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ABSTRACT– Spring-mass-damper (SMD) systems are 

considered a benchmark setup in vibration-based systems. 

The system is considered linear for certain ranges during 

an excitation. For a simple system, the model is considered 

a second order system with one of the following 

behaviours for an impulse/unit input: exponential, 

sinusoidal, polynomial, or combined from the previous 

performances. The performance depends highly on the 

values of the parameters including the values of the mass, 

spring constant, and viscous damper coefficient. In this 

brief paper, one of the new promising filtering techniques, 

referred to as the sliding innovation filter (SIF), is used to 

estimate the system trajectories including the position and 

velocity. The filter is known for being robust and stable 

when system parameters change, which makes it a suitable 

candidate when the SMD system crosses the ranges of its 

linearized model or one of the parameters changes 

significantly. To complicate the case, only one state is 

assumed to be measured, which is the position. In this 

paper, a revised formulation of the SIF with the Luenberger 

method is introduced for cases with fewer measurements 

than states. The results are compared with the well-known 

Kalman Filter (KF). The results demonstrate that the 

proposed filter works well with the presence of 

uncertainties. 
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1. INTRODUCTION 

Model based filters use a model the mimics the system 

under study. The filter simulates the model with the given 

input signal that enters the system [1-10]. Some model 

based filters are of type predictor-corrector filters. These 

filters predict unrefined estimate from simulating the 

model under certain operation. This estimate includes 

different type of modeling uncertainties, noise, and 

disturbances. These are then reduced in the correction 

stage [11-20]. 

Based on the correction stage, the filters can be divided 

into two major groups: optimal filters, and robust and 

stable filters. The former depends on finding the optimal 

solution using one of the optimal methods like least 

squared error, and maximum likehood functions. The 

pioneer work in this field is the Kalman Filter (KF), and its 

variant [21-30]. On the other hand, the second group 

depends on one of the stability function, i.e. Lyapunov 

theorem, to obtain a robust, disturbance resistance, and 

stable estimate. The pioneer works of sliding mode 

observer (SMO) [31-40], the smooth variable structure 

filter (SVSF) [41-50], and the sliding innovation filter 

(SIF) [51-60] are worth to mention in this field. These 

filters define a hyperplane and then force the estimate to 

maintain within its zone. To overcome the limitation in 

these two groups, several works were developed where at 

least one method from each group were merged together. 

Other works merged a filter with other techniques like AI 

and Luenberger method [61-69]. This work belongs to the 

last category.  

SIF is known to be the most recent robust and stable 

filter, where it was proposed in 2020. It can handle high 

molding uncertainties without becoming unstable. 

However, the filter suffers in the application where the 

number of measurement signals is less than the number of 

states. In such cases, the filter depends on the 

pseudoinverse of the measurement matrix and how deep is 

it connected to the hidden states. In this work, the SIF is 

applied to a spring-mass-damper (SMD) system with a 

single measurement signal that represents the position. The 

pseudoinverse of the measurement matrix is connected 

only to the first state, and hence, it is not connected to the 

hidden states. By combining the SIF with the Luenberger 

method, the measurement signal is linked to the hidden 

states. This improves the filter performance. The rest of the 

paper is organized as follows: Section 2 introduces the SIF, 

KF, and the proposed method SIF/L. Moreover, it shows 

the SMD model. The results of the proposed filter 

compared to SIF and KF are discussed and concluded in 

Section 3 and Section 4, respectively.  

2. METHODOLOGY 

2.1. SMD model 

The SMD system has the form of: 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑓     (1) 
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where 𝑚, 𝑏 and 𝑘 are the mass, viscos damper coefficient 
and spring constant, respectively. 𝑥  and 𝑓  are the system 
position and input, respectively. Assuming 𝑥1 = 𝑥  and 
𝑥2 = 𝑥̇ then the system is represented as: 

𝑥̇1 = 𝑥2 𝑎𝑛𝑑 𝑥̇2 =
(𝑓−𝑏𝑥2−𝑘𝑥1)

𝑚
    (2) 

Or in a matrix form as: 

[
𝑥̇1
𝑥̇2
] = [

0 1

−
𝑘

𝑚
−

𝑏

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

] 𝑓    (3) 

The system is discretized as  

[
𝑥1
𝑥2
]
𝑘

⏞  

𝐱𝑘

= [
1 𝑇

−
𝑘𝑇

𝑚
1 −

𝑏𝑇

𝑚

]

⏞          

𝐀𝑘−1

[
𝑥1
𝑥2
]
𝑘−1

⏞    

𝐱𝑘−1

+ [
0
𝑇

𝑚

]

⏞

𝐁𝑘−1

𝑓𝑘−1⏞

𝐮𝑘−1

 

→ 𝐱𝑘 = 𝐀𝑘−1𝐱𝑘−1 + 𝐁𝑘−1𝐮𝑘−1   (4) 

where 𝑇 is the sampling time and 𝑘 is the time index. The 
general form of (4) is represented as:  

𝐱𝑘 = 𝐀𝑘−1𝐱𝑘−1 + 𝐁𝑘−1𝐮𝑘−1 +𝐰𝑘−1   (5) 

𝐳𝑘 = 𝐇𝑘𝐱𝑘 + 𝐯𝑘 , 𝐇𝑘 = [1 0]   (6) 

where 𝐀𝑘−1, 𝐁𝑘−1  and 𝐇𝑘  are the system, input and 
measurement matrices, respectively. 𝐱𝑘 is the states and 𝐳𝑘 
is the measurement vectors at time 𝑘. From (6), only the 
first state is measured, which is the position. The vectors 
𝐰𝑘−1 and 𝐯𝑘 represents the system and measurement noise 
vectors. 

2.2. SIF algorithm 

The SIF consists of two stages, one to obtain the unrefined 
estimates 𝐱̂𝑘|𝑘−1  and its measurement 𝐳̂𝑘|𝑘−1  and the 

second stage to obtain the refined estimates 𝐱̂𝑘|𝑘  and its 

measurement 𝐳̂𝑘|𝑘. The stages are as follows: 

1- Prediction Stage,  

𝐱̂𝑘|𝑘−1 = 𝐀𝑘−1𝐱̂𝑘−1|𝑘−1 + 𝐁𝑘−1𝐮𝑘−1   (7) 

𝐳̂𝑘|𝑘−1 = 𝐇𝑘𝐱̂𝑘|𝑘−1    (8) 

 

2- Update Stage,  

𝐱̂𝑘|𝑘 = 𝐱̂𝑘|𝑘−1 + 𝐇𝑘
+[𝑆𝑎𝑡1,𝑘(𝐳𝑘 − 𝐳̂𝑘|𝑘−1)]  (9) 

𝐳̂𝑘|𝑘 = 𝐇𝑘𝐱̂𝑘|𝑘     (10) 

where: 

𝑆𝑎𝑡1,𝑘 = {

|𝐳𝑘−𝐳̂𝑘|𝑘−1|

𝜓1,𝑘
|𝐳𝑘 − 𝐳̂𝑘|𝑘−1| < 𝜓1,𝑘

1 |𝐳𝑘 − 𝐳̂𝑘|𝑘−1| ≥ 𝜓1,𝑘

 (11) 

where 𝜓1,𝑘  is the boundary layer. From (10), the 

shortcoming of The SIF can be observed as the 𝐇𝑘
+ is the 

pseudoinverse, which is in this case has a zero value for the 

second state. This means that the correction action will not 
refine the second state estimates. To fix this issue, the SIF 
is combined with the Luenberger method that maps the 
second state to the measurement.  

2.3. Luenberger algorithm 

The Luenberger method assumes that the input matrix 𝐀𝑘−1 
in SMD is divided as follows: 

𝐀𝑘−1 = [
𝐴11 = 1 𝐴12 = 𝑇

𝐴21 = −
𝑘𝑇

𝑚
𝐴22 = 1 −

𝑏𝑇

𝑚

]  (12) 

And hence the error in the second state is mapped to the 
error in the first state as follows: 

𝑒𝑧2,𝑘|𝑘−1 = 𝐴22𝐴12
−1(𝐳𝑘 − 𝐳̂𝑘|𝑘−1) 

= (
1

𝑇
−

𝑏

𝑚
) (𝐳𝑘 − 𝐳̂𝑘|𝑘−1)    (13) 

The error in the second state compensates the missing 

information in the SIF gain. However, it worth to mention 

that the Luenberger method assumes an ideal system with 

no uncertainties or noise vectors. Therefore, the method by 

itself cannot reduce the noise effect and cannot handle the 

modeling uncertainties. It needs to be combined with a 

robust filter that can reduce the effect of them when they 

present. 

2.4. SIF/Luenberger algorithm 

By using the SIF combined with the Luenberger method, 
the system assumed that the states are measured, one with 
an actual measurement, and the other one derived from that 
measurement as in (13). The algorithm is modified as 
follows: 

1- Prediction Stage,  

𝐱̂𝑘|𝑘−1 = 𝐀𝑘−1𝐱̂𝑘−1|𝑘−1 + 𝐁𝑘−1𝐮𝑘−1  (14) 

𝐳̂𝑘|𝑘−1 = [1 0]𝐱̂𝑘|𝑘−1    (15) 

2- Update Stage,  

𝐱̂𝑘|𝑘 = 𝐱̂𝑘|𝑘−1 + [
𝑆𝑎𝑡1,𝑘(𝐳𝑘 − 𝐳̂𝑘|𝑘−1)

𝑆𝑎𝑡2,𝑘 ((
1

𝑇
−

𝑏

𝑚
) (𝐳𝑘 − 𝐳̂𝑘|𝑘−1))

] (16) 

𝐳̂𝑘|𝑘 = 𝐱̂𝑘|𝑘     (17) 

Where  

𝑆𝑎𝑡2,𝑘 = {
|
(𝑚−𝑇𝑏)(𝐳𝑘−𝐳̂𝑘|𝑘−1)

𝑇𝑚𝜓2,𝑘
| |

(𝑚−𝑇𝑏)(𝐳𝑘−𝐳̂𝑘|𝑘−1)

𝑇𝑚
| < 𝜓2,𝑘

1 |
(𝑚−𝑇𝑏)(𝐳𝑘−𝐳̂𝑘|𝑘−1)

𝑇𝑚
| ≥ 𝜓2,𝑘

 (18) 

where 𝜓2,𝑘  is another boundary layer. Both boundary 

layers are considered design parameters that are needed to 
reduce the noise effects. 
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3. SIMULATION RESULTS 

The KF, SIF and SIF/L are tested on the model of SMD 
represented by (1) to (6). The system has one measurement, 
which represents the first state. The algorithms are applied 
to two cases: with and without modeling uncertainties. The 
system and filters parameters are summarized by Table 1 
for both cases. Monte Carlo Simulation is used to show the 
effectiveness of the method. The simulation is repeated 
1000 times for each filter and for each case. Each iteration 
consists of different noise and measurement noise vectors. 
The filters and the system are excited by the input of Figure 
1. The root mean squared error (RMSE) and the maximum 
absolute error (MAE) which are calculated as: 

  𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝐴𝑐𝑡𝑢𝑎𝑙,𝑖−𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,𝑖)

2𝑛𝑠
𝑖=1

𝑛𝑠
  (19) 

𝑀𝐴𝐸 = max(|𝑥𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|)  (20) 

 

Figure 1. Input signal to the system 

Table 1. Simulation parameters for system and filters 

Parameter Actual System Filter with no uncertainties Filter with uncertainties 

System Matrix, 𝐀𝑘−1 [
1 0.001
−2 0.98

] [
1 0.001
−2 0.98

] [
1 0.001
0 1

] 

Input system, 𝐁𝑘−1 [
0

2 × 10−4
] [

0
2 × 10−4

] [
0
0
] 

𝜓1,𝑘 for SIF  1 10 

𝜓1,𝑘 for SIF/L  10 1 

𝜓2,𝑘 for SIF/L  5 × 105 5 × 102 

𝑄 for KF  [5.77 × 10
−7 0

0 5.75 × 10−6
] [5.77 × 10

−4 0
0 5.75 × 10−3

] 

𝑅 for KF  0.0057 0.0057 

 

(a) 

 

(b) 
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(c)  

 

(d)  

Figure 2. The RMSE and MAE of the Monte Carlo Simulation for (a) first and (b) second states for the without 
uncertainties case, and (c) first and (d) second states for the with uncertainties case. 

Figure 2 (a) and (b) show the Monte Carlo Simulation 

results for first and second states for the without 

uncertainties case, while (c) and (d) are for the simulation 

with uncertainties case. Figure 3 (a) and (b) show the 

performance of the filters on the first and second states of 

the case of no modeling uncertainties, while (c) and (d) are 

the performance for the case of modeling uncertainties 

present. These results are reflected in the Table 2 for the 

without uncertainties case, and table 3 for the with 

uncertainties case. 

The results in Figure 2 and Table 2 show that the KF, 

SIF and SIF/L have similar performance with some 

superiority to KF as expected. These results are for the 

system with no uncertainties present. That means that the 

application fits with KF criteria and hence, the best 

performance is achieved by KF. Once uncertainties 

present, SIF/L shows the superior performance with 

RMSE of 0.0085 and 1.19 for the first and second states, 

respectively. Comparing these values to KF and SIF, it can 

be found that it is 53%, and 83% for the first state, and 30% 

and 83% for the second states, respectively. The MAE of 

SIF/L has value of 0.0436 and 9.41 for the first and second 

states, respectively. Comparing these values to KF and 

SIF, it can be found that it is 51%, and 71% for the first 

state, and 92% and 72% for the second states, respectively. 

 

  

(a) (b) 
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(c) (d) 

Figure 3. The performance of the (a) first and (b) second states for the without uncertainties case, and (c) first and (d) 
second states for the with uncertainties case. 

 

Table 2. RMSE and MAE for the without uncertainties case 

 𝑅𝑀𝑆𝐸 in 𝑀𝐴𝐸 in 

 𝑥1 (𝑚) 𝑥2(𝑚/𝑠) 𝑥1 (𝑚) 𝑥2(𝑚/𝑠) 

𝐾𝐹 2.61 × 10−04 1.03 × 10−02 1.1 × 10−03 3.35 × 10−02 

𝑆𝐼𝐹/𝐿 2.71 × 10−04 1.09 × 10−02 1.1 × 10−03 3.57 × 10−02 

𝑆𝐼𝐹 2.87 × 10−04 1.09 × 10−02 1.1 × 10−03 3.70 × 10−02 

Table 3. RMSE and MAE for the with uncertainties case 

 𝑅𝑀𝑆𝐸 in 𝑀𝐴𝐸 in 

 𝑥1 (𝑚) 𝑥2(𝑚/𝑠) 𝑥1 (𝑚) 𝑥2(𝑚/𝑠) 

𝐾𝐹 1.82 × 10−02 6.84 × 1000 8.87 × 10−02 3.23 × 1001 

𝑆𝐼𝐹/𝐿 8.50 × 10−03 1.19 × 1000 4.36 × 10−02 9.41 × 1000 

𝑆𝐼𝐹 1.21 × 10−01 6.87 × 1000 5.17 × 10−01 3.39 × 1001 

 

4. CONCLUSION 

In this brief article, a modified version of the SIF is tested 
on a SMD system. The proposed filter, referred to as the 
SIF/L, is a combination of the SIF and Luenberger method. 
It extracts the hidden states with a performance that 
competes with the KF and SIF, especially when modeling 
uncertainties are present. The RMSE and MAE of SIF/L for 
the worst case scenario of the first state are 0.0085 and 
0.0436, respectively, and for the second state 1.19 and 9.41, 
respectively. For future work, the proposed filter will be 
investigated for higher-order systems, and will be applied 
to nonlinear experimental systems. 
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