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ABSTRACT

Nonlinear Gaussian filters have traditionally used cubature rules and/or Gaussian quadrature to compute mul-
tidimensional expectation integrals recursively, which provide mean and covariance estimates of the state and
state error, respectively. Minimal and near minimal-point filters attain moderate accuracy while avoiding the
so-called “curse of dimensionality”, but their accuracy can diverge over time. Recent trends in cubature-based
filtering have opted for more evaluation points to increase accuracy at the cost of higher computational overhead,
while still avoiding the dreaded curse. These methods use more complex and higher-degree cubature rules. The
present work, contrary to recent trends, uses a quadrature method other than that of the Gaussian variety.
Double exponential quadrature is used to achieve high levels of relative accuracy with a moderate number of
evaluation points, rivalling that of current state-of-the-art Gaussian filters and the best-in-class Gauss-Hermite
filter.

Keywords: Nonlinear filtering, Gaussian filtering, Kalman filtering, Cubature Kalman filter, Double exponential
quadrature

1. INTRODUCTION

Gaussian filtering is the estimation of hidden states and/or parameters of a nonlinear dynamic system subjected
to Gaussian noise processes from uncertain measurements. Contributions to the field of estimation date back
to the fifteenth century, but much of the modern literature on Gaussian filtering, in particular filtering from a
Bayesian perspective, occurred within the last 30 years.1 The Bayesian paradigm of filtering includes calculating
the conditional a posteriori probability density function (PDF) of the state. This is done in a two-step recursive
algorithm that uses the a priori PDF of the state. In most cases these calculations are intractable. However, for
assumed Gaussian noise processes, the calculations reduce to computing multidimensional expectation integrals,
or identically, multidimensional Gaussian-weighted integrals.

The classical filters that recursively compute these multidimensional integrals include the unscented Kalman
filter (UKF),2 the quadrature Kalman filter3,4 otherwise known as the Gauss-Hermite filter (GHF), and the
cubature Kalman filter (CKF).5 All of these filters share the fact that they propagate a set of points and
weights through a nonlinear function as a method to approximate multidimensional expectation integrals. The
points and weights are carefully constructed in order to achieve the best possible accuracy. Some methods
achieve this through moment matching, i.e., matching various orders of statistical moments of the underlying
distribution. Other methods do this using numerically accurate quadrature or cubature rules, i.e., numerical
integration methods. For instance, the UKF was designed from a moment matching perspective; however, it is
also a special case of the CKF which uses a cubature rule. In the present work, we focus on quadrature and
cubature-based filters, but include some state-of-the-art moment matching filters as well.

The GHF is constructed from a Cartesian product of Gauss-Hermite quadrature points and weights.3 Al-
though the GHF is very accurate, it is susceptible to the curse of dimensionality, and thus the sparse grid GHF6

was developed in an attempt to overcome it. The CKF applies a third-degree spherical-radial cubature rule to
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compute the expectation integrals with a minimal number of evaluation points.5 In fact, the cubature rule can
be seen as a combination of a cubature rule and a first-degree (single point) quadrature rule. The high-degree
CKF (HDCKF) uses a fifth-degree cubature rule to attain higher accuracy at the cost of more evaluation points,
but also opens the possibility of negative weights.7 The cubature-quadrature Kalman filter (CQKF) generalizes
the CKF by applying the same cubature rule, but extends the quadrature rule to an arbitrary degree.8 Other
generalization of the CKF include the seventh-degree CKF,9 high-degree CQKF,10 and the generalized cubature
quadrature Kalman filter.11 The lattice Kalman filter employs a quasi-Monte Carlo integration technique called
lattice rules.12 A filter based on the conjugate unscented transformation (CUT) applies a cubature rule designed
to compute arbitrarily high moments of a Gaussian distribution using fewer points than the GHF. The CUT
filter has been shown to achieve higher accuracy than a particle filter using 5000 sample points.13

Beyond achieving the best possible accuracy, filters must also be robust. This includes robustness to initial
conditions, measurement outliers, model uncertainties, disturbances, etc. Robust filtering methods include the
Sliding innovation filter (SIF),14 adaptive SIF,15 alpha SIF,16 and the robust variant of the lattice Kalman
filter, the sliding innovation lattice filter.17 Robust filters allow for accurate state and parameter estimation
in application such as cognitive dynamic systems,18 target tracking,19 fault detection for a magnetorheological
damper,20 and preload loss detection in a ball screw feed drive.21

In this work, a filter is proposed that uses a unique quadrature method known as double exponential (DE)
quadrature. The theory of double exponential quadrature is briefly presented next. This is followed by an
overview of Bayesian filtering and how DE quadrature can be used to compute multivariate Gaussian-weighted
integrals. Afterwards, the proposed filtering algorithm is outlined. A benchmark example of a range and bearing
target tracking simulation is presented. Lastly, a brief conclusion summarizes the findings of this work.

2. DOUBLE EXPONENTIAL QUADRATURE

Gaussian quadrature has received much attention and practical use in research, and is indeed an elementary
subject in many introductory numerical methods textbooks too. However, one need only combine a variable
transformation with the simple trapezoidal rule to arrive at a family of powerful quadrature formulae. These
quadrature formulae are called double exponential quadratures and have several advantages including: robust-
ness against endpoint singularities, double exponential decay of the integrand, geometric convergence of the
approximation error, and, in a sense, are optimal.22–24 In addition, the weights and points are easily evaluated.
Before DE quadrature is presented, we briefly review quadrature, otherwise known as numerical integration.

A quadrature formula is used to calculated the integral of a function f(x) of the form

I(f) =

∫
Ω

ω(x)f(x) dx, (1)

where ω(x) is a weight function and Ω is the domain of integration. A quadrature formula IN is an approximation
to the integral I(f) in (1),

IN ≈
N∑
i=1

wif(xi), (2)

where xi are the evaluation points (or nodes), wi are the weights, and N is the total number of nodes. Gaussian
quadrature takes the xi to be the roots of certain orthogonal polynomials. Together the xi and wi are determined
by solving a system of nonlinear equations called moment equations. See Ref. 25 for a classic text on the subject.

In the context of recursive estimation and filtering, we aim to solve multivariate expectation integrals of the
type

E [f(x)] =

∫
Rn

f(x)N (x;µ,Σ) dx, (3)

where f(x) is a vector-valued function of the state vector x, the weight function is now a multivariate normal
distribution with mean µ and covariance Σ represented by N (x;µ,Σ), and Rn is an n-dimensional vector space.
The integral (3) can be solved using a Cartesian product of quadrature formulae as in the GHF.3 However, the
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number of function evaluations grows exponentially with the state dimension n. A more efficient solution is to
use a cubature rule as in the CKF and its variants5,7–11 or the CUT filter.13

The family of double exponential quadratures include formulae for finite domains, the half-infinite interval,
and the infinite interval.22,26 These methods were designed with the intention of integrating functions with
endpoint singularities, i.e., the integrand is singular at one or both bounds of integration. This is achieved
through a variable transformation that causes the integrand to decay at a “double exponential” rate in both
directions of the real line. As such, the DE transformations map an infinite domain into the original domain of
integration. DE quadrature sees most of its use in experimental mathematics to calculate quantities with extreme
precision, and has been shown to outperform Gaussian quadrature in accuracy and runtime performance.27 The
method has also been extended to multiple integration28 and in the computation of multivariate integrals with
endpoint singularities.29–31 A comparison of the distribution of sample points for DE quadrature and Gauss-
Legendre quadrature over the interval [−1, 1] is shown in Fig. 1. DE quadrature places more points towards the
endpoints of the interval which allows for improved accuracy when faced against endpoint singularities.

Figure 1. Distribution of the sample points (nodes) for the double exponential variable transformation and Gauss-
Legendre quadrature over the interval [−1, 1].

As is required by the proposed filter in Sec. 3, the domain of integration will be restricted to the half-infinite
interval Ω = (0,∞) and the weight function will be ω(x) = exp(−x). Thus, we are approximating the integral

I(f) =

∫ ∞

0

f1(x)e
−x dx. (4)

DE quadrature maps the original domain of integration (0,∞) to the whole real line (−∞,∞) through a variable
substitution:

I(f) =

∫ ∞

−∞
g(t) dt, g(t) = f(Ψ(t))Ψ′(t), (5)

where f(x) = f1(x)e
−x as in (4). The transformed integrand g(t) decays double-exponentially over the real line.

The trapezoidal rule is most efficient among quadratures with equidistant evaluation points for exponentially
decaying integrands.32–34 Thus, let the set of uniformly spaced points be denoted as

t = {ih | i = ±1, 2, . . .}, (6)

where h is the step size or spacing between the points. The DE transformation for the integral (4)26 is

xi = Ψ(ti) = exp(ti − exp(−ti)) (7)

Ψ′(ti) = (1 + exp(−ti)) exp(ti − exp(−ti)). (8)

If we truncate t at i = ±n, we get the DE formula

IN =

n∑
i=−n

hf(Ψ(ti))Ψ
′(ti), (9)
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and the total number of evaluation points is N = 2n+ 1. An optimal step size can be selected as a function of
n by equating the discretization error and truncation error of the quadrature method.32,33 The step size is then

h(n) =
2

N
W(πN), (10)

where W(z) is the Lambert W-function which is an implicit solution to z = wew for w.

The DE quadrature method given by Equations (6), (7), and (8), and the optimal step size in Equation (10),
will be used to derive the proposed filter.

3. FILTER FORMULATION

Consider a discrete, nonlinear dynamic system and measurement model with additive Gaussian noise given by
the difference equations

xk = f(xk−1) + wk−1

yk = h(xk) + vk ,
(11)

where k is the discrete time step, xk ∈ Rn is the state of the dynamic system, yk ∈ Rm is the measurement, f
is the process model, h is the measurement model, wk−1 ∈ Rn is Gaussian process noise with covariance Qk−1,
and vk ∈ Rm is Gaussian measurement noise with covariance Rk. It is assumed that the noise vectors wk and
vk are zero mean and uncorrelated.

3.1 Bayesian Filtering

In Bayesian filtering theory, the posterior density of the state gives a complete statistical description of the state.
Upon receiving a measurement at time step k, the posterior density of the state at time k− 1 is updated in two
steps: the time update and the measurement update. For Gaussian noise processes, the update steps reduce to
computing the means and covariances of both the predictive (prior) density and posterior density of the current
state. These computations are in the form of Gaussian-weighted integrals over Rn.

1. Time Update
The mean of predictive density x̂k|k−1 and the error covariance Pk|k−1 are computed as

x̂k|k−1 = E [f(xk−1)|y1:k−1]

=

∫
Rn

f(xk−1)N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1, (12)

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T |y1:k−1

]
=

∫
Rn

f(xk−1)f
T (xk−1)N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1, (13)

where y1:k−1 is the sequence of measurements for times k = 1, 2, . . . , k−1 and N (·, ·) represents a Gaussian
density.

2. Measurement Update
The measurement likelihood density is given by

p(yk|y1:k−1) = N
(
yk; ŷk|k−1, Pyy,k|k−1

)
, (14)

where the predicted measurement and associated covariance are

ŷk|k−1 =

∫
Rn

h(xk)N
(
xk, x̂k|k−1, Pk|k−1

)
dxk

Pyy,k|k−1 =

∫
Rn

h(xk)h
T (xk)N

(
xk; x̂k|k−1, Pk|k−1

)
dxk − ŷk|k−1ŷ

T
k|k−1 +Rk. (15)
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The cross-covariance is calculated as

Pxy,k|k−1 =

∫
Rn

xkh
T (xk)N

(
xk; x̂k|k−1, Pk|k−1

)
dxk − x̂k|k−1ŷ

T
k|k−1. (16)

Upon receiving a measurement at time step k, the posterior density is given by

p(xk|y1:k) = N
(
xk; x̂k|k, Pk|k

)
(17)

where

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (18)

Pk|k = Pk|k−1 −KkPyy,k|k−1K
T
k (19)

Kk = Pxy,k|k−1P
−1
yy,k|k−1. (20)

3.2 DE Quadrature for Multivariate Gaussian-Weighted Integrals

The Gaussian-weighted integrals given in Sec. 3.1 must be computed recursively. This can be done strictly using
quadrature as in the GHF,3 cubature as in the CKF,5 high-degree CKF,7 and CUT filter,13 or as a combination
of both cubature and quadrature as in the CQKF.8 Here we extend the framework proposed by Ref. 8 to include
double exponential quadrature instead of an arbitrarily high degree Gauss-Laguerre quadrature. The framework
is restated up to the point of applying the quadrature rule.

Consider the Gaussian-weighted integral of an arbitrary function f(x) where x ∈ Rn,

I(f) =

∫
Rn

f(x)
1√

|Σ|(2π)n
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)
dx, (21)

where µ is the mean and Σ is the covariance. Using the variable substitution x =
√
Σrz + µ the integral (21)

can be expressed in spherical coordinates as

I(f) =
1√
(2π)n

∫ ∞

0

∫
Un

f(
√
Σrz + µ) dσ(z) rn−1 exp

(
−r2

2

)
dr, (22)

where
√
Σ is the matrix square root of the covariance, the norm of z is unity, i.e.,||z|| = 1, and Un is the surface

of the unit n-sphere, and dσ(z) is the element surface area of Un. The inner integral of (22) can be approximated
using a third-degree spherical cubature rule∫

Un

f(
√
Σrz + µ) dσ(z) ≈ 2

√
πn

2nΓ(n2 )

2n∑
i=1

f(
√
Σr[u]i + µ), (23)

where [u]i are the cubature points located at the intersections of the unit n-sphere with the coordinate axes.
Substituting (23) into (22) yields

I(f) =
1√
(2π)n

∫ ∞

0

[
2n∑
i=1

2
√
πn

2nΓ(n2 )
f(
√
Σr[u]i + µ)

]
rn−1 exp

(
−r2

2

)
dr. (24)

Using a second variable substitution, r =
√

2Ψ(t), and after simplification, we get the desired form of the integral:

I(f) =
1

2nΓ(n2 )

∫ ∞

0

[
2n∑
i=1

f(
√
2Σ

√
Ψ(t)[u]i + µ)

]
Ψ(t)

n
2 −1 exp(−Ψ(t)) dΨ(t). (25)

Note that the integral in (25) is a one-dimensional integral over the half-infinite interval. Applying DE
quadrature with points Ψ(t) = exp(t − exp(−t)) and weights Ψ′(t) = (1 + exp(−t)) exp(t − exp(−t)) with t as
defined in (6) and h as in (10), we get the approximation

I(f) ≈ 1

2nΓ(n2 )

N∑
j=1

2n∑
i=1

hf

(√
2Σ

√
Ψ(tj)[u]i + µ

)
Ψ′(tj)Ψ(tj)

n
2 −1 exp(−Ψ(tj)), (26)
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where we have indexed t from 1 to N , where N is the total number of quadrature points. Let us define the
evaluation points ξi and associated weights wi as

ξi =
√

2Ψ(ti)[u]i (27)

wi =
h

2nΓ(n2 )
Ψ′(ti)Ψ(ti)

n
2 −1 exp(−Ψ(ti))

=
h

2nΓ(n2 )
(1 + exp(−ti)) (exp(ti − exp(−ti)))

n
2 (exp(− exp(ti − exp(−ti)))) . (28)

The integral approximation in (26) reduces to

I(f) ≈
2nN∑
i=1

wif
(√

Σξi + µ
)
. (29)

3.3 The Cubature-DE Quadrature Kalman Filter

The filtering procedure is as follows:

1. Initialization:

x̂0|0 = E [x0]

P0|0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

Calculate evaluation points and weights according to (27) and (28).

2. Time update:

Xi,k−1|k−1 =
√
Pk−1|k−1ξi + x̂k−1|k−1

X ∗
i,k|k−1 = f

(
Xi,k−1|k−1

)
x̂k|k−1 =

N∑
i=1

wiX ∗
i,k|k−1

Pk|k−1 =

N∑
i=1

wi

[
X ∗

i,k|k−1 − x̂k|k−1

] [
X ∗

i,k|k−1 − x̂k|k−1

]T
+Qk−1

3. Measurement update:

Xi,k|k−1 =
√

Pk|k−1ξi + x̂k|k−1

Yi,k|k−1 = h
(
Xi,k|k−1

)
ŷk|k−1 =

N∑
i=1

wiYi,k|k−1

Pyy,k|k−1 =

N∑
i=1

wi

(
Yi,k|k−1 − ŷk|k−1

) (
Yi,k|k−1 − ŷk|k−1

)T
+Rk

Pxy,k|k−1 =

N∑
i=1

wi

(
Xi,k|k−1 − x̂k|k−1

) (
Yi,k|k−1 − ŷk|k−1

)T

K = Pxy,k|k−1P
−1
yy,k|k−1

x̂k|k = x̂k|k−1 +K
(
yk − ŷk|k−1

)
Pk|k = Pk|k−1 −KPyy,k|k−1K

T
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Note that the proposed filter uses 2nN points, which is the same as the CQKF. This is effectively N times
more points than the CKF. For N = 1, the CQKF collapses down exactly to the CKF, while the DE filter nearly
achieves the same result. Fig. 2 shows the number of evaluation points as a function of the state dimension for
various filters. Notice that the DE filter may require more points for a lower state dimension (n < 5), but the
number of points can be arbitrarily selected. In Sec. 4, the DE filter will be compared to the other filters with
approximately the same number of points, and then compared with fewer points.

1 2 3 4 5

0

50

100

150

200

250

300

350

400

Figure 2. Number of evaluation points as a function of the state dimension n for the CKF, GHF with 3 points per
dimension, CUT8, and the DE filter with N = 4, 24, and 35 quadrature points. Note the proposed DE filter is denoted
as CDEF.

From a numerical perspective, the weights of the DE filter are all positive which leads to better numerical
stability of the method. Let us use the notion of stability factor from Refs. 35 and 36 (see also Ref. 25) and
defined as

∑
i |wi| (the sum of the absolute values of the weights). The stability factor gives insight into the

roundoff errors introduced by the numerical method. It is desirable to have
∑

i |wi| = 1 as when
∑

i |wi| ≫ 1 a
large amount of roundoff error is introduced.36 This can occur when some of the weights are negative. It is not
rigorously proven here, but the proposed filter indeed achieves a stability factor of 1 for N large for an arbitrary
state dimension as shown in Fig. 3. It is seen that for a smaller state dimension, the faster the stability factor
reaches 1. This is an improvement over the UKF and the fifth- and seventh-degree CKFs. The third-degree
CKF, GHF, and CUT8 filter achieve this result as well.

DE quadrature cannot be compared to other quadratures (such as Gaussian quadrature) based on the degree of
exactness as it is not exact for any degree polynomial. Instead, DE quadrature, and other related quadratures,
are compared by convergence analysis using the Euler-Mclaurin summation formula. In this sense, the DE
quadrature formulae are exponentially convergent as they are built on top of the trapezoidal rule.33

4. SIMULATIONS AND RESULTS

4.1 Comparison to Similar Filters

In the following tracking problem we compare the performance of the proposed filter to several classical and
state-of-the-art Gaussian filters. We denote the proposed cubature-DE quadrature Kalman filter as the CDEF.
The classical filters include the CKF and UKF which are minimal and near minimal-point filters, respectively.
The GHF can be considered best-in-class as it is extremely accurate since an arbitrary number of quadrature
points can be used. However, it suffers from the curse of dimensionality. In this work, we compare to the
GHF with three points per dimension, thus the points scale exponentially as 3n (Fig. 2). The HDCKF was
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Figure 3. Stability factor for the proposed filter as a function of quadrature points N and state dimension n.

designed to compete against the GHF using far fewer points.6 The HDCKF uses a fifth-degree cubature rule
over the third-degree rule used in the CKF. Although this rule allows for negative weights which diminishes
its numerical properties, much like negative weights in the UKF can cause a non-positive definite covariance
matrix. The CQKF is most similar to the CDEF. It uses an arbitrary degree Guass-Laguerre quadrature for
the radial integral (24). We compare the CDEF with an equal number of points as the CQKF when applicable.
The conjugate unscented transform was first presented as a method to evaluate multidimensional expectation
integrals.13 The CUT consists of non-product cubature rules with positive weights that are determined through
numerical optimization routines (depending on the desired order). The points and weights are chosen such that
they exactly match predetermined moments of a Gaussian distribution, and can exactly integrate polynomial
functions of the same order with respect to Gaussian probability density functions. Here we compare to the
CUT8 which can exactly match up to the eighth moment of a Gaussian PDF by exploiting the symmetry of the
distribution.

4.2 Simulations

The performance of the CDEF is compared in a range and bearing tracking problem. The air traffic control
(ATC) scenario (and variants of the problem) has become a benchmark problem7,13,37–39 and was adapted from
the textbook example in Ref. 40. The ATC tracking scenario is as follows: A radar stationed at [ξ, η] = [0m, 0m]
provides range and bearing measurements of an aircraft flying by. The interval between measurements is T = 5 s.
An aircraft, starting from [ξ, η] = [25, 000m, 10, 000m] at time t = 0 s, flies westward for 125 s at 120m/s before
executing a 1◦/s coordinated turn for 90 s. It then flies southward for 125 s at 120m/s, followed by a 3◦/s
coordinated turn for 30 s. After the turn, it continues to fly westward at a constant velocity of 120m/s. An
example of the flight path and radar measurements (converted to Cartesian coordinates) are shown in Fig. 4.

The filters will use the coordinated turn model given in Eq. (30) with the state vector x = [ξ, ξ̇, η, η̇, Ω]T

where (ξ, η) is the position in XY coordinates, (ξ̇, η̇) is the velocity, and Ω is the turn rate, and wk−1 is the process
noise. The measurements include the range and bearing as calculated in Eq. (31) where vk is the measurement
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Figure 4. Example air traffic control scenario the true state (flight path) and measurements shown.

noise.

xk =


1

sin(ΩT )

Ω
0 −1− cos(ΩT )

Ω
0

0 cos(ΩT ) 0 − sin(ΩT ) 0

0
1− cos(ΩT )

Ω
1

sin(ΩT )

Ω
0

0 sin(ΩT ) 0 cos(ΩT ) 0
0 0 0 0 1


xk−1 + wk−1 (30)

yk =

[
rk
θk

]
=

√(ξk)2 + (ηk)2

arctan

(
ηk
ξk

) + vk (31)

The process noise wk−1 and measurement noise vk are zero-mean and Gaussian with covariance matrices

Qk−1 = L1



T 3

3

T 2

2
0 0 0

T 2

2
T 0 0 0

0 0
T 3

3

T 2

2
0

0 0
T 2

2
T 0

0 0 0 0
L2

L1
T


and Rk =

[
σ2
r 0
0 σ2

θ

]
. (32)

The parameters used are T = 5 s, L1 = 0.16, L2 = 0.01, σr = 100m, σθ = 1◦. The initial state estimate x0 and
initial state error covariance P0|0 are

x0 = [25, 000m, −120m/s, 20, 000m, 0m/s, 10−6 rad/s]T , and

P0|0 = diag([10002 m2, 100m2/s2, 10002 m2, 100m2/s2, (π/180)2 rad2/s2]).
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For this 5-dimensional tracking problem, the following filters and their number of points were used: UKF with
11 points, CKF with 10 points, HDCKF with 53 points, GHF with 243 points, CQKF with 350 points, CUT8
filter with 355 points, and the CDEF with 350 points (or N = 35 quadrature points). Note that the tuning
variable for the UKF was set to κ = 1 to avoid negative weights.

A simulation consisted of combining results over multiple Monte Carlo runs through the root-mean-squared
errors defined below Sec. 4.3. Each simulation run consisted of initializing each filter with the same initial state
estimate and state error covariance. Measurements were generated from the true trajectory and sensor model
in Eq. (31). The same set of measurements were used for all filters for a particular run. The number of Monte
Carlo runs was NR = 500.

4.3 Results

All filters are compared using the root-mean-square error (RMSE) calculated at each time step for NR = 500
Monte Carlo runs. The RMSEs for position, velocity, and turn rate are calculated as

RMSEpos(k) =

√√√√ 1

NR

NR∑
i=1

(
(ξi(k)− ξ̂k(k))2 + (ηi(k)− η̂k(k))2

)
,

RMSEvel(k) =

√√√√ 1

NR

NR∑
i=1

(
(ξ̇i(k)− ˙̂

ξk(k))2 + (η̇i(k)− ˙̂ηk(k))2
)
,

RMSEΩ =

√√√√ 1

NR

NR∑
i=1

(Ωi(k)− Ω̂i(k))2,

where x̂i(k) = [ξ̂i(k),
˙̂
ξi(k), η̂i(k), ˙̂ηi(k), Ω̂i(k)]

T is the filter estimate for run i at time step k, and xi(k) =
[ξi(k), ξ̇i(k), ηi(k), η̇i(k), Ωi(k)]

T is the true state.

In Fig. 5 the RMSE for all filters at each time step are shown. It is interesting to note that all filter state
errors attain a relatively constant level of error, but eventually begin to increase after some time. This is most
notable for the CKF position RMSE which increases before t = 50 s, and for the UKF and CKF velocity RMSE
which dramatically increase after t = 50 s. The UKF position RMSE maintains a comparable level to the GHF
and CUT8 until about t = 180 s and then begins to diverge. The HDCKF, GHF, and CUT8 maintain a steady
error for a longer period of time. The CUT8 maintains this for the longest time before diverging. Also, the
CUT8 turn rate RMSE decreases initially before increasing to the same level as that of the GHF. The HDCKF
under performed compared to the GHF, although the velocity RMSE of the two filters began to coincide after
t = 250 s. The CQKF and the CDEF achieve the best overall RMSE over all time steps. Other than the CQKF
turn rate error for t > 350 s (and perhaps the tail end of the velocity RMSE), the RMSE of these filters maintains
a constant and low level of error.

For a fair comparison to the GHF which used 243 points, the number of points for the CDEF was reduced to
240. The simulation results for the GHF, CUT8 (with 355 points), and CDEF at the reduced number of points
are shown in Fig. 6. Again, NR = 500 Monte Carlo runs were used for the simulation. The CDEF still achieves
better RMSE for all states than the GHF and the CUT8, despite the decrease in points. However, the CDEF
begins to diverge to a higher level of error like the other filters after some time.

5. CONCLUSIONS

Nonlinear Gaussian filtering is approached using double exponential quadrature; a method unlike that of Gaussian
quadrature which is typically used. The proposed CDEF out performs several state-of-the-art filters, even with
fewer points. The performance achievement of the CDEF with much fewer points than the CUT8 shows that
more complex cubature rules may not always be the best direction for computational efficiency and accuracy. It
may be more worthwhile to investigate the application of more unique quadrature rules in nonlinear Gaussian
filtering.
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Figure 5. Position, velocity, and turn rate RMSE over 500 Monte Carlo runs for all filters.

REFERENCES

[1] Afshari, H. H., Gadsden, S. A., and Habibi, S., “Gaussian filters for parameter and state estimation: A
general review of theory and recent trends,” Signal Processing 135, 218–238 (2017).

[2] Julier, S. and Uhlmann, J., “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE 92,
401–422 (Mar. 2004).

[3] Ito, K. and Xiong, K., “Gaussian filters for nonlinear filtering problems,” IEEE Transactions on Automatic
Control 45, 910–927 (May 2000).

[4] Arasaratnam, I., Haykin, S., and Elliott, R. J., “Discrete-Time Nonlinear Filtering Algorithms Using
Gauss–Hermite Quadrature,” Proceedings of the IEEE 95, 953–977 (May 2007).

[5] Arasaratnam, I. and Haykin, S., “Cubature Kalman Filters,” IEEE Transactions on Automatic Control 54,
1254–1269 (June 2009).

[6] Jia, B., Xin, M., and Cheng, Y., “Sparse-grid quadrature nonlinear filtering,” Automatica 48, 327–341 (Feb.
2012).

[7] Jia, B., Xin, M., and Cheng, Y., “High-degree cubature Kalman filter,” Automatica 49, 510–518 (Feb. 2013).

[8] Bhaumik, S. and Swati, “Cubature quadrature Kalman filter,” IET Signal Processing 7(7), 533–541 (2013).

[9] Meng, D., Miao, L., Shao, H., and Shen, J., “A Seventh-Degree Cubature Kalman Filter,” Asian Journal
of Control 20(1), 250–262 (2018).

[10] Singh, A. K. and Bhaumik, S., “Higher degree cubature quadrature kalman filter,” International Journal
of Control, Automation and Systems 13, 1097–1105 (Oct. 2015).

[11] Wang, H., Zhang, W., Zuo, J., and Wang, H., “Generalized cubature quadrature Kalman filters: Derivations
and extensions,” Journal of Systems Engineering and Electronics 28, 556–562 (June 2017).

[12] Rahimnejad, A., Gadsden, S. A., and Al-Shabi, M., “Lattice kalman filters,” IEEE Signal Processing Let-
ters 28, 1355–1359 (2021).

Proc. of SPIE Vol. 13057  1305704-11



0 50 100 150 200 250 300 350 400 450 500

Time (s)

103

P
o
s
it
io

n
R
M

S
E

(m
)

0 50 100 150 200 250 300 350 400 450 500

Time (s)

10-2

10-1

100

T
u
rn

R
a
te

R
M

S
E

(r
a
d
/s

)

GHF

CUT8

CDEF

Figure 6. Position, velocity, and turn rate RMSE over 500 Monte Carlo runs for the GHF with 243 points, CUT8 with
355 points, and the CDEF with 240 points.

[13] Adurthi, N., Singla, P., and Singh, T., “Conjugate Unscented Transformation: Applications to Estimation
and Control,” Journal of Dynamic Systems, Measurement, and Control 140 (Nov. 2017).

[14] Gadsden, S. A. and Al-Shabi, M., “The sliding innovation filter,” IEEE Access 8, 96129–96138 (2020).

[15] Lee, A. S., Hilal, W., Gadsden, S. A., and Al-Shabi, M., “Combined kalman and sliding innovation filtering:
An adaptive estimation strategy,” Measurement 218, 113228 (2023).

[16] AlShabi, M. and Gadsden, S. A., “Formulation of the alpha sliding innovation filter: A robust linear
estimation strategy,” Sensors 22(22), 8927 (2022).

[17] Rahimnejad, A., Enayati, J., Vanfretti, L., Gadsden, S. A., and AlShabi, M., “Reinforced lattice kalman
filters: A robust nonlinear estimation strategy,” IEEE Open Journal of Signal Processing 4, 410–423 (2023).

[18] Hilal, W., Gadsden, S. A., and Yawney, J., “Cognitive dynamic systems: A review of theory, applications,
and recent advances,” Proceedings of the IEEE 111(6), 575–622 (2023).

[19] Edrisi, S., Enayati, J., Rahimnejad, A., and Gadsden, S. A., “A monte carlo-based iterative extended kalman
filter for bearings-only tracking of sea targets,” Sensors 24(7), 2087 (2024).

[20] Lee, A. S., Wu, Y., Gadsden, S. A., and AlShabi, M., “Interacting multiple model estimators for fault
detection in a magnetorheological damper,” Sensors 24(1), 251 (2023).

[21] Sicard, B. S., Butler, Q., Ziada, Y., Hughey, E., and Gadsden, S. A., “Preload loss detection in a ball screw
system using interacting models,” IEEE Open Journal of Instrumentation and Measurement 2, 1–12 (2023).

[22] Takahasi, H. and Mori, M., “Double Exponential Formulas for Numerical Integration,” Publications of the
Research Institute for Mathematical Sciences 9(3), 721–741 (1974).

[23] Mori, M., “Quadrature formulas obtained by variable transformation and the DE-rule,” Journal of Com-
putational and Applied Mathematics 12-13, 119–130 (May 1985).

[24] Mori, M. and Sugihara, M., “The double-exponential transformation in numerical analysis,” Journal of
Computational and Applied Mathematics 127, 287–296 (Jan. 2001).

Proc. of SPIE Vol. 13057  1305704-12



[25] Davis, P. J. and Rabinowitz, P., [Methods of numerical integration ], Courier Corporation (2007).

[26] Mori, M., “The Double Exponential Formulas for Numerical Integration over the Half Infinite Interval,”
in [Numerical Mathematics Singapore 1988 ], Agarwal, R. P., Chow, Y. M., and Wilson, S. J., eds., Inter-
national Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik /
Série internationale d’Analyse numérique, 367–379, Birkhäuser, Basel (1988).
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