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Abstract 

The paper researches a utilization of the Salp Swarm Algorithm (SSA), a bio-mimetic optimization technique, to 
improve path planning in Unmanned Ground Vehicles (UGVs). Because of the crucial role of the efficient and 
reliable path planning in the implementation of UGVs in such sectors as military, rescue operations, and 
agriculture, there is a need for algorithms that are capable of navigating complex environments. The concept of 
SSA, based on the natural swarming behavior of salps, represents a very promising approach that is characterized 
by the exploration and exploitation properties of the algorithm. This study evaluates the performance of the SSA 
relative to existing particle swarm optimization (PSO), in terms of path optimality, computational efficiency, and 
dynamic obstacle adaptability, through a number of simulated environments. Results show that the SSA has the 
potential to compete with the traditional algorithms in path efficiency and computational load. However, PSO 
shows slight superiority results compared to SSA. This study highlights the potency of bio-inspired algorithms, 
specifically the SSA, in enhancing the field of autonomous navigation for UGVs. It introduces new possibilities 
of practical application of SSA in real-life scenarios, demonstrating its scalability and resilience. The findings of 
this study make a contribution to the general discussion on the improvement of planning of autonomous routes 
and provide a possible way for more sustainable and effective UGV activities. 
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1. Introduction 

The dynamics of the autonomous navigation landscape change and the effectiveness and robustness of path 
planning algorithms are critical for the operational success of Unmanned Ground Vehicles (UGVs) [1-12]. These 
vehicles are used in various applications including military operations [13-30], disaster reliefs, as well as 
agricultural automation and require sophisticated navigation techniques that can allow them to navigate safely 
and effectively through difficult environments [31-45]. Traditional path planning methods mainly face an 
optimization task of path length and computational efficiency in dynamic and unpredictable terrains [46-66]. 
In the multitude of algorithms proposed for path planning, bio-inspired algorithms are a powerful solution since 
they are flexible, scalable, and capable of finding global optima in multi-dimensional spaces [67-78]. For example, 
the Salp Swarm Algorithm (SSA), which is based on the swarming behavior of salps in the ocean, is one of the 
new bio-inspired optimization techniques that have demonstrated potential in different optimization problems [79-
83]. Its mode of operation, imitating the navigation pattern of the salp chain, provides an equilibrium between the 
stages of exploration and exploitation, and so it is an interesting candidate for UGV path planning [84-100]. 
This article focuses on the use of SSA in path planning of UGVs. Drawing comparisons of the salps’ natural 
behavior and the demands of effective path navigation, the potential of SSA to improve the ability of UGVs to 
traverse difficult terrains is investigated. The point is to assess the performance of the algorithm in the context of 
path optimality, computational burden and adaptiveness to dynamic environments. 
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The main contributions of this paper are threefold: Initially, we present a customized edition of the SSA, adapted 
specifically for the path planning issue of UGVs, emphasizing the changes to be viable in typical spatial 
restrictions and dynamic obstacles of UGV applications. Second, we give a differentiated comparative evaluation 
of the altered SSA with classical and modern path planning algorithms within a set of simulated environments, 
proving its success and efficiency. Lastly, we consider the implementation of SSA in actual UGVs from a practical 
perspective, like issues regarding computational resources and environmental uncertainty. 

2. Methodology 

The salp swarm algorithm (SSA) goes in the following order [81, 100]: 
Initialization of n salp locations, with d dimensional search space and iteration counter (𝑡𝑡) is set to 0. 
Evaluation of the salp locations (𝑥𝑥𝑖𝑖

𝑗𝑗,𝑡𝑡+1), and select the best fitness as the food location (𝐹𝐹𝑖𝑖). 
Updating the locations iteratively using the following equations: 

𝑥𝑥𝑖𝑖
1,𝑡𝑡+1 = 𝐹𝐹𝑖𝑖 + 𝑐𝑐1 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑢𝑢𝑢𝑢𝑖𝑖 − 𝑙𝑙𝑢𝑢𝑖𝑖) + 𝑙𝑙𝑢𝑢𝑖𝑖 (1) 
𝑥𝑥𝑖𝑖
𝑗𝑗,𝑡𝑡+1 = 0.5�𝑥𝑥𝑖𝑖

𝑗𝑗,𝑡𝑡 + 𝑥𝑥𝑖𝑖
𝑗𝑗−1,𝑡𝑡�,𝑟𝑟 ≥ 𝑗𝑗 > 1 (2) 

Where 𝑐𝑐1 is a learning coefficient that depends on the ratio between current iteration number compared to the 
maximum iteration number (𝜇𝜇), and it has a value of 2𝑒𝑒−(4𝜇𝜇)2. 𝑢𝑢𝑢𝑢𝑖𝑖 and 𝑙𝑙𝑢𝑢𝑖𝑖 are the upper and lower bound values 
for the position’s component (𝑖𝑖). 
Keep repeating the last two steps until the target is achieved or the maximum number of iterations is reached. 

3. Results and discussion 

The SSA is used to find the best road that can be used to go from the square to the star locations in Figure 1, 
generated using a modified code from [102]. A Monte Carlo Simulation (MCS) is conducted using 100 
replications, with 150 epochs and 50 agents in each replication. The results show that SSA gives good results. 
SSA’s results are compared to PSO results, and are illustrated for MCS in Figure 2 for shortest distance, and 
Figure 3 for the solution parameters. The histogram of the shortest path for both methods is illustrated in Figure 
4. The MCS results in terms simulation time and convergence are shown in Figure 5 and Figure 6, respectively. 
The results show a slight superiority to PSO compared to SAA in terms of convergence, simulation time, and 
repetition of the results. 

 

Figure 1. The environment under study 
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Figure 2. MCS results for the shortest distance. 

 

Figure 3. MCS results for the splines’ parameters. 

 

Figure 4. The histogram results of MCS for the final path’s distance 
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Figure 5. MCS simulation time 

 

Figure 6. MCS’s convergence rate for the simulations 

4. Conclusion 

 

This study investigates the use of Salp Swarm Algorithm (SSA) in path planning optimization in Unmanned 
Ground Vehicles (UGVs) offering an innovative method that merges the subtleties of bio-inspired optimization 
with real-world requirements of autonomous navigation. Our results emphasize the ability of the algorithm to 
greatly obtain the optimal path while maintaining the computational performance as low as other conventional 
approaches in various dynamic environments. Although the results show slight superiority to PSO, SSA still 
obtains good results, with performance matches a well-known method (PSO). Though prospective, the adaptation 
of SSA to UGV path planning should be investigated deeper particularly in real world testing and hybrid 
optimization techniques. Besides facing up a new challenge to a UGV capabilities, the above study is aiding in 
paving a way for future developments in autonomous vehicle navigation, showing the enormous potential of bio-
inspired algorithms in complicated operational environments. 
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