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Abstract—From fully autonomous warehouses to farms 
lacking labour; the presence of mobile robots has increased 
significantly. These mobile robots are commonly found in the 
industrial sector, where they are typically used in automating 
tasks. While traversing through work environments, these mobile 
robots must be capable of avoiding and efficiently 
circumnavigating both moving and stationary obstacles. To help 
mitigate these issues, control engineering methods are usually 
utilized. In this paper, we analyze two different types of mobile 
robots, namely holonomic and non-holonomic robots. In addition, 
we utilize three different control methods, namely, model 
predictive control (MPC), nonlinear model predictive control 
(NMPC), and virtual force method (VFM). Conclusively, we 
perform a comparative analysis of all three control methods using 
a variety of quantitative metrics. 

Keywords—Mobile Robots, Control Engineering, Model 
Predictive Control, Nonlinear Model Predictive Control  

I. INTRODUCTION 

The presence of mobile robots has grown rapidly in the last 
decade. The contemporary technological revolution has 
provided a relatively affordable manufacturing process for the 
development of robots. These robots have been utilized in 
various professional and industrial avenues. Examples of this 
are common throughout factory environments with 
autonomous robots, such as in Fig. 1. However, as robots 
become integrated throughout daily life, the chance of failure 
increases rapidly. Therefore, these robots must be capable of 
avoiding obstacles, both moving and stationary, while also 
arriving at their predefined destination. These robots must also 
be capable of dealing with sensor noise and avoiding slipping. 

  

 
Fig. 1. Autonomous robot in a warehouse example as per [1]. 

The control of a mobile robot can be conducted with various 
control methods [2]-[5]. In this paper, we look at the control of 
two variant types of mobile robots. The first of which is the 
holonomic robot, which is also referred to as the 
omnidirectional robot [5], [6]. The holonomic robot is capable 
of rotation and cartesian translation. The second type of mobile 
robot we utilize is a non-holonomic robot or differential drive 
robot [7], [8]. This type of robot cannot translate left/right. 

To control both the holonomic robot and non-holonomic 
robot, we employ three variant control methods, namely MPC, 
NMPC, and VFM. Each of these methods is explored in their 
individual section and later comparatively assessed against one 
another. 

A. Differential Drive Mobile Robots  

The information provided in this section summarizes the plant 
information utilized in this paper. The cartesian acceleration of 
the mobile robot is the controllable variable across all 
controllers. The mobile robot's location and speed are achieved 
by numerical integration. A differential-drive robot, like that 
shown in Fig. 2, uses separate electric motors to power its 
wheels. We assume that, in relation to the mass of the robot, the 
inertias of the motors and wheels are insignificant. 
Furthermore, we assume that the motors are speed-controlled 
and incapable of being reversed. 

 
Fig. 2. Differential drive robot geometry used in this study. 

We assume the ground is level, and the robot’s path is either 
straight or moderately curved such that no sliding occurs in the 
𝑌௠  direction. The relationship between the velocities in the 
robot’s moving coordinate frame ( 𝑋௠ , 𝑌௠ ) and the fixed 
coordinate frame (𝑋, 𝑌) is given by the following:  
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The linear velocities of the wheel centers are: 

(2)
 

 (3)
 

The net force and torque applied to the robot by its wheels are: 

 (4)
 

 (5)
 

Assuming the robot can be modelled as a uniform cylinder 
of mass 𝑚௥ , and radius 𝑟௖ , the resulting linear and angular 
accelerations are: 

 (6)

 

 (7)

 

When the wheels are rolling (i.e., not slipping): 

(8)

 

(9)

 

where 𝜃̈୫ is the angular acceleration of the motor, and 𝑟 is the 
radius of the wheels. If wheel 1 is currently rolling, then it will 
start slipping when: 

(10)
 

where 𝜇௦ଵ is the static coefficient of friction for wheel 1. 
Similarly, wheel 2 will start slipping when:     

(11)
 

If wheel 1 is slipping, then the force it applies to the robot 
becomes: 

 (12)
 

where 𝜇௞ଵis its kinetic coefficient of friction and 𝜇௞ଵ <  𝜇௦ଵ. 
Similarly, if wheel 2 is slipping: 

 (13)
 

If a wheel is currently slipping, then it will start rolling when 
(10) and (11) are false, and 𝑣௪ = 𝜃̇௠𝑟 . In a numerical 
simulation, the conditions to check for wheel 1 are: 

(14)
 

 (15)
 

For wheel 2, they are: 

(16)
 

 (17)
 

II. MODEL PREDICITIVE CONTROL 

A. Introduction 

Model predictive control (MPC) is a control method which 
belongs to a category of control methods which explicitly 
utilize a dynamic model of the plant to predict the effect of 
future actions on the output. The main benefit of deploying 
MPC is its ability to provide optimization for the current 
timestep while also accounting for the future timesteps 
simultaneously. This is in comparison to simple controllers 
such as the PID which do not possess this predictive capability. 
Optimization is fundamental to the procedure the MPC carries 
out [9]–[11].  

MPC uses the current plant measurements, the current 
dynamic state of the process, the MPC models, and the process 
variable targets and limits to calculate future changes in the 
dependent variables. These changes are calculated to hold the 
dependent variables close to the target while honoring 
constraints on both independent and dependent variables. The 
MPC typically sends out only the first change in each 
independent variable to be implemented and repeats the 
calculation when the next change is required. 

B. Methodology 

The MPC procedure begins with acquiring the current state 
𝑥(𝑡) from the desired plant. The state-space model describing 
the system can be formulated as: 

𝑥(𝑡) =  𝐴𝑥(𝑡 − 1) +  𝐵𝑢(𝑡 − 1) (18) 
𝑦(𝑡) =  𝐶𝑥(𝑡) (19) 

where 𝑢 is the input vector, 𝐴 is the state matrix and 𝐵 is the 
input matrix. At timestep 𝑡 the MPC will take the current state 
as the initial state.  

𝑥଴ =  𝑥(𝑡) (20) 
Subsequently, the model will perform an online 

optimization procedure where the optimal input vector, 𝑢(𝑡), is 
calculated given the initial state, 𝑥଴ . The process can be 
formulated with: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ 𝐿(𝑥௜

௄

௜ୀ଴

, 𝑢௜).  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥௜ =  𝐴𝑥௜ +  𝐵𝑢௜  (21) 
Multiple constraints can be further applied to ensure that the 

estimated optimal input and state do not exceed the predefined 
boundaries. 
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Fig. 3. Typical schematic of the MPC strategy as per [12]. 

Figure 3 depicts the cumulative procedure where the MPC 
is provided with the given system state, which can be achieved 
with measurement tools such as sensors. The model then 
performs the online optimization task given the measured state. 
Subsequently, the calculated optimal input vector is provided to 
the plant. The plant then applies the calculated input vector and 
therein updates the current system state. The procedure is 
repeated until a stopping condition is met. 

 
Fig. 4. Example of the MPC strategy [13]. 

Figure 4 shows an example of the MPC procedure over a 
predefined horizon of K. The optimal input to the given state is 
taken at the present step. 

C. Holonomic Control  

In this section the MPC method is applied to the control of a 
holonomic mobile robot. The input vector is comprised of the 
robot’s cartesian acceleration, or it’s acceleration in the x and y 
direction. Position and velocity are obtained with the 
application of numerical integration.  

 
Fig. 5. MPC Holonomic: Horizon = 15, 𝑟௥௢௕௢௧  =  0.5, 𝑟௢௕௦௧௔௖௟௘  =  0.5. 

To evaluate the results of the MPC method on the control of 
a holonomic robot we drive the robot to a destination of 𝑃௫ = 10 
and 𝑃௬ = 10, where an obstacle is positioned at 𝑂௫ = 4 and 𝑂௬ = 
4. Various parameters are modified to provide a cumulative 
depiction of the performance of the MPC, as shown through 
Figs. 5-7. 

 
Fig. 6. MPC Holonomic: 𝑂௫ =   4 𝑎𝑛𝑑 𝑂௬ = 4. 

 
Fig. 7. MPC Holonomic: Horizon = 10. 

D. Non-Holonomic Control  

To evaluate the results of the MPC method on the control of a 
non-holonomic robot we drive the robot to a destination of 𝑃௫ = 
10 and 𝑃௬ = 10, where an obstacle is positioned at 𝑂௫ = 2 and 
𝑂௬ = 2. As shown in Fig. 8, various parameters are modified to 
provide a cumulative depiction of the performance of the MPC.  
 

 
Fig. 8. MPC Non-Holonomic: 𝑂௫ =  2 𝑎𝑛𝑑 𝑂௬ =  2. 

a) Assessing Slipping 
To examine the effects of slipping on the MPC controller 

we perform a controlled analysis of the effects of modifying the 
wheel friction coefficient. As shown in Fig. 9, we start with 
setting a symmetrical wheel friction coefficient of 𝜇௦భ

= 𝜇௦భ
=

0.8. 
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Fig. 9. MPC Non-Holonomic with μୱభ

= μୱభ
= 0.8. 

When a wheel friction coefficient of  𝜇௦భ
= 𝜇௦భ

= 0.8 is 
introduced, we can see that the MPC struggles to follow the 
desired trajectory. The estimated mean squared error is 0.1520. 
Subsequently, a wheel friction coefficient of 𝜇௦భ

= 𝜇௦భ
= 0.4 is 

examined. The resultant mean squared error is 0.2302. 
Sensor noise was added and its effect on the movement of 

the robot is summarized by the results in Table 1. The noise is 
added with the following equation:  
 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑁𝑜𝑖𝑠𝑒 = 𝑁𝑜𝑖𝑠𝑒 𝑆𝑖𝑧𝑒 ∗ 2 ∗ (𝑟𝑎𝑛𝑑 − 0.5) 
 

Table 1: Mean Squared Error and Mean Absolute Error of Non-Holonomic 
MPC with Added Sensor Noise. 

 

Noise Size  Mean Squared 
Error 

Mean Absolute 
Error 

0  0.1028 0.2642 
0.001  0.0991 0.2595 
0.005 0.1149 0.2790 
0.01 0.2012 0.3731 

III. NONLINEAR MODEL PREDICTIVE CONTROL (NMPC)  

The inclusion of nonlinear system models in the prediction is a 
distinctive feature of nonlinear model predictive control, or 
NMPC, a subset of model predictive control [14]–[18]. 

A. Holonomic Control  

In this section, the control of a holonomic robot with NMPC 
is assessed and the results are shown in Figs. 10 and 11. Similar 
to the last section, due to page constraints, we only include the 
most interesting figures of the results.  

 
Fig. 10. NMPC Holonomic: 𝑂௫ =   5 𝑎𝑛𝑑 𝑂௬ = 5. 

 
Fig. 11. NMPC Holonomic: Horizon = 40. 

B. Non-Holonomic Control  

In this section, the control of a non-holonomic robot is 
conducted with the employment of NMPC. To assess the 
performance of the NMPC method on the control of a non-
holonomic robot we drive the robot to a destination of 𝑃௫ = 10 
and 𝑃௬ = 10, where an obstacle is positioned at 𝑂௫ = 5 and 𝑂௬ = 
5. These results are shown in Fig. 12. 

 
Fig. 12. NMPC Non-Holonomic: 𝑂௫ =  5 𝑎𝑛𝑑 𝑂௬ =  5. 

Similar to before, to examine the effects of slipping, we start 
with setting a symmetrical wheel friction coefficient of 𝜇௦భ

=

𝜇௦భ
= 0.8. 

 
Fig. 13. NMPC Non-Holonomic: 𝜇௦భ

= 𝜇௦భ
= 0.8. 

We can see that from Fig. 13 there is minimal slipping, and 
the robot manages to reach its destination with an estimated 
mean squared error of 0.0191. We subsequently reduce the 
coefficient of friction to a smaller value of 𝜇௦భ

= 𝜇௦భ
= 0.4. In 

this case, we should expect to see more slipping and therefore 
greater error.  
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Fig. 14. NMPC Non-Holonomic: 𝜇௦భ

= 𝜇௦భ
= 0.4. 

The results clearly depict that the error increased when the 
coefficient of friction was decreased, as shown in Fig. 14. The 
estimated mean squared error was 0.0283. In later sections, the 
NMPC is compared with variant control methods in its ability 
to minimize error while slipping. Table 2 summarizes the 
errors obtained under varying noise signals. 

 
Table 2: Mean Squared Error and Mean Absolute Error of Non-Holonomic 

NMPC with Added Sensor Noise 

Noise Size  Mean Squared 
Error 

Mean Absolute 
Error 

0 0.0167     0.1003 
0.001 0.0167 0.1003 
0.005 0.0168 0.1006 
0.01 0.0168 0.1007 
0.1 0.0207 0.1093 

IV. VIRTUAL FORCE METHOD (VFM) 

The VFM is a control method which was presented for the use 
of obstacle-avoiding mobile robots in 2012 by Zeng and Bone 
et al. [3]. The method works by utilizing three fundamental 
virtual forces, contingent on the robot’s location relative to the 
obstacle [19]–[21]. The method is summarized by Fig. 15. 

Two regions are defined for the calculation of the 
appropriate virtual forces. The first of which is the active 
region, C2. The active region C2 is defined as the region near 
the human. If any mobile robot enters the region defined as C2, 
both the repulsive and detour virtual forces will be engaged to 
cause the mobile robot to avoid the obstacle. The critical region 
C3 is the region closest to the obstacle, and it is very dangerous 
if a robot intrudes into this region. If the robot enters this area, 
the threat of a crash is large. Therefore, the mobile robot is 
decelerated to a stop. 

We can calculate the respective force values by using this 
set of equations: 

𝐸 =  𝑃௚ − 𝑃௥ (22) 
 

𝐷 = 𝑃௥ − 𝑃௛  (23) 
 

𝑊 = 𝑃௚ − 𝑃௛ (24) 
 

 

 
Fig. 15. VFM regions as illustrated in [3]. 

The attractive virtual force is employed to direct the mobile 
robot towards the destination. This force is engaged when the 
robot enters C1 or C2. The force can be formulated as: 

𝐹௔ =  ൜
𝐾ଵ𝐸 + 𝐾ଶĖ          if P୰ ∈ Cଶ ∪ Cଵ

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑         if P୰ ∈ Cଷ 
     (25) 

A subsequent repulsive virtual force is employed to force 
the robot away from the obstacle. The repulsive force is 
engaged when the robot enters C2.  

𝑑 =  ‖𝐷‖ଶ (26) 

∧ =  
(𝑟ଶ − 𝑑 )ଶ

𝑑 − 𝑟ଷ

(27) 

∧∗ = −𝑑 
(𝑟ଶ − 𝑑 )ଶ

(𝑑 − 𝑟ଷ)ଶ 
(28) 

𝐹∧ =  ൜
𝐾ଷ ∧ +𝐾ସ ∧∗           if P୰ ∈ Cଶ

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑         if P୰ ∈ Cଵ ∪ Cଷ 
    (29) 

The detour force is the last force applied to the robot and its 
main objective to allow the robot to detour while keeping the 
destination in mind.  

𝐹஍ =  ൜
(𝐾ହΦ + 𝐾଺Φ∗)𝒖஍          if P୰ ∈ Cଶ

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑         if P୰ ∈ Cଵ ∪ Cଷ 
    (30) 

The VFF is the combination of the three forces. Thus, the 
VFF for the robot with a single human/obstacle is: 

𝐹୴ =  ൝

𝐹௔          if P୰ ∈ Cଵ

𝐹௔ + 𝐹∧ +  𝐹஍       if P୰ ∈ Cଶ 
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑          if P୰ ∈ Cଷ

   (31)  

The holonomic dynamics can be viewed as that of a point 
mass. Therefore, the acceleration vector can be obtained from 
𝐹୴. The positional information about the reference robot can be 
obtained by numerical integration.  

A. Holonomic Control  

To evaluate the results of the VFM on the control of a 
holonomic robot, we drive the robot to a destination of 𝑃௫ = 10 
and 𝑃௬ = 10, where an obstacle is positioned at 𝑂௫ = 4 and 𝑂௬ = 
4. Various parameters are modified to provide a cumulative 
depiction of the performance of the MPC. These results are 
shown in Figs. 16 and 17.  
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Fig. 16. VFM Holonomic: 𝑂௫ =  4 𝑎𝑛𝑑 𝑂௬ =  4. 

 
Fig. 17. VFM Holonomic: 𝑂௫ =  5 𝑎𝑛𝑑 𝑂௬ =  4. 

B. Non-Holonomic Control  

In this section, the control of a non-holonomic robot is 
conducted with the employment of VFM. To assess the 
performance of the VFM on the control of a non-holonomic 
robot we drive the robot to a destination of 𝑃௫ = 10 and 𝑃௬ = 10, 
where an obstacle is positioned at 𝑂௫ = 5 and 𝑂௬ = 5. Various 
parameters were modified to provide a cumulative depiction of 
the performance of the VFM. The results are shown in Figs. 18 
and 19. 

 
Fig. 18. VFM Non-Holonomic: 𝑂௫ =  5 𝑎𝑛𝑑 𝑂௬ =  5. 

 
Fig. 19. VFM Non-Holonomic: 𝑂௫ =  5 𝑎𝑛𝑑 𝑂௬ =  3. 

Similar to before, to examine the effects of slipping, we start 
with setting a symmetrical wheel friction coefficient of 𝜇௦భ

=

𝜇௦భ
= 0.8 . Note that mass was increased to 10 kg for this 

experiment due to terrible slipping performance by the VFM.  

 
Fig. 20. VFM Non-Holonomic: μୱభ

= μୱభ
= 0.8. 

Figure 20 clearly depicts that the VFM is heavily affected 
by slipping. The robot manages to overcome the obstacle, 
however, never reaches its destination. We subsequently reduce 
the coefficient of friction to a smaller value of 𝜇௦భ

= 𝜇௦భ
= 0.4. 

In this case, we should expect to see more slipping and therefore 
greater error 

 
Fig. 21. VFM Non-Holonomic: 𝜇௦భ

= 𝜇௦భ
= 0.4. 

Figure 21 clearly depicts that the error increased when the 
coefficient of friction was decreased. The estimated mean 
squared error was 1.4299. In later sections, the NMPC is 
compared with variant control methods in its ability to 
minimize error while slipping. Table 3 summarizes the results 
of changing the noise signals on the error. 
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Table 3: Mean Squared Error and Mean Absolute Error of Non-Holonomic 
VFM with Added Sensor Noise 

Noise Size  Mean Squared 
Error 

Mean Absolute 
Error 

0 0.0021 0.0303 
0.001 0.0167 0.1003 
0.005 0.0031 0.0369 
0.01 0.0054 0.0524 
0.1 0.0061 0.0627 

V. MOVING OBSTACLES 

In this section each of the controllers will be assessed with 
moving obstacles. The path of the obstacles is kept the same for 
all of the controllers to provide a cumulative and fair overview 
of the performance of each controller. Similar to the last 
section, due to page constraints, we only include the most 
interesting figures of the results. 

Figures 22 and 23 show the results of implementing MPC, 
Figs. 24 and 25 show the results of implementing the NMPC, 
and Figs. 26 and 27 show the results of implementing VFM. 

A. Model Predictive Control (MPC) 

 
Fig. 22. Absolute Distance Away in X Position (MPC). 

 
Fig. 23. Absolute Distance Away in Y Position (MPC). 

B. Nonlinear Model Predictive Control (NMPC) 

 
Fig. 24. Absolute Distance Away in X Position (NMPC). 

 
Fig. 25. Absolute Distance Away in Y Position (NMPC). 

C. Virtual Force Method (VFM) 

 
Fig. 26. Absolute Distance Away in X Position (VFM). 

 
Fig. 27. Absolute Distance Away in Y Position (VFM). 

0 2 4 6 8 10 12 14 16

Time

0

1

2

3

4

5

6

A
bs

o
lu

te
 D

is
ta

n
ce

 f
ro

m
 O

b
st

a
cl
e
 in

 X
 P

o
si
tio

n

Robot Position

2 4 6 8 10 12 14

Time

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A
bs

o
lu

te
 D

is
ta

n
ce

 f
ro

m
 O

b
st

a
cl
e
 in

 Y
 P

o
si
tio

n

Robot Position

0 5 10 15 20 25 30 35 40

Time

0

1

2

3

4

5

6

A
bs

o
lu

te
 D

is
ta

n
ce

 f
ro

m
 O

b
st

a
cl
e
 in

 X
 P

o
si
tio

n

Robot Position

0 5 10 15 20 25 30 35 40

Time

0

0.5

1

1.5

2

2.5

A
bs

o
lu

te
 D

is
ta

n
ce

 f
ro

m
 O

b
st

a
cl
e
 in

 Y
 P

o
si
tio

n
Robot Position

0 10 20 30 40 50 60 70 80 90

Time

0

1

2

3

4

5

6

A
bs

o
lu

te
 D

is
ta

n
ce

 f
ro

m
 O

b
st

a
cl
e
 in

 X
 P

o
si
tio

n

Robot Position

0 10 20 30 40 50 60 70 80 90

Time

0

2

4

6

8

10

12

14

A
bs

o
lu

te
 D

is
ta

n
ce

 f
ro

m
 O

b
st

a
cl
e
 in

 Y
 P

o
si
tio

n

Robot Position

Authorized licensed use limited to: McMaster University. Downloaded on March 03,2025 at 20:37:10 UTC from IEEE Xplore.  Restrictions apply. 



VI. COMPARATIVE ASSESSMENT OF TECHNIQUES  

A. Overview of Metrics 

To compare the performance of the three different controllers 
we utilize two qualitative metrics, namely mean squared error 
and mean absolute error, where: 

𝑀𝑆𝐸 =
1

𝑛
෍൫𝑌௜ − 𝑌෠௜൯

ଶ
 

௡

௜ୀଵ

(32) 

𝑀𝐴𝐸 =
1

𝑛
෍ห𝑦௝ − 𝑦ො௝ห

௡

௜ୀଵ

 (33) 

In addition to these two metrics, we also evaluate the 
performance of the holonomic model on its ability to reach the 
destination while avoiding the obstacle in the shortest time 
frame.  

B. Evaluation of Holonomic Control  

1) Evaluation of Varying Horizon Values 
A key parameter for the MPC and NMPC is the horizon value. 
This value decides how far into the future to account for. 
Therefore, we should expect the accuracy and efficiency of the 
control method to increase as this parameter increases as well. 
To test this the effect of modifying the horizon values on the 
accuracy and efficiency of the robot, we compare three different 
horizon values.  

 
Fig. 28. Time to Destination for Variant Horizon Values. 

The results shown in Fig. 28 show that as the horizon value 
increases, the number of timesteps to reach the destination 
decreases. This is what we expect because as the horizon value 
increases, so does the efficiency of the robot as it makes more 
educated decision earlier on in the moving process.  

C. Evaluation of Non-Holonomic Control  

1) Evaluation of Varying Friction Coefficients 
All three non-holonomic models were compared in their ability 
to handle varying friction coefficients. Figure 29 shows the 
calculated mean squared error for two variant symmetrical 
wheel friction coefficients. The plot on depicts the error for the 
MPC and NMPC. The VFM method was unable to follow the 
desired trajectory if slipping is introduced. Therefore, only the 
MPC and NMPC are compared since the error for the VFM was 
much larger.  

  

 
Fig. 29. MSE for Varying Wheel Friction Coefficients. 

The results indicate that the NMPC was superior in 
maintaining the desired trajectory with varying wheel friction 
coefficients. This can be due to the nonlinear nature of the robot 
movement when slipping is introduced. 

 
2) Evaluation of Error with Introduction of Sensor Noise  

Figures 30 and 31 summarize the results of varying the 
amplitude of sensor noise and its effects on the controllers. 

 
Fig. 30. MSE Comparative Analysis for MPC, NMPC, and VFM. 

 
Fig. 31. MAE Comparative Analysis for MPC, NMPC, and VFM. 

The results show that with added random sensor noise we 
experience an increase in error regardless of the metric or 
controller used. This is due to the controller receiving the 
current state measurement with added noise. Therefore, the 
predicted optimal input will typically be offset from its true 
value. In addition, the controllers are also individually assessed 
in their ability to handle sensor noise. The results show that 
sensor noise was most optimally handled with VFM and, 
subsequently the NMPC. The VFM had the lowest MSE and 
MAE across numerous experiments with varying noise size. 
The MPC on the other hand, had the highest MSE and MAE in 
all the experiments.  
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VII. DISCUSSION AND CONCLUDING REMARKS 

In this paper, we look at the control of two variant types of 
mobile robots. The first of which is the holonomic robot, which 
is also referred to as the omnidirectional robot. The holonomic 
robot is capable of rotation and cartesian translation. To control 
the holonomic robot, we employ three variant control methods, 
namely MPC, NMPC, and VFM. Each of the control methods 
was successful in avoiding a stationary or moving obstacle 
while reaching a predefined destination point. The models were 
tested with various destination and obstacle locations.  

The MPC and NMPC were able to reach the destination in 
the least amount of time while making the least amount of 
unnecessary movement around the obstacle. The NMPC was 
able to reach the destination in slightly less time than MPC. 
While the VFM was able to avoid the obstacle and reach the 
destination, the movement made by the robot increased the 
overall time to reach the destination. This can be combatted by 
carefully tunning the gain values in the VFM equation; 
however, this is not ideal in comparison to the other methods. 

The holonomic robots controlled with the MPC and NMPC 
were further analyzed by assessing the change in output when 
the horizon value is modified. We find that as the horizon value 
is increased, the efficiency and accuracy of the model increase 
as well. This is due to the controller taking into account a 
greater number of future steps when the horizon value is 
increased. The second type of robot which was analyzed was 
the non-holonomic robot. This robot is not capable of left/right 
translation. The non-holonomic robot was controlled with the 
same three controllers. The performance of the controllers was 
assessed with variant experiments. 

The first experiment we conducted was on the influence of 
slipping and the controller’s ability to maintain the desired 
trajectory and reach its destination. We found that the NMPC 
performed the best in reducing error while slipping. 
Subsequently, the effect of sensor noise was analyzed. 
Modifying the size of random sensor noise, we compared the 
performance of each controller. Utilizing both MSE and MAE 
as metrics, the VFM was identified as the best performing 
model in achieving the lowest error regardless of the size of the 
sensor noise. In addition, we utilized moving obstacles to 
examine the performance of the controlled robots in a 
pragmatic environment. All three controllers were able to avoid 
the moving obstacle. This is an excellent test of the ability to 
use these controllers in an environment with human workers. 

VIII. CONCLUSION 

In summary, all three controllers succussed in performing 
the required task. However, the NMPC strategy was the most 
robust to the various situations and scenarios. In addition, it was 
faster than the MPC in its execution. Therefore, in this study, 
the NMPC strategy was found to be the ideal option for both 
the holonomic and non-holonomic robots within the selected 
testing environment and conditions. 
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