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ABSTRACT

Deployed for purposes of GPS, defense, atmospheric and space research, environmental monitoring, broadcasting,
and communication, Earth observation satellites are complex systems that require the design of highly reliable
control and estimation algorithms. A satellite’s attitude determination and control system (ADCS) must be able
to operate accurately, in a robust manner against unexpected conditions, especially in missions that demand
more intricate tasks. The desire for optimal and robust performance in satellites has been the driving factor
behind decades of attitude control research. With computers, the performance of spacecraft subject to some
mission can be simulated to test new control methods, but the availability of real satellites to researchers for
testing these algorithms is very limited. To solve this issue, attitude control simulators have been developed,
such that algorithms and hardware can be tested inexpensively in a lab environment, while maintaining a high
level of accuracy to the environment it emulates. The Nanosatellite Attitude Control Simulator (NACS) has
been developed at McMaster University for this purpose. Consisting of a mock 1U CubeSat, an air-bearing
configuration, and an automatic balancing system (ABS), rotational attitude control experiments are conducted
in-lab without deployment, simulating the zero-gravity of space. The mechanism responsible for environment
simulation is the ABS, which minimizes residual torque due to gravity by influencing the center of mass (CoM)
of the system, thereby improving control performance and efficiency. The performance of the ABS in a balancing
task is presented, where system parameters of inertia and CoM are estimated from response data. Three filtering
strategies are investigated for this purpose, providing varying degrees of accuracy and computational cost.
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1. INTRODUCTION

The prevalence of satellite technologies in the modern age is undeniable and growing. According to the European
Space Agency’s (ESA) annual space environment report, there are approximately 11 500 satellites still in space,
where almost 50% were launched in the last 5 years.1 Responsible for numerous Earth observation tasks,
such as GPS tracking, defense, communication and broadcasting, and environmental monitoring, satellites have
demonstrated themselves to be essential in every day life. For instance, Starlink aims to launch hundreds of
satellites this decade to reduce broadband service costs with their large constellations. Satellites have additional
utility in exploration beyond Earth’s atmosphere, as in the Moon,2 Mars,3 and heliocentric4 missions involved in
observing, analyzing, and exploring the solar system. Considering these applications, satellites typically focus on
a single or multiple targets, and as such must have very accurate pointing capabilities. The onboard subsystem
most responsible for this functionality is the attitude control and determination system (ADCS), which unifies
control and estimation algorithms for precise sensing and actuation. The body of literature in control and
estimation strategy development is considerably large and growing, with a portion of it dedicated to autonomous
spacecraft.

Generally, there are many internal or external disturbances that can result in strain or even failure towards
a satellite’s ADCS, having monetary or data misplacement consequences. Object collision, environmental inter-
ferences (e.g., EMI, charged particles), or mission complexity can be contributing factors to these failures. To
counteract the harsh space environment or handle complex tasks, advanced ADCS strategies, decision making,
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and precision equipment is often required. In designing such safeguards, engineers employ simulation software
to validate key components such has structures, control laws, and sensors. The degree of complexity can range
from Matlab dynamical simulations and finite element analysis (FEA) to state of the art simulators. However,
deployment environments are unpredictable and hardware, algorithms, etc., do not always function as planned.
A recent example is from India’s Small Satellite Launch Vehicle (SSLV), where satellite deployment resulted
in failure due to unplanned vibrations in orbit that saturated the rocket’s inertial measurement unit (IMU).5

Considering the cost and unservicability of satellites, it is most beneficial to validate newly proposed meth-
ods in physical experiments as well as simulations. In-lab testing provides an inexpensive and safe alternative
to untested deployment, being able to diagnose and fix problems in a controlled environment. This aspect is
especially crucial in missions where maximum autonomy is desired and machine learning methods are to be
implemented, such as in new endeavors from MDA6 and the ESA.7

In recent years, there has been an academic focus on the development of attitude control simulators (ACS) for
small satellites. This is most likely the result of the establishment of the CubeSat, making satellite research more
accessible to small labs and universities. CubeSats are a modular standard for fabricating economical and easily
deployable satellites,8 and ACSs are appealing for testing these, able to be fabricated with similar off-the-shelf
components. In this work, our primary focus is rotational air-bearing simulators. While air-bearing ACSs have
become popular in the last 20 years, they were first used by space agencies, with the earliest known example
coming out of the NASA Ames Research Center.9

R. da Silva et al. discusses these simulators10 in a comprehensive manner, reviewing modeling, filter-
ing/identification, and active control methods applied in these simulators. Hardware arrangements for balancing
and their associated performance is also evaluated.10 Schwartz and Hall alternatively focus on the comparison
of the parameter identification strategies in ACS.11 Although da Silva focuses on air-bearing ACSs, air tables
are also utilized for docking/capturing maneuver experiments.12 There are also simulators that combine the
two methods, making a five or six degree-of-freedom (DoF) ACS.13–15 Where few simulators use manually tuned
masses16 or control moment gyros,17 the majority of rotational air-bearing ACSs achieve balance in three DoF
through automated movable mass units (MMUs). The xy plane is first balanced through some control algorithm,
then parameter identification is applied to tune the z mass through the dynamic response of the system. The
Naval Postgraduate School ACS18–20 applies the batch least squares (BLS) method outlined by Young21 and
nonlinear Kalman filters for this purpose. At the Space Research Laboratory (SRL), Sharifi and Zabihian22

compare three separate filtering strategies in their dumbbell-shaped simulator, achieving the highest accuracy
with Levenberg-Marquardt filtering. Bahu and Modenini out of the University of Bologna present a novel planar
balancing control law, utilizing BLS for system identification and balancing.23 Researchers from the University
of Brazil,24,25 the Brazil National Institute for Space Research,26 and the University of Science and Technology
of Hanoi27 also investigate this class of ACS for nanosatellite research purposes.

In this paper, we aim to design an air-bearing-based ACS for in-lab control, estimation, and machine learning
research. We take a relatively unique approach to this problem,28 making the balancing mechanism and the
mock satellite unit distinct from one another. To emulate a space environment as accurately as possible and
minimize passive forces due to gravity, the balancing process is automated. In achieving accurate balancing, the
validity of proposed methods are enhanced. Utilizing mass control and recursive system identification methods,
the system can be adaptively balanced such that a variety of nanosatellite configurations can be theoretically
tested without major system modifications. For example, varying sizes of satellites, or satellites that use different
actuation or sensing techniques can be fixed to the system and evaluated. Additionally, the system identification
will enable further understanding of the system, resulting in more accurate modeling. The applied method of
center of mass tuning is through translatable masses.

The remainder of the publication develops the system model and the mathematics of its function. Section
2 derives the ABS dynamics and Section 3 the proposed control and parameter estimation strategies. Section
4 defines the parameters of the experiment and system. Section 5 discusses the experimental results and their
implications, and Section 6 concludes the analysis, providing a summary of results and proposals for future
research avenues.
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2. ABS MODEL DERIVATION

The kinematic and dynamic relationships are established for the ABS in the following section. The system is
modeled as a rigid body capable of movement in three rotational DoF, in terms of a body frame B and the
inertial frame I, represented in Figure 1. The frame I is fixed in North East Down (NED) configuration at the
center of rotation (CoR) of the air-bearing and the frame B is centered at the system center of mass (CoM).
The kinematic equations consider the quaternion for attitude and evolve based on the angular velocity of the
system, The ABS dynamics are derived considering angular momentum H(t) and the system response due to
the translatable mass (or MMU) actuators, providing some control input u(t). Vectors are time-varying, t for
t ≥ 0.

Figure 1: NACS Coordinate System

2.1 Kinematics

The ABS attitude is defined by the quaternion q(t) ∈ R4, making the attitude expressible without trigonometric
functions or singularities. The rate of change equation for the quaternion is presented as Equation 1, where the
adopted convention expresses its identity as qI = [0 0 0 1]

T
.29

q̇(t) =
1

2

[
ωBI
B ⊗

]
q(t) (1)

Where ω(t) ∈ R3 is the angular velocity of the system about B with respect to I. The skew symmetric
matrices required for preserving the quaternion norm are also defined in Equations 2 and 3.

[
ωBI
B ⊗

]
=

[
− [ω×] ω(t)
−ω(t)T 0

]
(2)

[ω×] =

 0 −ωz(t) ωy(t)
ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

 (3)

2.2 Dynamics

The dynamics if the rigid body due to applied and inertial forces are formulated considering the net angular
momentum H(t) ∈ R3, as applied by others.19,23 The angular velocity ω(t) dynamics are obtained from this
relationship. The net momenta around the CoM c is most generally parameterized by Equation 4. Its derivative
is then presented as Equation 5, with respect to both the angular velocity and the angular momentum.
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Hc
B(t) = Jc

B(t)ω
BI
B (t) (4)

Ḣc
B(t) = Lc

B(t)− ωBI
B (t)×Hc

B(t)− J̇c
B(t) ω

BI
B (t) = Jc

B(t) ω̇
BI
B (t) (5)

Where Lc
B(t) ∈ R3 is representative of both internal and external torques acting on the system. The total

moment of inertia (MOI) matrix of the ABS is time varying due to the variable translatable mass positions,
expressed as Jc

B(t) ∈ R3×3.

Figure 2: A Visualization of the Offset Between Coordinate Systems

When considering the ACS under study, the influence of gravity must be accounted for as a disturbance.
In the unbalanced state, the CoM is misaligned with the air-bearing CoR, and the gravitational force applies
a torque to the system proportional to this offset. This concept is illustrated in Figure 2. The purpose of the
ABS is to utilize the translatable masses to tune the CoM to the CoR, making the offset between the two points,
rCM(t) ∈ R3, arbitrarily small and the gravitational torque negligible. We can redefine the system as Equation
6, considering the external and internal portions of Lc

B(t), Lg(t) ∈ R3 and Lu(t) ∈ R3 respectively.

Jc
B (t) ω̇BI

B (t) = Lg (t) + Lu (t)− ωBI
B (t)× Jc

B (t) ωBI
B (t)− J̇c

B (t) ωBI
B (t) (6)

It is typically considered that the rate of change of the MOI is small due to the speed capabilities of the
stepper motors in active balancing, and is therefore neglected. The MOI is defined as a function of the inertia
of the system without the masses, Jo ∈ R3×3, and the inertia of the masses in relation to the system CoM. The
system MOI is presented as Equation 7 below.

Jc
B (t) = Jo −

3∑
i=1

mm,i [ri(t)×] [ri(t)×] (7)

Where mi is the i
th translatable mass, and i ∈ {1, 2, 3} corresponds to the x, y, and z axes of B, respectively.

The vector ri ∈ R3 is the absolute position of the ith mass’ CoM in B, of the form ri = [rx,i ry,i rz,i]
T . For mi,

the ith element of ri is variable, where the other positions are constant and known, since a mass moves along a
single Cartesian axis. The disturbance torque on the system due to gravity is then defined as Equation 8. Note
how this term will go to zero once CoM/CoR alignment is achieved.

Lg (t) = rCM (t)×mtot gB (t) (8)

The constant mtot is the total mass of the system, i.e., mtot = msys + 3mi, where msys is the mass of the
system without the masses. gB(t) ∈ R3 is the gravity vector in the body frame B, expressed as the following:

gB (t) = RI
B (t) g k̂I (9)
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The constant g is the assumed gravitational acceleration of −9.81m/s2 and k̂I is the unit vector in the positive
z direction of the inertial frame I. To obtain the gravity in the body frame, the transformation matrix RI

B(t) is
applied to relate I and B. The transformation is defined as Equation 10, defined by Markley and Crassidis29 as
a function of the quaternion q(t). Note the quaternion elements of RI

B(t) are time-varying, excluded for brevity.

RI
B (t) =

 q21 − q22 − q23 + q24 2 (q1 q2 + q4 q3) 2 (q1 q3 − q4 q2)
2 (q1 q2 − q4 q3) −q21 + q22 − q23 + q24 2 (q2 q3 + q4 q1)
2 (q1 q3 + q4 q2) 2 (q2 q3 − q4 q1) −q21 − q22 + q23 + q24

 (10)

The offset vector rCM (t) is the distance between the CoR and CoM at time t. The system CoM is defined
in reference to the origin of the frame I and can generally be described as Equation 11 (for modeling). The
influence of the mass motion on the offset vector is also derived from 11, as Equation 12.23

rCM =
1

mtot

4∑
j=1

mj rj (11)

Where rj is the absolute position of each body’s CoM in the system relative to I and j ∈ {1, 2, 3, 4}. The
bodies in this case are the three translating masses (mm,1, mm,2, and mm,3) and the rest of the system msys.
The vector rm(t) is the variable position of the translatable mass in B.

∆rCM =
mm

mtot
∆rm (12)

The internal torque Lu(t) can represent the ABS or satellite actuators in this application. With active mass
movement for balancing as demonstrated in,19,23 a torque can be generated from their movement. For the
proposed estimation methods, however, the masses are not active and this term is zero. The utility of this term
will be demonstrated in Section 3.2 and 3.3, where the influence of the reaction wheels is considered.

3. PARAMETER ESTIMATION AND CONTROL

For the balancing of the system, there are multiple avenues that can be explored. Of the methods featured in
literature, balance in these systems is most commonly achieved actively or semi-actively. Active methods utilize
the xy plane balancing and subsequent online estimation and tuning of the z axis, whereas more passive methods
analyze a controlled or free response of the data, estimate the parameters, and move the masses to the next
iteration if off balance.

The following section will explore a few of these methods mathematically and apply them in Section 5. The
first method is an iterated process used by both Young21 and da Silva30 that determines and tunes rCM (t)
from free response data with a linear model-based Kalman filter (KF). The second method operates in the same
manner, instead utilizing controlled response data and producing inertial component estimation using a linearized
nonlinear model, and the extended Kalman filter (EKF).20,31 The third method estimates parameters using a
fully nonlinear model and the unscented Kalman filter (UKF),19,30 using controlled response data as with the
EKF.

3.1 rCM (t) KF Estimation from Free-Response Data

The method outlined by Young21 proposes a linear least squares approach to estimating the offset vector from
free-response data. However, in testing this method, it was observed that estimates were unreliable for large
system angular velocities, and the perturbations due to the air-bearing flow. Instead, we apply the KF to this
model, where to achieve knowledge of rCM from free response data, we must have sufficient knowledge of the
angular position and velocity. The diagonal inertial components are also required for computation, which can
immediately be noted as a disadvantage to applying this method. The linear model-based method is is defined
by Equation 13, the simplified equations of motion.
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ω̇ (t) =

 mg
Jxx

(−r CM,y cosφ cos θ + r CM,z sinφ cos θ)
mg
Jyy

(−r CM,x cosφ cos θ + r CM,z sin θ)
mg
Jzz

(−r CM,x sinφ cos θ − r CM,y sin θ)

 (13)

ωk+1 − ωk =


mgTs

Jxx

(
−r CM,y

(
(cφ cθ)k+1 + (cφ cθ)k

)
+ r CM,z

(
(sφ cθ)k+1 + (sφ cθ)k

))
mgTs

Jyy

(
−r CM,x

(
(cφ cθ)k+1 + (cφ cθ)k

)
+ r CM,z (sθk+1 + sθk)

)
mgTs

Jzz

(
−r CM,x

(
(sφ cθ)k+1 + (sφ cθ)k

)
− r CM,y (sθk+1 + sθk)

)
 (14)

Where ω̇(t) ∈ R3 is the angular velocity of the ABS, and φ and θ are the time-varying roll and pitch,
respectively. The total mass of the system mtot is represented here by m. The left side of the equation can
be discretized with the trapezoidal rule and expressed as Equation 14. The sampling interval is represented by
Ts, where for real applications with varying sampling, it is more correctly expressed as ∆Tk = tk+1 − tk. The
right side of the equation can be expressed linearly as ωk+1 = ωk + ϕ rCM , with the full equation as 15, and the
elements of the skew-symmetric matrix ϕ as 16. ωk+1

x

ωk+1
y

ωk+1
z

 =

 ωk
x

ωk
y

ωk
z

+

 0 ϕk12 ϕk13
ϕk21 0 ϕk23
ϕk31 ϕk32 0

 r CM,x

r CM,y

r CM,z

 (15)

ϕk12 = −mgT
2 Jxx

[
(cφ cθ)k+1 + (cφ cθ)k

]
ϕk13 = mgT

2 Jxx

[
(sφ cθ)k+1 + (sφ cθ)k

]
ϕk21 = mgT

2 Jyy

[
(cφ cθ)k+1 + (cφ cθ)k

]
ϕk23 = mgT

2 Jyy

[
(sθ)k+1 + (sθ)k

]
ϕk31 = −mgT

2 Jzz

[
(sφ cθ)k+1 + (sφ cθ)k

]
ϕk32 = −mgT

2 Jzz

[
(sθ)k+1 + (sθ)k

] (16)

For estimation of rCM , we apply the KF algorithm to this model. A discrete linear model is instead derived of
the form xk+1 = Fxk, where the KF can estimate rCM without input. The system matrix F ∈ Rn×n is defined
in Equation 17, which models the system motion and enables the offset vector to be estimated. The estimated
state vector x̂k ∈ Rn is composed of the angular velocity and offset vector x̂k = [ωk

x ωk
y ωk

z rxCM ryCM rzCM ],
where n = 6. Since rCM is not directly measurable, the measurement vector is represented as zk ∈ Rm, with
m = 3. Note then that the constant measurement matrix C ∈ Rm×n is represented as [I3×3 03×3].

xk+1 =

[
I3×3 ϕ
03×3 I3×3

]
xk (17)

The KF process is outlined thoroughly in Section 3.2 (Equations 21-28). The time-varying linearized system
matrix Ak is instead represented as F for this application, and the a priori estimate is computed with Equation
17, not as a nonlinear function considering input. The method can be applied to the system in linear time-
invariant (LTI) F or linear time-varying (LTV) Fk form. In the LTI system, the ϕ-matrix of Equation 17 is
linearized around the initial condition. This assumption is valid for small angular velocities ω, though there is a
trade-off between accuracy and computational speed. For balancing, the masses are iteratively moved after the
rCM estimation, governed by Equation 18. This equation is applied for each method. It was noted by Young21

and demonstrated by da Silva30 that increasing the data collection window allows for estimates to converge.

∆rm = −mtot

mm
rCM (18)
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3.2 rCM (t) and J EKF Estimation from Controlled-Response Data

Kim et al.20 alternatively proposed utilizing momentum exchange devices to estimate the entries of the MOI
matrix JB in addition to the CoM location w.r.t the CoR. This method overcomes the issue of having to have
knowledge of the system inertia, which changes every time the masses move. The method is computable having
knowledge of the reaction wheel velocity ωW and inertia JW , and the NACS angular position and velocity from
the IMU. Considering the off-balance ABS with momentum wheel actuation, we obtain Equation 19.

JB ω̇ (t) + ω (t)× JB ω (t) = −ḣ (t)− ω (t)× h (t) + rCM ×mtot gB (t) (19)

In this case, since the masses are not moving during data collection, JB and rCM are constant. The momentum
contribution due to actuation h(t) ∈ R3 is a function of the reaction wheel inertia Jw, velocity ωw(t), and
geometry mapping W4, as represented by Equation 20. The mapping is required when the RWA are not aligned
with principal axes and redundant configurations. The NACS utilizes a pyramidal configuration, where the
geometry was defined for the setup by Hill et al.32 and Newton et al.33,34

h(t) =W4 Jw ωw(t) (20)

Where Kim et al. apply a least squares method, Xu et al.31 approach rCM and J parameter estimation
through their EKF method. Validated in,30,31 the estimation of immeasurable parameters in this manner was
proposed as an alternative to linear filtering or batch approaches. The standard recursive EKF algorithm is
applied, where the nonlinear model f(x(t),u(t)) is utilized to determine the a priori state x̂k+1|k ∈ Rn and state
error covariance Pk+1|k ∈ Rn×n. For the application, n = 12, as the selected state vector is x = [x1 x2]

T , where
x1 = [ωx ωy ωz]

T and x2 = [Jxx Jyy Jzz Jxy Jxz Jyz mrCM,x mrCM,y mrCM,z]
T . Recall the total mass of

the system mtot is denoted here for brevity as the constant parameter m and ω(t) ∈ R3 is the rotational velocity
of NACS in the frame B. Equations 21 and 22 outline the a priori process.

x̂k+1|k = f
(
x̂k|k ,uk

)
(21)

Pk+1|k = Ak Pk|k A
T
k +Qk (22)

The system noise covariance Q ∈ Rn×n is assumed constant and known. The time-varying linearized discrete
system Ak ∈ Rn×n is determined as the first-order Jacobian of the nonlinear function ∂F (x,u) /∂x. The
nonlinear model of the unbalanced system is presented as Equation 19, augmented in 23, linearized in 24.31[

ẋ1 (t)
ẋ2 (t)

]
=

[
f (x (t) ,u (t))

0

]
= F (x (t) ,u (t)) (23)

Fk =

 Ts

[
∂

∂ωk
fk

]
3×3

Ts

[
∂

∂Jk
fk

]
3×6

Ts

[
∂

∂m rk
fk

]
3×3

06×3 I6×6 06×3

03×3 03×6 I3×3

 (24)

The linearization step can be performed with either a diagonal or complete MOI matrix JB . The trade-off
between computation time and accuracy is again considered, where their difference is analyzed in Section 5.
The correction process of the EKF is outlined in the following Equations. The a posteriori portion updates the
estimates based on the measurements with the gain Kk+1 ∈ Rn×m, decreasing the estimation variance.

Sk+1 = Ck+1 Pk+1|k C
T
k+1 +Rk+1 (25)

Kk+1 = Pk+1|k C
T
k+1 S

−1
k+1 (26)

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
zk+1 − Cx̂k+1|k

)
(27)

Pk+1|k+1 = (I −Kk+1 Ck+1) Pk+1|k (I −Kk+1 Ck+1)
T
+Kk+1 Rk+1 K

T
k+1 (28)
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The a posteriori estimated state and state error covariances are denoted x̂k+1|k+1 and Pk+1|k+1, respectively.
The innovation and measurement noise covariances are Sk+1 ∈ Rm×m and Rk+1 ∈ Rm×m, where m is the
measurement vector zk+1 ∈ Rm dimension, m = 3. The measurable states are the angular velocity ω(t) via IMU.
Since immeasurable parameters are being estimated, the measurement matrix C ∈ Rm×n is not identity and is
instead represented by C =

[
I3×3 03×9

]
.

3.3 rCM (t) and J UKF Estimation from Controlled-Response Data

Using the EKF, the linearized time-varying system is applied for the a priori state error covariance. This
assumption is usually valid for satellites and provides accurate results, as the nonlinearities of small-scale satellites
due to non-diagonal inertia matrices are minimal. However, in estimating very small quantities, implementing a
nonlinear model into the estimation process should result in increased accuracy. da Silva30 implements the UKF
in their research because of this, augmenting the recursive EKF process outlined in Section 3.2. The UKF is
applied based on the process outlined in,35 which linearizes the nonlinear model statistically. Sigma points are
derived from the projected probability distribution of the state, which are then propagated through the nonlinear
model to obtain an estimate of the mean and covariance of the estimate.

The UKF assumes that the n-dimensional random variable x with mean x̂ and covariance P can be approx-
imated from 2n + 1 sigma points.35 The sigma points X ∈ Rn×2n+1 and their weights W ∈ R1×2n+1 must be
generated at the start of each time step based on the current state estimate x̂k|k and state error covariance Pk|k.
Recall their dimensionality from Section 3.2. The initial points are determined from Equation 29 and 30.

X1,k|k = x̂k|k (29)

W1 =
κ

n+ κ
(30)

Where the tunable parameter κ ∈ (0, 1). The first n number of sigma points (i = 2 to i = n+ 1) are defined
from Equations 31 and 33. Note that Pi,k|k is the ith column of Pk|k and Wi is the weight of the ith sample
point. The remaining n sigma points (i = n + 2 to i = 2n + 1) is then defined with Equation 32, where the
weight equation is unchanged.

Xi,k|k = x̂k|k +
√
(n+ κ)Pi,k|k (31)

Xi+n,k|k = x̂k|k −
√
(n+ κ)Pi,k|k (32)

Wi =
1

2 (n+ κ)
(33)

The sigma points at the next time step X̂ ∈ Rn×2n+1 are then estimated by propagation through the nonlinear
model, with Equation 34, and the weights are used for a priori state estimation, governed by Equation 35. The
state error covariance can then be determined by Equation 36.

X̂i,k+1|k = f
(
Xi,k|k , uk

)
(34)

x̂k+1|k =

2n∑
i=0

Wi X̂i,k+1|k (35)

Pk+1|k =

2n∑
i=0

Wi

(
X̂i,k+1|k − x̂k+1|k

)(
X̂i,k+1|k − x̂k+1|k

)T

+Qk (36)

To predict the measurements, the sigma points are then propagated through the measurement equation
zk+1 = Cx̂k+1|k, which is for our application linear. Equation 37 and 38 compute this as follows.
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Ẑi,k+1|k = C X̂i,k+1|k (37)

ẑk+1|k =

2n∑
i=0

Wi Ẑi,k+1|k (38)

Recall the C matrix defined in Section 3.2. The innovation covariance Pzz ∈ Rm×m is then determined by
Equation 39.

Pzz,k+1|k =

2n∑
i=0

Wi

(
Ẑi,k+1|k − ẑk+1|k

)(
Ẑi,k+1|k − ẑk+1|k

)T

+Rk+1 (39)

The cross-covariance Pxz ∈ Rn×m can then be computed as Equation 40, representing the covariance between
the estimate and measurement.

Pxz,k+1|k =

2n∑
i=0

Wi

(
X̂i,k+1|k − x̂k+1|k

)(
Ẑi,k+1|k − ẑk+1|k

)T

(40)

The Kalman gain Kk+1 is then determined with the cross and innovation covariances as follows, with the a
posteriori equations as Equations 42 and 43.

Kk+1 = Pxz,k+1|k P
−1
zz,k+1|k (41)

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
zk+1 − ẑk+1|k

)
(42)

Pk+1|k+1 = Pk+1|k −Kk+1Pzz,k+1|k K
T
k+1 (43)

The same state vector for estimation is applied as in Section 3.2, where the nonlinear model F (x (t) ,u (t))
is defined in with Equations 19 and 23.

4. METHODOLOGY

For the validation of balancing methods outlined in Section 3, we utilize the NACS experimental setup presented
in Figure 3. For the parameter estimation methods that require control input to the system, a trajectory-tracking
attitude control maneuver is applied. In having a time-varying trajectory the system must track, there is an
internal change in momentum due to the actuators, and excitation due to a disturbance is not required.

The NACS experimental setup is divided into two main subsystems: the mock CubeSat unit and the ABS.
The stand can also be considered as a key system, though currently only provides remote controllability to the
air valve, and is not part of the analysis. The system is an air-bearing simulator with a range of motion of
±30◦ in the pitch and roll axes and ±360◦ in the yaw. The air pressure is regulated to approximately 14.5
psi loaded, experimentally determined to be the minimum pressure that does not cause binding or excessive
planar perturbations. The CubeSat unit is fixed to the ABS and able to be removed. With this mechanism, the
performance of different units can be evaluated in a modular fashion.

Previously discussed, the purpose of the ABS is to use its translatable masses to iteratively tune the system
center of mass to be near coincident with the center of rotation, minimizing the occurrence of external torques
due to gravity on the system. The masses are driven along a lead screw, where their position is bounded by
their fixtures. An open-loop scheme is utilized for position control, where limit switches are applied for hard
stops. Implementing encoders into the design is not necessary for iterative balancing, where motors are being
moved a predetermined number of steps per cycle, bu would be crucial for an active balancing procedure. A
NEMA 8 stepper motor rotates the screw, controlled by a TMC 2209 driver and Arduino. Figure 4 presents the
MMU module, mounted on each principal axis. The electronics of the ABS are configured on a custom PCB.
The ABS receives motor direction and pulse commands via Bluetooth from the on-board computer (OBC) of
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Figure 3: Nanosatellite Attitude Control Simulator

the CubeSat unit, calculated as a function of the estimated rCM (Equation 18), based on the data obtained in
an experiment. Note that for the results presented in this paper, this computation was executed on another PC
for simplicity in extracting and processing data incrementally. The system configured to operate in the proposed
manner, offering increased efficiency.

The mock CubeSat is responsible for performing the attitude control maneuver. Two LiPo batteries supply
power to the OBC and actuators, which are in this case reaction wheels. The ESCON 24/2 motor drivers controls
and senses the velocity of the four reaction wheels. The inertia of the reaction wheels was also estimated by the
ESCON software, discussed in.36 For attitude and motion feedback, the VN-100 IMU is utilized, and control
operations are computed by the Raspberry Pi 3A+ OBC. In Figure 5, a high-level diagram of the interaction
between the two systems is provided, visualizing the flow of power and information.

Figure 4: MMU Sub-System

For the experiments, the system was balanced manually as accurately as possible through observing its
stationary elevation before the balancing trials were conducted, reducing the total trials. The attitude control
routine is then performed , where the estimation of the offset vector is used in Equation 18 to determine mass
movements. The process is iterated until the misalignment vector converges to a predetermined magnitude. In
literature,23 the residual torque was desired to be reduced to 1× 10−6Nm, with the associated stopping point of
rCM = 3× 10−7m. This is theoretically almost obtainable, where one pulse of the stepper motor is equivalent to
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1×10−5m movement, or a change in rCM of 4×10−7m. Sensor/process noise and imperfections in the estimation
might affect this however. The stopping point for the experiment is when the calculated pulses reach zero, where
the calculated movement falls below the 1 × 10−5 threshold (rounding down). The experiment procedure is
repeated for each estimation method. Before data collection, the system must be stabilized sufficiently, where
calculations assume no initial input torque. This is most crucial for the KF method of estimating rCM , as the
method was demonstrated as ineffective for a non-zero initial condition in velocity and pitch/roll.

Figure 5: NACS High-Level Electronics Diagram

For the parameter estimation methods, the mass of the system and wheel inertias must be known, determined
as 3.3852 kg and Jw = [2.17 1.58 1.55 2.06]T × 10−5 kgm2, respectively. For the KF method, the system
inertia JB must also be known, which contributes to its inaccuracies. For attitude control u(t), a proportional-
derivative (PD) controller (Equation 44) is implemented, with experimentally determined gains of Kp = 0.4 and
Kd = 0.075.

u (t) = −Kp sign (q4 (t)) q1:3 (t)−Kd ω
BI
B (t) (44)

The measurement and system noise covariance matrices R and Q were assumed constant for the EKF. For
R the diagonal entries were estimated to be the variance values reported in the VN-100 IMU and ESCON 24/2
data sheets. The output voltage variance of 2.42 × 10−3 V was applied for the reaction wheels, and for the
quaternion and body angular velocity, the gyroscope variance values of 3 × 10−6 rad2/s2 were implemented.
Choosing Q was completed by trial and error, separately for simulation and experiment datasets. The attitude
control experiments were run for 4800 iterations, approximately 480 seconds.

5. EXPERIMENTAL RESULTS

5.1 Simulation Estimation Results

To verify the effectiveness of the methods outlined in Section 3, datasets of controlled and un-controlled system
responses are generated. For the simulation, the desired parameters JB and rCM are known, where convergence to
these values will verify the method for utilization in the balancing procedure. The simulations were programmed
in Matlab at a 0.1 second sampling rate for 10000 iterations to observe convergence. The gyroscope variances
described in Section 4 were applied for R. The total inertia JB was determined from Equation 7, where J
was approximated with the Solidworks model. The offset vector was also determined from this model if the
masses were placed at the zero of their respective axes. System noise covariances were determined through trial
and error, and are broken up by the angular velocity Qω ∈ R3×3, principal inertia QJ ∈ R3×3, off-diagonal
inertia QJ× ∈ R3×3, and offset vector Qmr ∈ R3×3. For the KF method, instead of Qmr, Qr is applied. These
parameters are presented below.

rCM = [−7. 0381 − 7. 5656 − 9. 3773]× 10−4 m (45)

Qω = 3× 10−9 I3×3 rad2/s2 QJ× = 3× 10−9 I3×3 kg2 m4 Qr = 5× 10−12 I3×3 kg2 m4

QJ = 3× 10−9 I3×3 kg2 m4 Qmr = 3× 10−12 I3×3 kg2 m2 (46)
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J =

 0. 0218 −0. 0023 −2. 62× 10−4

−0. 0023 0. 0316 −4. 05× 10−4

−2. 62× 10−4 −4. 05× 10−4 0. 1729

 kg m2 (47)

For the KF method with the linear model, we can either consider the LTI or LTV case, where both are
plotted as Figure 6. The dotted lines represent the constant true value. The KF method does not consider
external input, so free response data is utilized with stable initial conditions and small angular velocities. The
LTI KF does not converge to the true rCM , where the z component is constrained to its initial condition, the
y component oscillates heavily about its initial condition, and the x component converges to zero with slight
oscillation. The LTI assumption is therefore not suitable for the application, resulting in significant error. Figure
6b shows the LTV KF simulation results, which show stochastic convergence to a value with an average error
of approximately ±0.1 mm. Note for the plots, the blue, red, and yellow data lines represent the x, y, and z
components of rCM , respectively.
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(b) LTV KF Estimation

Figure 6: Kalman Filter rCM Estimation

For the EKF method, we linearize a nonlinear equation that describes the motion of the system with some
imbalance. With this method as well, we can consider either the simplified or complex linearization, where there
is a tradeoff between accuracy and computation. A controlled response is simulated, and the data from the
trajectory tracking attitude control scenario is used for validation of this method. The same data set is used for
the UKF as well. Figure 7 and 8 presents the performance of each respective method, for the estimation of rCM

and J . Note for the plots, the blue, red, and yellow data lines represent the x, y, and z components of both
rCM and principal J elements. It was observed that the simplified EKF produced unreliable estimates, where
its process was sensitive to noise and in some cases resulted in unstable behaviour on one or more axes. The
off-diagonal element estimation of the simplified EKF was also unsuccessful, where its change was due to noise.
The complex EKF was demonstrated to be much more effective, estimating parameters with minimal error.

The UKF method does not require linearization, such that the full nonlinear equation can be leveraged. The
performance of the UKF is presented in Figure 9 for rCM and J . The UKF is demonstrated to be similar in
performance when compared to the complete EKF, where convergence occurs slightly faster and overshoot is not
as prevalent in the estimation of diagonal J elements. The difference in accuracy of convergence to the true value
is essentially negligible. The similarity is due in part to the linearization with respect to all J in the EKF so
they are related to the output, resulting in near matched dynamics. The computation time of the EKF method
was observed to be slightly faster than the UKF for the simulated data.

Tables 1 and 2 highlight the results of the simulations for the simplified and complex EKFs and the UKF. The
average value that was converged to is recorded for the offset vector and MOI elements, along with the sum of the
mean absolute error (MAE) and the average percent error of the converged values. The estimated parameters
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Figure 7: Extended Kalman Filter rCM Estimation
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Figure 8: Extended Kalman Filter J Estimation
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Figure 9: Unscented Kalman Filter rCM and J Estimation
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were determined by the average of values after convergence, at approximately 500 seconds. All results were the
average of 10 trials, where results differed in each simulation due to noise.

Table 1: rCM Estimation of Simulated Data Results (m)

rCM,x rCM,y rCM,z ΣMAE % Error

3J-EKF -0.0007036034397 -0.0007538757215 -0.0009577965876 0.006147272212 0.84123

6J-EKF -0.0007042708127 -0.0007563962197 -0.0009332632154 0.005586199715 0.19707

UKF -0.0007045854933 -0.0007564524897 -0.0009334177078 0.005497240483 0.18518

Table 2: J Estimation of Simulated Data Results (kgm2)

Jx Jy Jz Jxy Jxz Jzy ΣMAE % Diag. Error % Off. Error

3J-EKF 0.0260002 0.0253788 0.1766550 0.0003517 0.0025317 0.0053324 0.0468479 13.71022 992.42589

6J-EKF 0.0230196 0.0321004 0.1724882 -0.0023685 -0.0009641 -0.0002785 0.0156387 2.56214 49.10934

UKF 0.0229490 0.0320774 0.1724407 -0.0027390 -0.0008392 -0.0002998 0.00992007 2.42072 46.88868

5.2 Experiment Estimation Results

For experiments, the LTV KF, full EKF, and UKF are applied for parameter estimation in the balancing process,
based on their demonstrated effectiveness in Section 5.1. To further validate these methods, they can be applied
to free and controlled response data sets. Since the true values are not known, the methods can be categorized as
successful if they converge to values for varying initial P and a bounded range of Q and R, and they are consistent
with each other. The NACS was balanced manually to a satisfactory degree, and data was collected for some
unknown mass positions. The data was processed in Matlab, using similar scripts as in Section 5.1. Observing
the parameter estimation effectiveness on real data beforehand is also important in determining the system noise
covariance for possible online estimation. The determined Q values for the experiments are presented below.
To ensure convergence, experiments were performed for 4800 iterations at a sampling rate of approximately 0.1
seconds. Other model parameters and general operation are described in Section 4.

Qω = 3× 10−9 I3×3 rad2/s2 QJ× = 3× 10−10 I3×3 kg2 m4 Qr = 3× 10−12 I3×3 kg2 m4

QJ = 3× 10−10 I3×3 kg2 m4 Qmr = 3× 10−12 I3×3 kg2 m2 (48)

The results suggest the system’s rCM components are very small in the x and y axes, where the z component
is small but sufficiently unbalanced. The magnitude of the planar values is expected considering the fine manual
balancing conducted beforehand. The relatively large z component is also expected, since manual tuning of this
axis can only be performed after observing the error in a trajectory tracking scenario, or skillful observation of
pendulum behaviour. The utility of an automatic balancing system is reinforced by this aspect. The estimation
of J is difficult to verify, though it can be concluded that the converged values are reasonably accurate based
on similarity with model values and intuition. In choosing Q, convergence with minimal noise only occurred for
the QJ , QJ×, and Qmr presented as Equation 48. Qω determined the magnitude of converged principal values,
where off-diagonal elements were generally consistent for the stable range. From simulations and the form of
the NACS, it should be expected that Jxx and Jyy should be similar, with Jzz much larger. The chosen Qω lied
within the stable range and exhibited this behaviour, where stable values differing by a factor of 10 did not. The
experimental J is close to the simulated value, expected to be significantly larger in x and y due to an update
to the arm lengths. The rCM and J estimation of the NACS are presented in Figure 10 and 11.

Overall, all methods estimated x and y components of the offset vector with comparable accuracy, featuring
slight oscillations. The KF was not able to converge to the true z component reliably, where the UKF and EKF
performed equally as well. The insufficient performance of the KF could be the result of neglecting nonlinearities
in the model or a slight acceleration in the data observed in the z axis rotation. As previously mentioned,
the initial condition also affects performance, were large velocities or inclinations result in unstable behaviour.
Generally, the UKF converges slightly faster than the EKF.
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Figure 10: rCM Estimation Results
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Figure 11: J Estimation Results
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5.3 Experiment Balancing Results

With the parameter estimation methods validated using experimental data, the balancing procedure can be
conducted. From Tables 1 and 2, and Figure 10, it can be observed that the difference in performance between
the most accurate methods, the Full-J EKF and UKF, is minimal. Therefore, for the balancing process, only
the UKF will be implemented. The initial iteration of the system was roughly balanced, and the movement of
the center of mass across iterations is visualized in Figure 12.
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Figure 12: rCM Across Balancing Iterations

It was observed from the experimental data that the prediction of J did not always converge to expected
values each iteration, where the offset vector estimation did not experience this effect. Increasing Qω assisted in
reducing noise and maintaining J convergence as the trials increased. However, due to the actuator saturation in
later tests, the final predicted MOI is inconclusive. It was generally observed that the principal values appeared
to lie around the model and initial estimates. The iterative balancing process took 12 trials, with a final achieved
rCM magnitude of 1.43× 10−5 m, resulting in a residual torque of 4.84× 10−5 Nm.

Because the filter converges to estimated values for large offsets (greater than 2 mm) after approximately 400
seconds, this method of balancing is not the most efficient in practice. As the system becomes more balanced,
saturation of the actuators was also observed occasionally around this point in the experiment, resulting in
decaying estimation quality. Although, as the system becomes more balanced, time for convergence decreases as
well. Having the CoM lower than the center of rotation induces oscillations, but also reduces the torque that the
actuators must produce. Regardless of inefficiency, the method is quite effective in tuning z, which is difficult
to do visually, and fine tuning x and y. Increasing the sampling rate of the system could also result in faster
convergence of the filter.

The performance of the system after the balancing procedure that is achieved is greatly improved from an
attitude control perspective. This is exemplified in Figure 13, where the controlled response on the left shows
heavy oscillations around the trajectory, as a result of a variable torque with the system’s changing inclination.
The system here is reasonably balanced in x and y, but offset by about 2.5 mm in positive z. Offsets in this
direction are stable but induce tracking error, where offsets in negative z produce an unstable inverted pendulum
effect. In contrast, the balanced system’s response features almost no oscillation, tracking the desired trajectory
tightly. Note the trajectory waveforms are the same in ψ, where the difference observed is due to initial condition.

Additionally, the period of oscillation in free responses can be analyzed to further validate the reduction
in rCM . Young21 uses the pendulum analogy, where Chesi19 uses energy methods. Here, we employ Young’s
method and compare the oscillations before and after balancing, presented in Figure 14. Using Equation 49, we
can roughly determine the magnitude of the offset vector, with some knowledge of the principal inertia in the
ith axis and system mass, by disturbing the system on the ith axis. Recall that m represents the mass of the
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Figure 13: Balanced and Unbalanced System Attitude Control Performance

system, g is is the constant gravitational acceleration, and the period of oscillation is T in seconds. Choosing
the y axis, Figure 14 indicates the improvement, increasing the period of oscillation from 4.5 to 16 seconds after
disturbance, which correspond to approximate rCM magnitudes of 1 × 10−3 m and 7.9 × 10−5 m. This is an
approximation, due to the motion not being purely on a single axis.

T = 2π

[
mg |rCM|

Jii

]−1/2

→ |rCM| = 4π2 Jii
mg T 2

(49)
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Figure 14: Balanced and Unbalanced Period of Oscillation

6. CONCLUSION

In this paper, several estimation strategies were applied to a nanosatellite attitude control simulator for accurate
estimation of unmeasureable parameters, quantifying setup uncertainties. The utility of in-lab attitude control
simulation was highlighted as being useful in system and algorithm design, mitigating performance issues in
uncertain environments. The air-bearing class of simulator was thoroughly discussed, where each use different
methods for determining the system inertia, and CoM relative to the CoR. The satellite system model with
actuation and unbalanced was outlined, along with the KF, EKF, and UKF under analysis.
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The identification of simulator system parameters was crucial for determining the level of unbalance in the
system, such that it can be corrected. The unbalance of the system is directly related to the controller performance
and efficiency, as well as the congruency between the simulator and a real satellite environment. Determining
these parameters also improves modelling accuracy for computational simulations. Parameter estimation with
the KF, EKF, and UKF was validated first by simulated data, where convergence to the known true parameters is
easily verifiable. Different formulations of the KF and EKF were tested, where less generalized models performed
better. The effective methods were then tested using attitude and motion data from an unbalanced system, where
the complex EKF and UKF were able to successfully estimate the offset vector and MOI, with unknown accuracy.
The difference in performance between the two was determined to be negligible. The UKF was then applied
for the balancing process, where an initially unbalanced system was iteratively balanced through parameter
identification and mass movement between data collection trials. The system was determined to be balanced at
the end of the experiment from the estimation, which validated by analyzing the improvement of the controlled
and free response of the simulator. The final offset vector was estimated to be approximately 1.43× 10−5 m in
magnitude, resulting in a residual torque of 4.84× 10−5 Nm. The final results of J were inconclusive.

The methods presented in this paper were effective in balancing and estimating parameters, but the length
of the experiments required for convergence were limiting. Future research can involve the active balancing
methods explored by Chesi19 and Bahu,23 where planar balancing in the x and y axes is instead performed
online through attitude feedback control of the masses. This would theoretically streamline experiments. The
investigation of other nonlinear estimation strategies, such as particle filters or cubature Kalman filters, could
also be a possible avenue, along with identification of other parameters, such as reaction wheel inertia. Machine
learning methods focused around system identification, such as physics informed neural networks (PINNs), could
also be investigated for the application. In addition, closed loop mass position control is a necessary inclusion
towards planar balancing, and testing the applicability for varying satellite sizes would serve as a proof of concept
for the design.
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