 and 7. In having
steeper drops, more switching between modes occurs. Choosing a lower window length w would exacerbate
this, where the NIS stochasticity is more prevalent with smaller values. Choosing larger windows was found to
generally result in better smoothing. The activation of both method’s fault modes are near instant and the same.
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Figure 7: Sample NIS Plots for Hybrid EKF-SIF in Disturbance Case

5.3 Temporary Reaction Wheel Effectiveness Loss

The results of the RW effectiveness loss case is presented in Table 3, along with sample NIS plots of each hybrid
method as Figure 8. In this case, the effectiveness of the RWAs were reduced to 25% for a short period of time.
Though these faults were detectable from the NIS method, the effect it had on the system was comparatively
smaller than the previous case studied. As such, the robust benefits of the SIF were not as desirable in terms
of estimation accuracy, as can be noted from the results. It should be noted, however, that the RMSE of the
state with SIF would be lower than the EKF, only for the fault time window. This specific interaction was
studied in.29 Compared overall, the EKF produced improved RMSE results over the SIF. Considering the NIS
EKF-ESIF methods, the windowed average method performed slightly worse than that of the fading memory,
which performed the best overall. Though the fault was constant from 20 seconds to 60 seconds, both detection
methods had a delay in detection of approximately 5 seconds while the effect on the system was realized,
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Table 3: Reaction Wheel Effectiveness Loss Fault Case

RMSE ×10−3 EKF SIF WA NIS FM NIS

q1 0.01954 0.04722 0.02687 0.02577

q2 0.03011 0.03829 0.03487 0.03406

q3 0.02126 0.04730 0.03050 0.02838

q4 0.00967 0.04478 0.02657 0.02519

ω1 0.76460 0.96752 0.71342 0.65819

ω2 0.55215 1.00077 0.66519 0.64944

ω3 0.91856 0.98221 0.81572 0.73432

ΣRMSE 2.31590 3.12809 2.31314 2.15534

as seen in Figure 8. The fault as additionally not registered for the full period of time consistently, having
numerous intermediate switching events. This could be addressed though adjusting the thresholds or increasing
the smoothing parameters, which would likely result in surpassing EKF performance.
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Figure 8: Sample NIS Plots for Hybrid EKF-SIF in Reaction Wheel Effectiveness Loss Case

5.4 Temporary Reaction Wheel Failure

The results of the RW failure case is presented in Table 4, along with sample NIS plots of each hybrid method
as Figure 9. The effects of the failure of a single RW are more prevalent than the effectiveness loss, resulting
in generally higher NIS values. In the failure of the RWAs, other wheels must accommodate for the torque
contribution loss, but in doing so can become saturated and lose of the system. As can be noted from results,
the EKF estimation errors are the highest on average, with the SIF performing better. As noted previously, each
respective filter will perform better for their designed use case. The NIS EKF-ESIF method, however, performed
the best overall, where the difference in errors between the two are small. The switching mode was demonstrated
to be much more consistent than the previously studied case of effectiveness loss, where the fault state is near
constant for the fault duration. As before, there is a slight lag in realizing the fault, typically on the order of
5 seconds, due to the accumulation of the attitude error. Additionally, instead of predicting a non-faulty state
prematurely, the NIS methods in the failure case adopt the SIF gain for almost 10 seconds after the fault ends.
The slowly decaying behaviour of the NIS method can be specifically realized as beneficial for this failure case,
as when power is restored the wheels can still be saturated and the system is not immediately operating as it
should be.
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Table 4: Reaction Wheel Failure Fault Case

RMSE ×10−3 EKF SIF WA NIS FM NIS

q1 0.01820 0.04837 0.03109 0.03134

q2 0.02783 0.03974 0.03433 0.03457

q3 0.04203 0.04103 0.02494 0.02464

q4 0.01717 0.03955 0.027708 0.02831

ω1 0.83490 0.91827 0.68726 0.67307

ω2 0.55968 0.99352 0.77737 0.77435

ω3 1.49647 0.80760 0.70320 0.63705

ΣRMSE 2.99629 2.88808 2.28589 2.20333
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Figure 9: Sample NIS Plots for Hybrid EKF-SIF in Reaction Wheel Failure Case

6. CONCLUSION

In this paper, the adaptive NIS based EKF-ESIF was applied to a nonlinear satellite systems for robust estimation
and fault detection for the first time. Background was provided considering the importance of attitude control
and estimation, robust estimation strategies, and the consequences of faults on these systems. The satellite
dynamic model was outlined for the simulator under study, along with the proposed estimation strategy. Two
mechanisms for smoothing the NIS value were applied, where the NIS represents the consistency between the
KF, and the innovation and its covariance.

The novel application of the NIS EKF-ESIF was validated using data obtained from an experimental CubeSat
setup. The EKF, standard ESIF, and two adaptive NIS-based EKF-ESIF strategies were compared against each
other by metric of RMSE in four operation modes. The four operating modes were the no fault, planar disturbance
fault, and RWA effectiveness and functionality loss faults. For the ideal case, the proposed adaptive method was
demonstrated to perform just as well as the EKF. In the fault cases, they exhibited superior performance over
the EKF and SIF methods by themselves, able to switch gains based on the situation. The performance of the
studied estimation strategies was averaged over the entire trial, and should be noted that in faulty events, the SIF
performs better, where in normal operation the EKF is superior. Applying the adaptive switching strategy, we
are able to detect when faults occur and utilize the most accurate estimation method in either case. Comparing
the two methods of evaluating and smoothing the NIS, the fading memory generally resulted in higher accuracy
over the windowed average. This was due to the retention of mild stochasticity in the windowed average, which
resulted in falsely evaluating a faulty state as non-faulty. Alternatively, the fading memory method generally
showed gradual decay in its values, typically having higher on times. Tuning the window size would likely solve
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this issue.

The NIS-based method presented in this paper was validated as a superior and computationally light esti-
mation strategy. For large faults, it is very effective, though less so for smaller faults that are harder to detect,
like actuator effectiveness loss. The proposed method would likely be surpassed with a more informed fault
identification method such as a neural network, at the cost of computation resources. A more robust fault
identifier coupled with the gain switching method could be an avenue for future research. Downsides of applying
the NIS method are involved in threshold and parameter tuning, which depend on the application and expected
disturbance frequency. Additionally, the applicability of the NIS method for other faults could be explored, such
as in a satellite system that experiences delays or packet loss due to cyber attacks.
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