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ABSTRACT

In this article, the power of physics-informed neural networks is employed to address the issue of model identi-
fication for complex physical systems, focusing on the application of a magnetorheological (MR) damper setup.
The research leverages the Bouc-Wen hysteresis model, a well-established representation of nonlinear behavior
in MR dampers, to inform the training process of a series of cascaded neural networks. The core objective of this
research is to develop a surrogate model capable of accurately predicting the dynamic behavior of MR dampers
under various operational conditions. Traditionally, MR dampers pose significant modelling challenges due to
their nonlinear and hysteresis-rich characteristics. The approach explored in this article combines physics-based
insights with the capabilities of neural networks to resolve the complexity associated with the modelling process.
The methodology involves the formulation of a physics-informed loss function, which embeds the Bouc-Wen
hysteresis model’s governing equations into the training process of the neural networks. This fusion of physical
principles and machine learning enables the networks to inherently capture the underlying physics, resulting in
a more accurate and interpretable surrogate model. Through experimentation, the effectiveness of the physics-
informed neural network approach in surrogate modeling for MR dampers is demonstrated. The model developed
exhibits decent predictive performance across a range of input parameters and excitation conditions, offering a
promising alternative to conventional black-box machine learning and physics-based methods. Furthermore, this
research showcases the potential for physics-informed machine learning in modelling complex physical systems,
offering a perspective on the utility of this approach in other engineering and scientific domains. The applica-
tion of this methodology further facilitates improved control and optimization strategies in various engineering
applications.

Keywords: Machine Learning, Physics-Informed Machine Learning, Physics-Informed Neural Networks, Surro-
gate Modelling, Magnetorheological Damper

1. INTRODUCTION

Machine learning (ML) has drastically enhanced automation in various industries by enabling the development
of algorithms capable of learning from data and making predictions or decisions with enhanced autonomy (1).
Deep learning, a subset of ML, has garnered significant attention due to its ability to automatically learn
hierarchical representations of data through neural networks (NN) (2; 3; 4). Unlike traditional ML methods
that rely on handcrafted features, deep learning algorithms can learn complex features directly from raw data,
leading to superior performance in tasks such as image recognition (5; 6; 7) and natural language processing
(8; 9). However, the success of deep learning comes with significant requirements with respects to data, often
necessitating large volumes of labeled data for training. This reliance on extensive datasets can pose challenges
in practical applications, especially in domains where labeled data is scarce or expensive to obtain (10; 11).

There has been a growing recognition of the challenges posed by the significant data requirements of deep
learning models. One promising approach to address these challenges is through the use of physics-informed
neural networks (PINNs), as numerous authors have already noted (12; 13; 14; 15). These networks leverage
known physical principles or constraints to guide their learning process, reducing the requirements of quantity
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of labeled data (13; 16). Additionally, they offer the benefit of enhanced interpretability in integrating physical
principles with training data, enabling the developed algorithm to learn and compensate for uncertainties inherent
in the physical models. Through combining domain knowledge with data-driven techniques, physics-informed
ML aims to develop models that perform well on tasks, and also adhere to known physical laws or principles
(16; 17). This is especially pertinent considering conventional ML algorithms operate in a purely data-driven
manner, often overlooking available prior knowledge. Through striking a balance between physical principles
and empirical data, physics-informed ML offers a promising framework for addressing the challenges posed by
imperfect understanding of complex systems.

Surrogate modeling, a technique used to approximate complex systems with more simple and computationally
efficient models, finds significant utility in applications requiring interpretable and transparent artificial intelli-
gence models (18). Physics-informed ML offers a robust framework for enhanced interpretability and reliability
by merging domain expertise with data-driven techniques (19). This integration of physics and ML holds promise
across various domains, including engineering design optimization and simulation (19; 20; 21; 22). In the context
of magnetorehological (MR) dampers, which are semi-active devices used for vibration control in engineering
applications, modeling their complex nonlinear behavior poses a significant challenge. MR dampers exhibit
hysteretic effects between force and velocity, making them difficult to accurately characterize using traditional
modeling approaches (23; 24). While several modeling techniques, such as the modified Bouc-Wen model, have
been proposed to capture the hysteretic behavior of MR dampers, these models are often either too complex or
lack accuracy, limiting their practical utility (24).

In this study, a PINN is used to construct a surrogate model to approximate the hysteretic behavior of MR
dampers. Surrogate modeling offers a computationally efficient alternative to traditional numerical simulations,
making it well-suited for real-time control applications (25). Leveraging physics-informed ML techniques, the
surrogate model aims to balance between computational efficiency and accuracy, with the objective of providing
a practical solution for modeling the complex hysteretic behavior of MR dampers.

The document is structured as follows: Section 2 provides background information on MR dampers, including
popular numerical modeling approaches such as the Bouc-Wen model, which details the physics of the system.
Section 3 discusses PINNs, their development, working principles, and their applications. Section 4 introduces
the proposed approach and its derivation based on the Bouc-Wen Model. Section 5 presents the results of the
developed surrogate model and provides a discussion of its derivation. Finally, Section 6 concludes the article.

2. MODELLING A MAGNETORHEOLOGICAL DAMPER

MR dampers play a crucial role in various engineering applications where precise and rapid control over damping
characteristics is essential. One prominent application is in vehicle suspension systems, where MR dampers offer
adaptability to changing road conditions, providing both comfort and stability to occupants (26; 27; 28; 29).
In civil engineering, MR dampers are utilised in seismic isolation systems to mitigate the effects of earthquakes
on structures, safeguarding infrastructure and ensuring occupant safety (30; 31; 32). Accurate modeling of MR
dampers is paramount due to their dynamic nature. A comprehensive understanding of their behavior enables
engineers to optimize performance, predict system response, and develop robust control strategies. Mathematical
modeling of MR dampers involves capturing the complex interplay between magnetic field strength, fluid viscosity,
and mechanical motion. This requires models incorporating nonlinear dynamics to accurately simulate the
damping characteristics under varying conditions (33). Efforts to physically model MR dampers have been
the focus of extensive research. Various approaches have been explored to accurately capture the complex
behavior of MR dampers, including mathematical modeling, system identification, and experimental validation
(24; 33; 34; 35). These attempts aim to develop comprehensive models that can effectively predict the dynamic
response of MR dampers under diverse operating conditions. Combining theoretical formulations with empirical
data, researchers seek to enhance the understanding and predictive capabilities of physical models.

Several numerical models have been devised to simulate the behavior of MR dampers, each offering a unique
perspective on the complex dynamics of these devices. Notable among these models in use in the industry are the
Bingham (36), viscoelastic-plastic (37), hydromechanical (38), Maxwell (39), Dahl (40), and LuGre models (41).
These formulations incorporate diverse mathematical frameworks to represent the rheological and mechanical
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characteristics of MR dampers, considering factors such as yield stress, viscosity, elasticity, plasticity, and sliding
friction. Among the diverse numerical models applied to simulate the behavior of MR dampers, the Bouc-Wen
model has emerged as a prominent approach (24; 33). The Bouc-Wen model is characterized as a parametric
model. It is structured to represent the mechanical system through an arrangement of ideal spring and ideal
passive dampers, and illustrated in Figure 1. This model is represented by a mathematical function, as will be
detailed further in this section, necessitating the identification of coefficients or parameters. This identification
process typically entails the utilisation of optimization techniques (42; 43). Given its phenomenological nature,
the Bouc-Wen model is not derived from first principles (24). Consequently, the values of its parameters are
iteratively adjusted until the output force of the model closely aligns with experimental data. This model is
characterized by its ability to capture the nonlinear and asymmetric behavior exhibited by MR dampers under
varying operating conditions.

Figure 1: The Bouc-Wen model for identifying the dynamics of a MR damper, adapted from (24).

The remainder of this section will delve into the mathematical modeling of MR dampers using the Bouc-Wen
parametric model, a widely recognized approach for capturing the nonlinear behavior of these devices (24). The
characterization of the Bouc-Wen equation for the estimated damping force (F ) of the MR damper as a function
of damper displacement (x), velocity (ẋ), and prior state dependency (represented by z), is as follows:

F = αz + c0ẋ+ k0 (x− x0) , (1)

where parameters α, c0, k0 are dependant upon applied voltages. Drawing from the prior research (24; 33), it is
feasible to depict the relationship of these parameters with an effective voltage term u through linear expressions:

α = αa + αbu , (2)

c0 = c0a + c0bu , (3)

k0 = k0a + k0bu . (4)

The achievement of magnetorheological fluid rheological equilibrium necessitates the incorporation of a first-
order filter applied to the voltage v for the efficient voltage u :

u̇ = η (u− v) (5)

wherein η denotes a coefficient representing the adjustment rate. Variable z of Equation 1 denotes the hysteretic
displacement, a fundamental component in quantifying the effects of the system’s historical dependence on the
resultant damping force. This hysteretic displacement may be modelled based on the following relation:

ż = −γ |ẋ| z |z|n−1 − β |ẋ| |z|n +Aẋ , (6)
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where γ, β, A, and n are model parameters that exert control over the linearity during unloading and determine
the smoothness of the transition from the pre-yield to the post-yield region, as demonstrated by Spencer and
colleagues (24). Table 1 provides a summary, as well as a brief description of the functionality of parameters and
variables employed in the Bouc-Wen model of hysteresis.

Table 1: Compiled model parameters for the Bouc-Wen model of hysteresis, with descriptions

Parameter Description
α Voltage dependant scaling factor
αa Shaping parameter for parameter α
αb Shaping parameter for parameter α
c0 Voltage dependant viscous damping factor
c0a Shaping parameter for parameter c0
c0b Shaping parameter for parameter c0
k0 Voltage dependant stiffness
k0a Shaping parameter for parameter k0
k0b Shaping parameter for parameter k0
γ Hysteresis parameter controlling the shape and size

of the hysteresis loop
β Hysteresis parameter controlling the shape and size

of the hysteresis loop
A Hysteresis parameter controlling the shape and size

of the hysteresis loop
η Response time
n Exponent parameter that determines the shape of

the hysteresis loop
x0 Initial deflection of accumulator
F Damping force
x Damper displacement
ẋ Damper velocity
v Applied voltage from power source
u Efficient voltage

3. PHYSICS-INFORMED NEURAL NETWORKS

PINNs represent a recently popularized approach that combines NN with the known principles of physics,
offering accurate predictions and insights into complex systems. This typically entails a specific implementation
of physics-informed regularization, and enables the development of predictive models that not only make accurate
predictions but also provide physical insights into the system’s behavior. Regularization techniques have been
fundamental in training ML models since their inception. Conventional regularization, such as Lasso (L1) or
Ridge (L2) regularizations, incorporates an additional penalty term to reduce the model’s capacity to overfit
data that may not be reflective of the general behavior of the system, resulting in simpler and more robust
solutions (1; 44). While regularization techniques have been used extensively, in the initial works on the topic
of PINNs by Raissi and colleagues (16; 17), the authors aimed to leverage the structure of the physical system
to learn more efficient representations. More specifically, the authors utilised the a priori information of various
systems, effectively incorporating the governing equations of the physical system as regularizers within the loss
function. This approach seeks to combine the advantages of physics-based models to enhance the accuracy,
interpretability, and robustness of conventional data-driven solutions. Prior knowledge regarding the physical
system is integrated as a part of the learning process, either as constraints or regularizers, effectively encoding
the physical constraints to aid in guiding the optimization process in producing physically meaningful solutions
(17).

Thus, PINNs presents an approach to leverage the power of NN to learn complex patterns and relationships
from data, while also incorporating the underlying physical principles such as partial differential equations
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(PDEs) or ordinary differential equations (ODEs) that govern the system (16; 17). Through the introduction
of learning biases, PINNs significantly relaxes restrictions in terms of the quantity of data required to properly
train deep learning algorithms (13; 45). PINNs are known for their ability to generate accurate predictions with
small amounts of data, which is especially important in cases where data acquisition is expensive or challenging
(12; 45; 46). These factors make PINNs particularly well-suited for applications in which the underlying physics
of the system is well-understood.

The concept of leveraging the computational capabilities of NN for solutions to differential equations was
initially presented by (47), however, its reach was limited due to limitations of computational power at the time.
More recently, (17) popularized the concept through their study, where they demonstrated the effectiveness of
PINNs in solving forward and inverse problems pertaining to governing differential equations of a physical system.
The effectiveness of PINNs, as defined in the work of (17), is derived, in part, from their usage of the universal
approximation capability of NN (48), which states that a neural network with a single-layered feed-forward
network with an activation function may approximate any function, provided that it is comprised of a sufficient
number of neurons. Naturally, researchers have extended this property to the solution of complex, non-linear
differential equations, in which numerical or empirical solutions are difficult or impossible. In these scenarios,
PINNs have been leveraged to learn the mapping between the input data and the output variables while enforcing
the physical constraints of the system. In addition to their ability to incorporate prior knowledge, PINNs are
capable of learning the solution to ODES or PDEs from incomplete data or data with noise, while simultaneously
satisfying the governing equations of the system (17). Through this framework, researchers are able to build
accurate models that provide insights into the underlying physical processes, making them a valuable tool in
many scientific and engineering applications (49).

Figure 2: A representation of a physics-informed neural network, as initially proposed in (16).

The original PINN architecture by Rassi and colleagues (17), pictured in Figure 2 is based on the feed-forward
structure, and employed to solve the first-order non-linear PDE. Various names exist for this structure in literature
such as feed-forward neural networks, artificial neural networks, multi-layer perceptron neural networks, and deep
neural detworks. The feed-forward neural network is a type of artificial neural network that consists of multiple
layers of interconnected nodes, or neurons, that transmit information through weighted connections (1). In the
context of PINNs, the input layer of the network corresponds to the physical domain, while the output layer
represents the solution to the problem of interest. The intermediate layers, also known as hidden layers, provide
the necessary computational power to map the input to the output.
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4. INTEGRATION OF KNOWN PHYSICS WITH MACHINE LEARNING MODEL

The integration of the Bouc-Wen model for MR dampers within a PINN offers a promising avenue for advancing
the study of structural and control systems engineering. This integration enables the development of a surro-
gate model for MR dampers capable of predicting resultant forces without necessitating explicit knowledge of
Bouc-Wen model parameters or unobservable variables. This approach harnesses the universal approximative ca-
pabilities inherent in neural networks (48), providing a means to accurately estimate known functions associated
with the Bouc-Wen model. Consequently, the surrogate model provides a practical and efficient method for sim-
ulating MR damper behavior in real-world applications. In this section, the equations governing the integration
of the Bouc-Wen model within the physics-informed neural network will be detailed. These equations detail how
the neural network effectively learns to approximate the complex behavior of MR dampers. Typically, employing
the Bouc-Wen models for analysis would entail the tedious and time-consuming process of tuning the various
mechanical parameters associated with the equations (42; 43). However, in this study, we propose a four-stage
prediction process based on a hybrid physics-informed data-driven approach, inspired by prior works in the area
(17; 50), that circumvents the need for explicit knowledge of model parameters by leveraging the power of neural
networks.

Figure 3: The overall workflow of the hybrid physics-informed data-driven neural network based surrogate model
for modelling the dynamic and rheological behaviours of the MR damper.

The overall structure of the model is laid out as a cascaded architecture, comprised of four prediction stages, as
illustrated in Figure 3. Utilising the universal approximation theorem, the neural network predicts the sequence
of states for a given time interval. The initial stage employs a neural network to approximate derived states

I = [I1, I2, I3, I4]
T from input data D =

[
x, dx

dt , v,
dv
dt , t

]T
, given as:

I = N1(D; θ1) , (7)

Proc. of SPIE Vol. 13051  130511G-6



where N1 represents the network with its associated weights and biases θ1. As values for u and z are not present
in the input information, this estimate will not be optimal. Instead, this will be remedied by the training process,
with a physics informed loss function. The derived states I may be derived through the application of numerical
integration to components of the original Bouc-Wen equations independent of system parameters. The derivation
of the states, based on the original Bouc-Wen equations are presented as follows. Integration is applied initially
to equations 5 and 6:

∫ ti

t0

ż (t) dt = −γ

∫ ti

t0

|ẋ(t)| z(t) |z(t)|n−1
dt− β

∫ ti

t0

ẋ(t) |z(t)|n dt+A

∫ ti

t0

ẋ(t)dt , (8)

∫ ti

t0

u̇(t)dt = η

∫ ti

t0

(u(t)− v(t)) dt . (9)

The equations 8 and 9 may thus be expressed as a linear combination of derived states I and model parameters,
which is also equivalent to the evolution of unobservable variables u and z over a specified time period of t0 to
ti : ∫ ti

t0

ż(t)dt = z(ti)− z(t0) = γI1(t) + βI2(t) +AI3(t) , (10)∫ ti

t0

u̇(t)dt = u(ti)− u(t0) = ηI4(t) , (11)

where states I may be approximated numerically through the use of numerical integration methodologies. For
the sake of simplicity, the trapezoid rule is employed in this study:

I1(t) =−
∫ ti

t0

|ẋ(t)| z(t) |z(t)|n−1
dt

=− 1

2

i−1∑
i=0

[(
|ẋ(ti)| z(ti) |z(ti)|n−1

)
+
(
|ẋ(ti+1)| z(ti+1) |z(ti+1)|n−1

)]
(ti+1 − ti) , (12)

I2(t) =−
∫ ti

t0

ẋ(t) |z(t)|n dt

=− 1

2

i−1∑
i=0

[(ẋ(ti) |z(ti)|n) + (ẋ(ti+1) |z(ti+1)|n)] (ti+1 − ti) , (13)

I3(t) =

∫ ti

t0

ẋ(t)dt = x (ti)− x (t0) , (14)

I4(t) =

∫ ti

t0

u(t)− v(t) dt =
1

2

i−1∑
i=0

[u(ti)− v(ti) + (u(ti+1)− v(ti+1))] (ti+1 − ti) . (15)

The subsequent network employs the predicted states to predict the rate of change in efficient voltage u, and
hysteretic displacement z. This process enforces that the network N2 models the explicit relation defined in
equations 9 and 10:

[∆u,∆z]
T
= N2 (I; θ2) . (16)

From the above representation of the rate of change for efficient voltage and hysteretic displacement, given
an initial value, it is possible to obtain the values for both variables: [u, z]T at each instance in time. Given that
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knowledge of the efficient voltage is now available, a neural network is employed to approximate equations 2 to
4. For a given input of efficient voltage, the model parameters varying with applied voltage may be estimated
via:

[α, c0, k0]
T
= N3 (u; θ3) , (17)

where the estimated parameters are to be used in re-constructing the original equation, to be employed as a loss
function by which the overall cascaded network is to be penalized by. Finally, the model employs neural network
N4 to provide force predictions, based on initial inputs, and predicted values for hysteretic displacement. This,
again, models the explicit relation discussed in 1.

F = N4

([
x,

dx

dt
, z

]T
; θ3

)
. (18)

The cascaded networks are trained concurrently utilising a composite loss function that penalizes the devia-
tions from known physics, as well as deviations from training data. The loss is comprised of a physics-based and
data-based component, where the physics-based loss is primarily enforcing the continuity of developed states I
through time. The physics-based loss depends on the reconstruction of each of the four states developed, utilis-
ing predicted values. Comparison is also made between the reconstruction of equation 1 based on intermediate
components from the cascaded network:

L(1)
phys = I1(t)−

1

2

i−1∑
i=0

[(
|ẋ(ti)| z(ti) |z(ti)|n−1

)
+
(
|ẋ(ti+1)| z(ti+1) |z(ti+1)|n−1

)]
(ti+1 − ti) , (19)

L(2)
phys = I2(t)−

1

2

i−1∑
i=0

[(ẋ(ti) |z(ti)|n) + (ẋ(ti+1) |z(ti+1)|n)] (ti+1 − ti) , (20)

L(3)
phys = I3(t)− (x (ti)− x (t0)) , (21)

L(4)
phys = I4(t)−

1

2

i−1∑
i=0

[u(ti)− v(ti) + (u(ti+1)− v(ti+1))] (ti+1 − ti) , (22)

L(5)
phys =

1

N

N∑
i=1

(Fmeasured,i − (αizi + c0,iẋ+ k0,i(xi + x0)))
2
. (23)

where N represents the sequence length of the input fed through the neural network at one time, not to be
confused with aforementioned denotations of neural networks N1 to N4. The total physics-based loss is thus the
sum of prior physics-based loss components:

Lphys =

5∑
j=1

[
1

N

N∑
i=1

(
L(j)
phys,i

)2]
. (24)

The data-driven component of the loss is derived based on the resultant predicted force by network N4, which
is compared against the measured force from the experimental setup, depicted in equation 25.

Ldata =
1

N

N∑
i=1

(Fmeasured,i − Fpredicted, i)
2
. (25)
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The overall loss for training the network is presented as a composite of individual physics-based and data-
driven losses, featuring a weighted sum of each component:

Ltotal = λ1Lphys + λ2Ldata . (26)

where parameters λ1 and λ2 represent the weights assigned to each loss component. Depending on their assigned
value, the resultant network may be tuned to learn more so from the physical model or from data. In the
subsequent section, the resultant predictions of the surrogate model is presented. The efficacy of the PINN
surrogate model is scrutinized via comparisons with empirical data. Specifically, the model’s proficiency in
replicating the damper’s force-displacement-velocity characteristics across various operation scenarios, as well as
various combinations of component weight during training are explored.

5. RESULTS AND DISCUSSION

In this section, the results of utilising a PINN to serve as a surrogate model for a MR damper are presented.
The primary objective of this study is to leverage the a priori knowledge of the system’s physical behavior, as
described by the Bouc-Wen equations, to enhance the predictive capability of the neural network model. The
performance of the PINN surrogate model is evaluated through comparisons with experimental data. Specifically,
the effectiveness of the PINN in reproducing the damper’s force-displacement-velocity characteristics under
various operating conditions is assessed. Furthermore, the ability of the PINN to capture the dynamic response
of the MR damper to excitation inputs, as well as performance in various training scenarios are investigated.

The data analyzed in this study was collected from a physical experimental setup featuring an MR damper,
illustrated in Figure 4. This setup provides practical insights into the performance of MR dampers under
controlled conditions. Core to its function is the MR damper itself, the damping properties of which may be
varied through voltage control via the programmable power supply. Force measurements are obtained through
the resistive load cell. The overall motion of the assembly is actuated by a linear actuator. To facilitate data
collection, a program on the main computer collects the data collected from various aforementioned components,
and writes said data to a SQL database.

As previously stated, the model was trained in a hybrid manner, incorporating a composite loss function
to effectively balance the physics-based loss derived from the Bouc-Wen model’s differential equations and the
conventional data-driven loss associated with force data from experiments. A range of scenarios was explored to
identify an optimal equilibrium between physics-informed and data-driven methodologies. Models were trained
utilising the listed weights below. An 80-20 split was employed to isolate the training and validation datasets,
and the model was tested on a never before seen dataset. Table 2 outlines the various cases and results for
combinations of weights for the composite loss function of the model evaluated on the validation dataset. Models
are evaluated based on Root Mean Squared Error (RMSE) of predictions.

Table 2: Weights and corresponding error on predictions for the surrogate model developed.

Physics-based weight λ1 Data-driven weight λ2 Ratio RMSE [N ]
1 1 1 10.75
0.1 0.5 0.2 8.87
0.1 1 0.1 9.76
0.1 10 0.01 7.85
0.5 0.1 5 9.97
0.5 1 0.5 8.52
0.5 10 0.05 7.09
1 0.1 10 11.54
1 0.5 2 8.19
10 0.1 100 11.65
10 0.5 20 13.34
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Figure 4: The experimental setup utilised for data collection.

In general, it was observed that assigning a higher weight to the data-driven component relative to the
physics-based component yielded superior performance. This observation can be attributed to the inherent
limitations and imperfections of the Bouc-Wen model, which serves as the foundation for the physics-based
loss. As the physics-based component becomes more dominant, it increasingly imposes constraints based on the
assumptions and simplifications inherent in the Bouc-Wen model, potentially leading to inaccuracies in capturing
the system’s true behavior. Conversely, a higher weight assigned to the data-driven component allows the model
to adapt more effectively to the complexities and deviations present in the experimental setup or the device
itself. By prioritizing the data-driven aspect, the model becomes more adept at capturing and accommodating

Proc. of SPIE Vol. 13051  130511G-10



any discrepancies between the idealized physics and the real-world observations. Furthermore, in scenarios where
noise is prevalent, a higher data weight becomes particularly advantageous. The presence of noise can significantly
disrupt the calculation of the physics-based loss function, leading to erratic behavior and diminished performance.
In contrast, the data-driven component is more resilient to noise, enabling the model to better discern patterns
and trends amidst the fluctuations, thereby enhancing its overall predictive capability. Thus, the preference for
a higher data weight in such cases is justified not only by its ability to attenuate to the system’s characteristics
but also by its resilience to noise-induced perturbations, ultimately contributing to improved model performance
and accuracy in predicting the damping force of MR dampers.

The efficacy of different weighting compositions is illustrated through the presentation of subsequent figures
showcasing notable combinations. These figures will include plots depicting force over time, force-displacement
relationships, and force-velocity profiles. The data presented in the plots are presented with 52 mV and 2.63 V
applied voltage to the MR damper itself, and represent a sample from experiments conducted. These samples
depict the extremes of the voltage range tested. They serve as illustrative points to demonstrate the behavior
of the MR damper under varying voltage conditions, encompassing a spectrum of its response. In analyzing
the results, it is evident that the more physics-based weighting did not capture the unique hysteretic profile in
force-velocity plots, as illustrated in 5 and 6. The force-displacement and force-time relationship also deviates
relatively significantly from the actual measured behavior of the MR damper.

(a) (b) (c)

Figure 5: Sample results (a) Force-time plots, (b) Force-velocity plots, and (c) Force-displacement plots for model
performance on test dataset with applied voltage of 524 mV. Measurements constant acceleration oscillation along
entire stroke length. PINN-based surrogate model trained with λ1 = 10, and λ2 = 0.1.

(a) (b) (c)

Figure 6: Sample results (a) Force-time plots, (b) Force-velocity plots, and (c) Force-displacement plots for model
performance on test dataset with applied voltage of 2.63 V. Measurements constant acceleration oscillation along
entire stroke length. PINN-based surrogate model trained with λ1 = 10, and λ2 = 0.1.

On the other hand, the combination of λ1 = 0.5 and λ2 = 10 shows significant improvement in terms of
minimizing discrepancies in the form of error, but there is still clear room for enhancement. The behavior of the
MR damper is not exactly captured here either, suggesting that further refinement of the weighting parameters
is necessary for better model performance. The performance are illustrated in 7 and 8.
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(a) (b) (c)

Figure 7: Sample results (a) Force-time plots, (b) Force-velocity plots, and (c) Force-displacement plots for model
performance on test dataset with applied voltage of 524 mV. Measurements constant acceleration oscillation along
entire stroke length. PINN-based surrogate model trained with λ1 = 0.5, and λ2 = 10.

(a) (b) (c)

Figure 8: Sample results (a) Force-time plots, (b) Force-velocity plots, and (c) Force-displacement plots for model
performance on test dataset with applied voltage of 2.63 V. Measurements constant acceleration oscillation along
entire stroke length. PINN-based surrogate model trained with λ1 = 0.5, and λ2 = 10.

Depending on the relative weighting of the physics-based and data-driven loss components within the compos-
ite loss function, varying levels of accuracy were observed. Notably, assigning a higher weight to the physics-based
component resulted in a model behavior more closely resembling that of numerical simulations. However, this
approach revealed limitations in capturing the dynamics of the roll-off region, characteristic of the Bouc-Wen
model upon which the physics-based loss is based. In particular, the force-velocity hysteresis phenomena in
this region were found to be misrepresented, indicating areas for further refinement. Conversely, optimizing for
higher accuracy often favored a greater emphasis on the data-driven loss component. While this led to improved
performance on the test dataset, questions arise regarding the robustness of the model across a broader range
of operating conditions. Under such circumstances, the surrogate model tended to exhibit characteristics more
aligned with a conventional black-box ML approach, potentially raising concerns about overfitting to the spe-
cific dataset. This highlights the need for thorough validation and generalizability testing to ensure the model’s
applicability to unseen scenarios.

The improved computational efficiency of the PINN-based surrogate model compared to traditional numerical
simulations should also be noted. The PINN framework allows for rapid predictions of the damper’s behavior,
which is advantageous for real-time applications and large-scale studies. To quantify this advantage, a comparison
was made between the computational times required for numerical simulation and PINN prediction. For a dataset
of approximately 100,000 data points, the process of identifying Bouc-Wen model parameters and simulating
outputs through numerical methods took an average of 1 minute, 2 seconds, and 35 milliseconds. In contrast, the
PINN-based surrogate model, without hardware acceleration, achieved the same predictions in approximately
0.756 seconds with a single pass of the neural network. This reduction in computational time highlights the
practicality and efficiency of the PINN approach, especially in scenarios requiring rapid analysis and decision-
making.
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5.1 Limitations

Despite the promising capabilities demonstrated by the PINN, several constraints must be acknowledged to
provide a comprehensive understanding of its applicability and potential shortcomings. Firstly, it is important
to note that the training of the PINN still relies, to a lesser extent than traditional neural networks, on the
availability of data points. Due to practical constraints and experimental limitations, the dataset used for training
may not fully encompass the entire range of operating conditions and configurations encountered in real-world
scenarios. Consequently, the predictive accuracy of the PINN model may be compromised, particularly in regions
of the parameter space with sparse data coverage.

Moreover, while the incorporation of physics-based constraints through the Bouc-Wen equations enhances the
model’s interpretability and robustness, it also introduces certain limitations. The Bouc-Wen model, while widely
used to describe the nonlinear behavior of MR dampers, is inherently an approximation and may not fully capture
all aspects of the damper’s response. Specifically, the model may struggle to accurately represent the behavior of
MR dampers in certain operating regimes, such as high voltage excitation or extreme displacement conditions.
This limitation arises from the simplified nature of the Bouc-Wen equations, which may not adequately account
for complex phenomena such as magnetic saturation or hysteresis effects observed in MR dampers.

Furthermore, the composite loss function employed in training the PINN, which combines physics-based
constraints and data fidelity terms, may lead to a trade-off between accuracy and robustness. While the inclusion
of physics-based constraints helps enforce physical consistency, it may also restrict the flexibility of the model,
particularly in regions of the parameter space where the physics-based constraints are less accurate or reliable.
As a result, the PINN model may exhibit reduced accuracy or predictive performance in certain scenarios,
necessitating careful consideration of its limitations and potential areas for improvement in future research
endeavors.

5.2 Future Work

In future work, employing neural networks specialized for time series analysis, such as Recurrent Neural Networks
(RNNs), Gated Recurrent Units (GRUs), or Long Short-Term Memory (LSTM) networks, holds promise for
enhancing the modeling capabilities of the surrogate model. Given the temporal nature of the data generated
by the MR damper system, these architectures offer the potential to capture intricate dynamics and temporal
dependencies more effectively. Expanding the scope of the study to encompass various other models of the
MR damper, such as the modified Bouc-Wen model proposed by Spencer and colleagues, presents an avenue for
refining the accuracy of the surrogate model. While this model offers improved fidelity in capturing the hysteretic
behavior, its increased complexity necessitates careful consideration of computational resources and modeling
trade-offs. Incorporating advanced hyperparameter optimization schemes can further enhance the performance
of the neural network model by effectively balancing the influence of physics-based constraints and data-driven
learning objectives. Employing techniques tailored to optimize network hyperparameters efficiently, such as
Bayesian optimization or evolutionary algorithms, may facilitate the discovery of optimal configurations in a
more time-effective manner compared to conventional grid or random search methods. Extending the application
of the developed surrogate model to real-time condition monitoring represents a promising avenue for practical
implementation. By leveraging the capabilities of PINNs, the model can be deployed for continuous monitoring
and assessment of MR damper performance, enabling proactive maintenance strategies, and enhancing system
reliability and efficiency.

6. CONCLUSION

This study explores the utilisation of PINNs for surrogate modeling of MR dampers, aiming to predict their dy-
namic behavior accurately under various operational conditions. The incorporation of the Bouc-Wen hysteresis
model into the training process of cascaded neural networks facilitates the development of a surrogate model
that balances computational efficiency with accuracy. Through experimentation, it was observed that different
weighting compositions between the physics-based and data-driven loss components influence the model’s per-
formance. Assigning a higher weight to the data-driven component generally resulted in improved predictive
capability, especially in scenarios with prevalent noise. However, emphasizing the physics-based component led
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to a model behavior more aligned with numerical simulations but exhibited limitations in capturing certain dy-
namics, particularly in the roll-off region characteristic of the Bouc-Wen model. Further refinement of weighting
parameters is necessary to enhance model performance, ensuring a better representation of the MR damper’s
behavior across a broader range of operating conditions. Additionally, thorough validation and generalizability
testing are imperative to assess the model’s applicability to unseen scenarios and prevent overfitting to specific
datasets.
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