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ABSTRACT

Unmanned aerial vehicles (UAV) and satellites are becoming increasingly popular in business, government, and
military applications. Both have unique use cases and value, but they have several overlapping use cases and
features. Most notably they are both used for observation, such as the case of climate monitoring or surveying
and mapping. Satellites also have uses in communication and navigation by broadcasting signals and enabling
technology such as global positioning systems (GPS). UAVs have also been deployed by the militaries across
the world for both reconnaissance and offensive capabilities. Each are electro-mechanical systems with a several
important components that need to be reliable and high performance. Maximizing the return in value for these
assets might mean improving their performance, reliability, or longevity. One emerging technology that has the
promise to do this is the digital twin (DT). DTs utilize a combination of multi-domain modeling and extensive
data collection for real-time model updates. This real time updating can be utilized for advanced simulation,
improved control, and advanced condition monitoring. DTs are an ideal platform for applying to UAVs and
satellites to maximize their capabilities and values. As will be demonstrated in this work, DTs have been
demonstrated to provide value in improving control performance, orientation and position tracking, condition
monitoring, and fault detection in UAVs and satellites. A case study and preliminary work on a CubeSat attitude
adjustment device DT has been presented and examined to display benefits of the concept.
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1. INTRODUCTION

Satellites and unmanned aerial vehicles (UAVs) are becoming increasingly ubiquitous and important in modern
society. Satellites are unmanned spacecraft which orbit celestial bodies, and UAVs are unmanned aircraft which
typically fly at high altitudes. Both have unique use cases and value, but they have several overlapping use
cases and features. Most notably they are both used for observation,1 such as the case of climate monitoring or
surveying and mapping. Satellites also have uses in communication and navigation by broadcasting signals and
enabling technology such as global positioning systems (GPS). UAVs have also been deployed by the militaries
across the world for both reconnaissance and offensive capabilities.

Due to the nature of being unmanned it is necessary to be able to monitor these systems to ensure proper
operation and performance. In the case of a satellite it is very difficult to impossible to provide maintenance or
diagnostics. For UAVs, a failure in one of the systems could result in a critical failure, and then a crash. Both
satellites and UAVs are expensive assets, so it is imperative to implement technology and methods to monitor
these systems and maximize performance and reliability. Each of these systems contain complex subsystems
to be monitored and controlled such as the air frame, power systems, avionics, flight control system, electrical
control systems and communication systems in the case of the UAV.2 One possible paradigm to implement this
would be digital twins (DT).

DTs are virtual representations and mappings of real-life objects, systems, and processes. They utilize a
heterogeneous data stream from multiple data sources including a sensor network to create a real-time mapping
of real-life operating conditions. The first concept of the DT actually arose from NASA creating a duplicate
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spaceship for its Apollo mission which was used to mirror the status of the spacecraft on its mission.3 To
model the system there is an array of models that can be used, with most falling into the categories of either
data-driven or physics-based. Data-driven models use historical operating data collected from the system to
create an input-output mapping. Data-driven models are often artificial intelligence (AI) or machine learning
(ML) based, with neural networks (NN) being a common method. Physics-based methods often involve models
which take into consideration the inter-workings of the mechanical, electrical, and thermal systems. They require
more knowledge of the system but can be better at predicting the behaviour of systems in unknown operating
conditions compared to data-driven methods. Both types of modeling can be effecting for DT modeling and
are often used in conjunction. DT use a model retention process where the models are constantly updated and
validated to ensure that the model is representative of the system. DT modeling using these models can give
control and monitoring systems better information to make autonomous decisions.

This work explores the application of DT to both satellites and UAVs and how it can be beneficial for
condition monitoring, control optimization, and fault tolerant control. Additionally a case study is examined
where DT based model retention is used to correctly identify the frame inertia tensor of a CubeSat device so
that proper control can be implemented.

The rest of this work is organized as follows: Section 2 provides a framework for implementing a DT on
either a satellite or UAV. Section 3 examines the literature on examples of applying DT to these systems and
what advantages or value was seen by doing so. Section 4 displays an application example of a CubeSat attitude
adjustment mechanism for satellites and applying a DT based model retention method to identify the inertia
tensor. Finally, section 5 concludes the work and provides as future work outlook.

2. UAV AND SATELLITE DIGITAL TWINS

The process for DT modeling of a UAV or satellite is described in this section. The first step is data collection
from the real system via an array of sensors and data streams. Next, modeling of the system using data-driven
or physics-based models occurs. The DT model output is validated against operational data to ensure model
accuracy. Once the model is validated it can be used for implementing DT smart services which can enhance
performance, reliability, and longevity.

2.1 DATA COLLECTION

DT models rely on a heterogeneous stream of high accuracy and high frequency data for modeling purposes. This
data is used to model the system’s states and parameters. Data can be collected from a variety of sources including
the propulsion system, power systems, attitude adjustment systems, navigation systems, and communication
systems. Sensors for these purposes include inertial measurement units (IMU), GPS, and accelerometers. Data
about electrical systems including voltage, current, temperature4 can also be used for monitoring the power
systems and actuators. Flight log data can be useful for recreating real life experiments in a virtual environment5

as discussed in 2.3. Additional sensors can also be installed to collect data, this data could include the stress
and strain on structural components such as strain gauges6 and pose sensors.6 Additionally. data to monitor
environmental conditions such as wind or solar radiation can be used which includes air pressure and speed
sensors.5 This data can be used for DT modelling, where it will be used to estimate the parameters and states
of the system.

2.2 MODELING AND SIMULATION

There are several different approaches to modeling within DTs. Data-driven modeling does not require an
understanding of the underlying system mechanics, but rather creates a mapping of inputs to outputs. ML and
NN are a very popular approach to this method. Data-driven approaches such as NN are popular for condition
monitoring applications.7 The primary drawback to data-driven modeling is the need for a large, varied, balanced
dataset. This may be difficult for certain applications such as fault detection where the normal operating
conditions would heavily outweigh faulty condition occurrences. An alternative to a data-driven approach would
be physics-based modeling. Physics-based modeling takes advantage of known physical relationships, features,
and parameters of the system for effective modeling. There is a variety of modeling methods which fall under this
category such as dynamic system modeling using software such as Matlab/Simulink/Simscape, which can model
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the various sub-systems of the UAV or satellite for control, estimation, and condition monitoring purposes. It
can be applied to model the power systems8,9 and attitude adjustment system10 for example. Another type of
physics-based modeling is finite element (FE) and computational fluid dynamics (CFD) modeling. FE and CFD
modeling is useful for monitoring stress and fractures,11 modeling and simulation of vibration,12 Aerodynamics,5

and thermal characteristics.13 Simulation software such as Gazebo5,14 or Unity15,16 can be used for virtual
prototyping of UAVs. The drawback of a physics-based approach is the need for simplification, assumptions, and
approximations of real life behaviour.17 It also necessitates a good understanding of the underlying system.18

There are advantages and drawbacks to both physics-based and data-driven approaches, it is possible to use
both in conjunction to mitigate the disadvantages of each, while retaining the benefits of each.17 Utilizing both
strategies is a type of hybrid modeling, which can use models in either parallel or in series. Parallel hybrid
models use two models to create the same type of outputs given a sets of inputs, this output is then combined
to form a more accurate model than one alone. Series hybrid models use the output of one model as the input
to another, one example of this is physics-guided input feature augmentation, which uses accurate physics-based
modeling, such as FE modeling to generate data to train NNs. This is very useful in the case where certain data
may be difficult to come by normally, such as faulty conditions. Hybrid modeling can also be useful to combine
a high fidelity low frequency model with a low-fidelity high-frequency model.19 Hybrid modeling can improve
the accuracy, update frequency, and reliability of the DT model.

2.3 VALIDATION

It is essential to ensure that the DT models are representative of their corresponding real-life asset, to do so it is
necessary to check the outputs of the models compared to the real life system. In the case of UAVs or Satellites
this could be in terms of the navigation systems, battery management, or attitude adjustment. In the case of
the battery management system for example, it would need to be ensured that given the same inputs such as
battery temperature, outputted current and voltage, and state of health, that you could estimate the battery
state of charge.

To validate the DT models it is necessary to test the model against experimental data. While testing, it is
desirable to create some sort of test experiment which can be used for model matching which can test the system
under a variety of operational conditions to ensure robust modeling. In the case of a UAV navigation system a
test trajectory which involved a variety of velocities, altitudes, different turn radii, weather conditions, etc. The
variety of conditions ensure the model does not over-fit a certain operating conditions and remain robust. Once
experimental data is obtained it can be compared to the virtual counterpart to determine the prediction error
to determine model consistency as seen in Figure 1.20 After comparing the experimental results to the model
results it is possible to begin an iterative improvement process to optimize the model parameters to minimize
prediction error. Computational optimization algorithms such as particle swarm algorithm, genetic algorithm,
and ant-colony algorithm can be used for this parameter optimization process. Over the life-cycle this process
will need to be repeated to ensure the model matches the current operating state of the asset. It is also valuable
to observe the changes in model parameters over time to analyze the change in the systems operating state.

2.4 DIGITAL TWIN SMART SERVICES

Once the data collection, modeling, and model validation is complete the DT can be used for various services.
There are many different DT services that could be useful in their application to UAVs and satellites. A very
popular application is health and condition monitoring. This is popular to monitor the various sub-systems
and components within UAVs and satellites to ensure performance and reliability. Another popular application
is performance optimization, where the virtual control systems can be tuned on the virtual model to optimize
performance before real-life implementation which can streamline prototyping. Virtual simulation can allow for
the testing of the system under untested environmental conditions as well. DT models can be used to generate
synthetic data which can be used to train NN for fault detection applications.17

3. LITERATURE REVIEW

There are many literature examples of applying DT technology to both satellites and UAVs. DT technology can
help along the entire life cycle of the asset from design,21 testing and validation,15 manufacturing,22 and finally
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Figure 1. Consistency retention / model validation process20

operation. This work primarily focuses on the testing and validation and the operation stage. DT is often used
in the design and testing and validation stage for virtual prototyping to reduce the cost and development time
of physical prototyping while improving accuracy.2 During operation the primary benefits of a DT are health
monitoring and performance optimization.

3.1 HEALTH MONITORING

Both satellites and UAVs operate in uncertain environments where it is difficult to ensure reliability.23 There
are a couple benefits to utilizing DT technology in the case of satellites and UAVs, such as condition monitoring
and fault detection. These can be used to identify current operating conditions and used to best operate in these
uncertain environments. One key DT service is the real time monitoring of the operating state via a synchronous
link. Data collected or transmitted by the system can be used to track changes within the system which can be
updated in the virtual system. This status can be updated and displayed to monitor the status of operation.24

Both satellites and UAVS operate in harsh conditions with low temperatures and high solar and cosmic
radiation which can have a detrimental effect on the degradation of components.2 One of the most common
areas of application of DTs is structural health monitoring. An early, and influential work on the topic of the
application of DT to aircraft structural life prediction by Teugel et al. seen in Figure 2, which identified the
following needed capabilities:25

• Multi-physics modeling

• Multi-scale damage modeling

• Integration of structural FEM and damage models

• Uncertainty quantification, modeling, and control

• Manipulation of large, shared databases

• High-resolution structural analysis capability

DTs can enable the implementation of integrated vehicle health monitoring, which can be used to achieve
diagnosis, prediction, and failure mitigation.26 Monitoring of the various key components or subsystems such as
the wings,6 rotors, and power systems is essential to the proper operation of the system. There are two important
reasons for this, first is fault tolerant control where if a component is experiencing a fault it can be accounted
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Figure 2. DT life prediction concept from25

for, the second is avoiding catastrophic failures by grounding UAVs if they are deemed a risk. Traditional
spacecraft cannot predict or account for failures.23 In one study11 the authors created a DT based structural
health monitoring method to monitor and estimate the growth of a crack in the frame of a reusable spacecraft.
With their method they could accurately estimate the size and predict the growth of a crack with increasing
accuracy as their observational data accumulated. Larger UAVs used for commercial or military use at high
altitudes typically use wings and jets, rather than rotors for propulsion. The wings are important components
to monitor as the manoeuvrability of the UAV depends on them. Lai et al,6 created a health monitoring method
for aircraft wings. They generated data via simulation for load identification and fatigue prediction. Using this
models they created a DT visualization which could show the load and fatigue information on a 3-D model of
the aircraft. In space satellites need to deal with harsh thermal radiation, and so one study19 created a hybrid
modeling method to estimate deformation due to thermal effects in a satellite. Their model used a hybrid of a
high fidelity FE model along with a lower fidelity NN model.

Another very popular application of DTs to health monitoring for UAVs and satellites is monitoring of the
power systems and battery. Shangguan et al.24 created a DT based fault detection scheme for the solar powered
battery system of a satellite. Their method, seen in Figure 3, collected several parameters to monitor, visualize
and detect faults. Using this method they could accurately and specifically identify faults such as battery short
circuits, performance degradation and directional drive failures. One other study4 examined a DT application
to monitor the health of a lithium ion battery for a spacecraft. They used a Kalman filter - least squares support
vector machine to estimate the state of charge, and a auto regressive particle filter to estimate the state of health
and remaining useful life.

3.2 CONTROL AND PERFORMANCE OPTIMIZATION

DTs can allow systems to learn and adapt overtime as the system collects data across the life-cycle. This learning
process enables an accurate system model which can enable intelligent autonomous operation.27 One popular
application is virtual prototyping and simulation. Because of the difficulty of recreating the physical conditions
in space or high altitude. DT can enable the virtual or hybrid testing and validation of these systems.15 Virtual
prototyping is useful to reduce development time and costs. With virtual prototyping a series of simulation can
be performed and iteratively optimized.

A very popular application of virtual prototyping and simulation is path planning and remote operation.
A study by Grigoropoulos et al.14 created a hybrid simulation for testing and validating a UAV for remote
operation. By feeding back the results from sensors on the UAV that was matching the simulation they could
improve the accuracy of their simulation for further accuracy improvements. Another similar work used virtual
DT prototyping and co-simulation to verify their drone control and operating scheme. Their method would
identify large deviations from expected behaviour and take appropriate action to avoid catastrophic failure.
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Figure 3. Example of a DT for satellites for fault detection from24

Simulation environments are also useful for generating data for data-driven control approaches. One study16

created a reinforcement learning DT for a UAV to improve path planning. Their method was able to generate
sufficient data to adequately train a reinforcement learning model to improve arrival time and reduce collisions.
Take off and landing is a critical part of UAV flight control. Several studies aimed to use DT technology to
optimize this process. McClellan et al.28 created a MPC based control scheme for the landing of a UAV. They
gathered real time state estimates for the UAV as well as estimates of external aerodynamic forces acting on
it. Their method was more accurate than assuming static aerodynamic forces. They validated their model with
numerical simulations and tested it with a small hobby UAV.

One of the primary applications of DT to spacecraft is in-orbit control23 where it can be used for real time
state and parameter estimation. With real time estimation of these it is easier to achieve high performance.
This is especially important for autonomous navigation and orientation and attitude. One study29 examined
using a hybrid DT for temperature field estimation and attitude control. They used a hybrid physics-based
and data-driven method, combining a CNN estimate for the temperature field with a Modelica model of the
attitude control system. Using this hybrid system they could accurately estimate temperature field and adjust
both position and attitude accurately and efficiently. Accurate estimation of the system state and external
disturbance is essential for optimal control performance. These real time state estimations can be used for
advanced control schemes such as MPC28,30 or data-driven environmental adaptive control.2

4. APPLICATION EXAMPLE

To examine the framework some preliminary work is explored on a DT condition monitoring scheme for a satellite
attitude control system seen in Figure 4. This experimental setup is a CubeSat attitude control system simulator
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Figure 4. CubeSat experimental setup

mounted on an air bearing to simulate zero gravity.31–34 Four reaction wheels spin to re-orient the system in
the desired position. This type of system is used in satellites for attitude control to track targets on earth or in
space.

The application is determining the frame inertia tensor matrix. During operation it is possible that the
frame could warp or become damaged, or components dislodged, resulting in a different frame inertia. Knowing
the frame inertia is important for control of the attitude. This application works by comparing experimental
data (simulated in this case) to a set of data which was generated using a set of inertial values. The possible
inertia tensor matrices used were five possibilities, three with lower than expected inertia, and two with higher
than anticipated inertia. An initial estimate can be obtained through the geometric modeling software. Ideally
a larger set of inertia cases could be used, but for simplicity’s sake just a few were used to demonstrate the
method.

The system begins in an initial orientation and is given a command orientation that it must reach. This
operation is conducted in a simulation to gather the expected response under the various inertial conditions
as well as experimentally. The experimental data can be compared to the set of simulated inertial values to
determine the real inertia. The mean square error is calculated between the test condition and various inertia
states orientation quanterion data. Next, a likelihood vector is determined with the following steps. First the
mean squared error (MSE) is normalized based on the minimum value:

MSENormalized =
MSE

min(MSE)
. (1)

The MSE between each of the four orientation quanterions is summed to form the total MSE. Then a likelihood
value is determined based on the inverse proportion of MSE of each inertial case, so if a fault scenario has a MSE
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Table 1. State likelihood estimates
Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

0.0391 0.1491 0.8031 0.0059 0.0029

Table 2. Estimated inertia versus actual inertia tensor
X Y Z

Actual Estimate Actual Estimate Actual Estimate

X 0.0196 0.0185 -0.0033 -0.00311 -0.001 -0.000944
Y -0.0033 -0.00311 0.0217 0.0204 0.0009 0.00085
Z -0.001 -0.000944 0.0009 0.00085 0.0287 0.0271

of 50% compared to another scenario, it will be 2× as likely. The equation to determine the likelihood vector is

likelihood =
MSE−1

Normalized

sum(MSE−1
Normalized)

. (2)

To reduce the residual probability of unlikely scenarios, the likelihood is squared, and the squared likelihood
function is calculated as follows

likelihoodsquared =
likelihood2

sum(likelihood2)
. (3)

For the experiments the likelihood of various operating condition states representing the system can be seen in
Table 1. Then each of the pages (3rd dimension) of the 3x3x5 matrix representing each of the inertia conditions
can be multiplied by its corresponding likelihood value, then each corresponding element summed to create an
inertia tensor estimate. This process would occur occasionally for model retention. These estimates of inertia
are useful for for DT services, such as control tuning based on current operating conditions. The overall results
and prediction accuracy of the inertia estimation for the simulated data can be seen in Table 2. As can be seen
the prediction accuracy is very high, with an average prediction error of less than 6%.

5. CONCLUSION

This work has examined the application of DT technology to satellites and UAVs. Through examining the litera-
ture it is clear that DT has been successfully applied to both types of systems to improve health monitoring and
performance optimization. Through data collection, modeling and simulation, model validation, and applying
DT services it is possible to improve overall system reliability and performance. A case study of identifying the
inertia tensor for a CubeSat attitude control device was examined to demonstrate the model retention feature of
DTs. Future work on this would include a more complex model identification and retention example of correctly
identifying the system model from experimental data.
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