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Abstract 

In this study, we introduce a novel approach to the parameter estimation of Unmanned Aerial Vehicles (UAVs) 
utilizing the dandelion algorithm, a bio-inspired optimization technique that simulates the seed dispersal 
mechanism of dandelions. With UAVs increasingly becoming integral to various sectors, accurate parameter 
estimation emerges as a critical factor in ensuring their optimal performance and safety. Traditional parameter 
estimation methods often fall short, plagued by computational inefficiencies and a propensity for local optima, 
which can significantly hinder UAV operations. The dandelion algorithm, with its unique global search 
capabilities and adeptness in navigating multidimensional spaces, presents a solution that markedly enhances the 
precision and speed of parameter estimation. Through a series of simulations involving diverse UAV models, this 
study compares the performance of the dandelion algorithm against the conventional technique; the Particle 
Swarm Optimization (PSO), demonstrating its superior ability in achieving rapid convergence, higher accuracy, 
and an exceptional aptitude for avoiding local optima. Our findings not only underscore the algorithm's potential 
to revolutionize UAV parameter estimation but also highlight its applicability in advancing UAV technology and 
bio-inspired computational algorithms. This research contributes to the aerospace engineering field by offering 
an innovative, efficient alternative to existing parameter estimation methods, promising significant improvements 
in the design, operation, and safety of UAV systems across a spectrum of applications. 
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1. Introduction 

Unmanned Aerial Vehicles (UAVs) have brought an historic leap forward to the field of aerospace engineering 
which is increasingly developing [1-10]. Indeed, the precision and reliability of these complex flying robots have 
been vital in a wide range of areas, such as military missions, disaster control and environmental surveillance. 
The process of parameter estimation represents the core of realizing these properties and is a major way of 
improving performance and safety of UAV operations [11-27]. 
Some of the activities carried out in parameter estimation in UAVs include establishing the basic flight parameters 
including the aerodynamic coefficients that are crucial in the proper control and navigation during flight. 
Challenges that conventional approaches for parameter estimation usually face include computational 
inefficiency, local minimum susceptibility, and large flight data requirements. Meeting these challenges, this study 
evaluates the efficiency of the dandelion algorithm, which is known for its robustness, simplicity and the 
optimality of traversing the complex multidimensional spaces [28-43]. 
The metaheuristics can be used to solve many complicated problem [44-65] however, in this study we used the 
dandelion algorithm, which is based on the natural scattering behavior of dandelion seeds, utilizes a specific 
method of global optimization [66-83]. This paper explains how this bio-inspired algorithm has been customized 
for the UAV parameter estimation problem, describing the implementation of the algorithm and the theoretical  
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characteristics that make it suitable for this application. Utilizing the unique exploration and exploitation 
capabilities of the dandelion algorithm, we show a substantial improvement in the accuracy and speed of 
parameters estimation for UAVs in comparison to conventional methods. 
Our study employs a detailed simulation environment, in which UAV models of different complexity are passed 
through the parameter estimation by the dandelion algorithm. The outputs are compared to pre-set benchmarks 
demonstrating the superiority of the algorithm in attaining faster convergence rates, greater levels of accuracy, 
and impressive resistance to the perils of local optima. This study, however, improves the theoretical aspect of 
bio-inspired computational algorithms in aerospace engineering, but also outlines a feasible approach to one of 
the persistent problems with parameter estimation in UAVs, contributing to the design, operation, and safety of 
these flying machines. This paper presents a new methodology for parameter estimation for UAVs, based on the 
dandelion algorithm, a nature-inspired optimization technique, which imitates the seed dispersal process of 
dandelions. 

2. Dynamics Model for a Quadcopter UAV 

The quadcopter has a high nonlinear dynamic model that is described in [84, 85], and has the following discrete 

form: 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝑇𝑇𝑠𝑠�̇�𝑥𝑘𝑘         (1) 

𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 + 𝑇𝑇𝑠𝑠�̇�𝑦𝑘𝑘         (2) 

𝑧𝑧𝑘𝑘+1 = 𝑧𝑧𝑘𝑘 + 𝑇𝑇𝑠𝑠�̇�𝑧𝑘𝑘          (3) 

𝜙𝜙𝑘𝑘+1 = 𝜙𝜙𝑘𝑘 + 𝑇𝑇𝑠𝑠 �𝑝𝑝𝑘𝑘 + 𝑇𝑇𝑎𝑎𝜃𝜃𝑘𝑘�𝑞𝑞𝑘𝑘𝑆𝑆𝜙𝜙𝑘𝑘 + 𝑟𝑟𝑘𝑘𝐶𝐶𝜙𝜙𝑘𝑘��      (4) 

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝑇𝑇𝑠𝑠�𝑞𝑞𝑘𝑘𝐶𝐶𝜙𝜙𝑘𝑘 − 𝑟𝑟𝑘𝑘𝑆𝑆𝜙𝜙𝑘𝑘�        (5) 

𝜓𝜓𝑘𝑘+1 = 𝜓𝜓𝑘𝑘 +
𝑇𝑇𝑠𝑠�𝑞𝑞𝑘𝑘𝑆𝑆𝜙𝜙𝑘𝑘+𝑟𝑟𝑘𝑘𝐶𝐶𝜙𝜙𝑘𝑘�

𝐶𝐶𝜃𝜃𝑘𝑘
        (6) 

�̇�𝑥𝑘𝑘+1 = �̇�𝑥𝑘𝑘 + 𝑇𝑇𝑠𝑠
𝑚𝑚
𝑀𝑀1,𝑘𝑘𝑢𝑢𝑘𝑘         (7) 

�̇�𝑦𝑘𝑘+1 = �̇�𝑦𝑘𝑘 −
𝑇𝑇𝑠𝑠
𝑚𝑚
𝑀𝑀2,𝑘𝑘𝑢𝑢𝑘𝑘         (8) 

�̇�𝑧𝑘𝑘+1 = �̇�𝑧𝑘𝑘 + 𝑇𝑇𝑠𝑠
𝑚𝑚
𝑀𝑀3,𝑘𝑘𝑢𝑢𝑘𝑘 − 𝑇𝑇𝑠𝑠𝑔𝑔        (9) 

𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 𝑇𝑇𝑠𝑠
𝐼𝐼𝑥𝑥
�𝑞𝑞𝑘𝑘𝑟𝑟𝑘𝑘�𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧� − 𝐽𝐽𝑅𝑅𝑑𝑑𝑞𝑞𝑘𝑘 + 𝐿𝐿𝑢𝑢1,𝑘𝑘�      (10) 

𝑞𝑞𝑘𝑘+1 = 𝑞𝑞𝑘𝑘 + 𝑇𝑇𝑠𝑠
𝐼𝐼𝑦𝑦

  �𝑝𝑝𝑘𝑘𝑟𝑟𝑘𝑘(𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥) + 𝐽𝐽𝑅𝑅𝑑𝑑𝑟𝑟𝑘𝑘 + 𝐿𝐿𝑢𝑢2,𝑘𝑘�       (11) 

𝑟𝑟𝑘𝑘+1 = 𝑟𝑟𝑘𝑘 + 𝑇𝑇𝑠𝑠
𝐼𝐼𝑧𝑧
�𝑝𝑝𝑘𝑘𝑞𝑞𝑘𝑘�𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦� + 𝑢𝑢3,𝑘𝑘�        (12) 

Where 𝑀𝑀1,𝑘𝑘 = 𝑆𝑆𝜙𝜙𝑘𝑘𝐶𝐶𝜓𝜓𝑘𝑘 − 𝐶𝐶𝜙𝜙𝑘𝑘𝑆𝑆𝜃𝜃𝑘𝑘𝑆𝑆𝜓𝜓𝑘𝑘, 𝑀𝑀2,𝑘𝑘 = 𝑆𝑆𝜙𝜙𝑘𝑘𝑆𝑆𝜓𝜓𝑘𝑘 + 𝐶𝐶𝜙𝜙𝑘𝑘𝑆𝑆𝜃𝜃𝑘𝑘𝐶𝐶𝜓𝜓𝑘𝑘, 𝑀𝑀3,𝑘𝑘 = 𝐶𝐶𝜙𝜙𝑘𝑘𝐶𝐶𝜃𝜃𝑘𝑘, 𝐶𝐶𝑥𝑥 = cos(𝑥𝑥) , 𝑆𝑆𝑥𝑥 =

sin(𝑥𝑥) ,𝑇𝑇𝑎𝑎𝑥𝑥 = tan(𝑥𝑥), and 𝑇𝑇𝑠𝑠 = 0.001 𝑠𝑠𝑠𝑠𝑠𝑠. The UAV has position’s components (𝑥𝑥, 𝑦𝑦 and 𝑧𝑧), velocity’s 

components (�̇�𝑥, �̇�𝑦 and �̇�𝑧), orientaion’s components (𝜙𝜙, 𝜃𝜃 and 𝜓𝜓), and their derivatives (�̇�𝜙, �̇�𝜃 and �̇�𝜓), where they 

are all measured with respect to the fixed frame. On the other hand, 𝑝𝑝, 𝑞𝑞 and 𝑟𝑟 are the angular rates described with 

respect to the UAV body’s frame. 𝑢𝑢𝑥𝑥 represents the input to the system. The rest of the terms are the UAV 

parameters including the mass (𝑚𝑚), the inertias (𝐽𝐽𝑅𝑅 , 𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦 and 𝐼𝐼𝑧𝑧), dimensional terms (𝐿𝐿) drag coefficient (𝑑𝑑), and 

an input parameter (𝑏𝑏). These parameters have the values of 0.52 kg, 6 × 10−5 𝑘𝑘𝑔𝑔𝑚𝑚2, 6.228 ×

10−3 𝑘𝑘𝑔𝑔𝑚𝑚2, 6.225 × 10−3 𝑘𝑘𝑔𝑔𝑚𝑚2, 1.1 × 10−2 𝑘𝑘𝑔𝑔𝑚𝑚2, 0.232 𝑚𝑚, 7.5 × 10−7 𝑁𝑁𝑚𝑚𝑠𝑠2 and 3.13 × 10−3 𝑁𝑁𝑠𝑠2. 
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These parameters will be extracted from the measurement using the dandelion optimizer, which is discussed in 
[84, 85]. 

3. Results and discussion 

The DO is used to obtain the parameters of an UAV drone from given measured states and inputs. The system is 
simulated using a Monte Carlo Simulation (MCS) that is repeated 100 times, in which each run lasts for 150 
epochs. Each simulation uses 5 agents, and the results are compared to PSO. Figure 1 shows the root mean squared 
error (RMSE), and maximum absolute error (MAE) for the MCS. Figure 2 shows the simulation time. The 
histogram of the errors is shown in figure 3. Lastly, the convergence rate is shown in figure 4. The results reveal 
that both DO and PSO achieved an acceptable RMSE and MAE. However, the DO shows more robust and faster 
performance compared to PSO, with minimum variations in the errors. On the other side, PSO required less 
computational time. 

  
(a) (b) 

Figure 1. MCS results 

 
Figure 2. MCS simulation time 

 

4. Conclusion 

In concluding our investigation into the parameter estimation of Unmanned Aerial Vehicles (UAVs) using the 
dandelion algorithm, this research has illuminated the significant advantages of employing bio-inspired 
optimization techniques in aerospace engineering. Demonstrating marked improvements in accuracy, 
computational efficiency, and the ability to avoid local optima, the dandelion algorithm not only outperforms 
traditional parameter estimation methods but also opens new horizons for enhancing UAV performance and 
reliability. Our findings advocate for a broader integration of nature-inspired computational strategies in solving 
complex engineering challenges, suggesting that the future of UAV technology could greatly benefit from further 
explorations into bio-inspired algorithms. The potential for the dandelion algorithm to revolutionize UAV 
parameter estimation presents a compelling case for its adoption and further adaptation in the field, signaling a 
promising direction for advancing UAV capabilities and operational safety in diverse applications. This study, 
therefore, not only contributes a novel approach to the aerospace engineering literature but also sets a foundation 
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for future research aimed at exploring and harnessing the power of bio-inspired solutions in technology 
development and optimization challenges. 
 

 
Figure 3. The histogram results of MCS for obtaining minimum value 

 
Figure 4. MCS’s convergence rate for the simulations 
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