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Abstract Cognitive dynamic systems are a new field of 

physical systems inspired by several areas of study such as 
neuroscience, cognitive science, computer science, mathematics, 

is considered cognitive when it is capable of five fundamental 
processes to human cognition: the perception-action cycle, 
memory, attention, intelligence and language. With these 
capabilities, a cognitive dynamic system can sense its environment, 
interact with it, and learn from it through continued interactions. 
The goal of this paper is to provide a thorough review of the 
cognitive dynamic system framework, along with its theory, 
applications, and its two special functions: cognitive control and 
cognitive risk control.  

Keywords cognitive dynamic systems, cognitive control, 
cognitive risk control, cognitive radio, cognitive radar, cognitive 
internet of things, smart systems 

I. INTRODUCTION 

Cognitive dynamics systems (CDS) are a new class of 
systems which combine knowledge from several disciplines 
such as neuroscience, cognitive science, computer science, 
mathematics, physics and engineering [1]. The goal of CDS is 
to provide a framework for dynamic systems to augment them 
with cognitive capabilities, allowing them to sense, interact and 
learn from their environments. A dynamic system is considered 
to be cognitive when it can carry out five fundamental processes 

paradigm, these processes are the perception-action cycle 
(PAC), memory, attention, intelligence, and language [2]. 

Interest in the field of CDS has been growing at an 
increasing rate in recent years thanks to the seminal work 
carried out by Haykin on cognitive radio and cognitive radar [3] 
[4]. These two applications are among the earliest examples of 
CDS, stoking research into the theory and design of the CDS 
framework [1]. With cognitive radio, the primary goal is to 
solve the spectrum scarcity issue by providing the means for 
radio systems to access underutilized bandwidths. Cognitive 
radar, on the other hand, has been proposed as a means of 
providing improved accuracy and reliability in remote-sensing 
applications [2]- [4]. 

In essence, the CDS framework can be broken down into 
two special functions: cognitive control (CC) [5] and cognitive 
risk control (CRC) [6]. In the former, the limitation of current 
adaptive controllers and neurocontrollers when faced with 

unmodeled dynamics or unstructured environments are 
addressed. Specifically, CC is additive in nature, meaning that 
it is augmented to existing system designs by introducing a new 
state known as the entropic state. The entropic state is based on 
the notion of an information gap that must be controlled 
alongside a system model. The second special function, CRC, 
expands on the CC architecture to account for the risks 
associated with the uncertainties that are faced by a system, and 
bring them under control. Such risks may include security 
threats frequently encountered by physical systems, like 
cyberattacks on smart grids on jammers acting on radar 
systems. 

The first goal of this paper is to provide a detailed 
background on the theory and the architecture behind the CDS 
framework and its two special functions CC and CRC. The 
second goal is to present a short, structured overview of the 
current state of the field by reviewing recent literature on 
applications within the CDS framework. We aim to present a 
thorough discussion on the methodologies, key findings, 
experimental results, and limitations of the surveyed literature. 
Finally, we offer insight into the most promising areas for 
future research efforts in this field. This paper is organized as 
follows: Section II of this paper presents a background the CDS 
framework, theory and architecture. In Section III, cognitive 
control is introduced as the first special function of the CDS 
framework, with a review of relevant applications of this 
architecture. Similarly, Section IV introduces CRC as the 
second special function of the CDS framework, with a short 
review of applications and recent advancements. Finally, 
concluding remarks and suggestions for future researchers are 
discussed in Section V. 

 

II. COGNITIVE DYNAMIC SYSTEMS 

A. Perception-action Cycle 

There are two parts to any CDS: the perceptual and the 
executive. On the right-hand side of Fig. 1, the perceptual 
component or perceptor is located, whereas the executive or 
cognitive controller is located on the left-hand side [7]. 
Depending on the CDS application, the perceptor is in charge 
of directly observing the system and the environment using 
appropriate sensors. During perception, for example, a 
Bayesian estimator might be utilised, which computes the 
posterior of a system's state in each PAC and extracts relevant 
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information from what is experienced. A feedback connection 
transmits the perceptor's extracted relevant environmental 
information to the executive, which is then tasked with 
conducting cognitive or physical actions on the environment or 
system based on this knowledge [7]. 

The executive's cognitive efforts are designed to 
continuously improve the information extracted by the 
perceptor in following cycles. As a result, the executive 
indirectly observes the environment through the perceptor and 
acts on the information obtained, completing the PAC with a 
global feedback loop. In order to indirectly impact the system's 
perception, cognitive actions are frequently applied to the 
surroundings, such as increasing the lights in a dark room [5]. 
The physical state in this scenario contains the positions of 
objects that are not changed by light. Other forms of cognitive 
operations, such as altering the system's own sensors or 
actuators, can be performed alone on the system. The 
adaptation of a transmitted waveform in a cognitive radar 
system is an example of this. Furthermore, by adding a new 
component to the state controller's cost function called the 
entropic state, cognitive actions can be used to impact state-
control actions [5]. 

The cognitive controller, as shown in Fig. 1, is in charge of 
making decisions about the aforementioned cognitive 
operations in the executive, based on the entropic state 
established by the perceptor [8]. However, all of the distinct 
types of cognitive actions are not necessarily present in a given 
problem. A cognitive radar system, for example, can assess the 
target's states without being able to physically manipulate them 
because it only executes cognitive actions on its own actuators 
and the environment [5]. The application of reinforcement 
learning (RL) for the cognitive control agent is the mechanism 
underpinning executive decision-making. 

B. Memory 

The cognitive process of memory occupies its own physical 
space in a CDS, as shown in Fig. 1, in three forms: perceptual, 
executive, and working memory. Both sorts of memories have 
slightly different functions and responsibilities, but the primary 
purpose of equipping a CDS with memory is to allow for the 
acquisition and storage of long and short-term information [2]. 
A CDS can learn from its past experiences in terms of action 

and perception with access to this data, resulting in enhanced 
performance and resilience. 

According to the CDS concept, perceptual memory should 
have a hierarchical structure with multiple layers [7]. The goal 
of this setup is to perform perceptual abstraction of incoming 
inputs or measurements in order to represent the essence of an 
object, event, or experience, similar to how the human memory 
system works. Relevant information is kept whereas irrelevant 
information is eliminated, allowing for long-term memory in 
the perceptual component of the CDS [9]. In response to 
feedback information from the perceptor, executive memory 
serves a dual function with perceptual memory. The executive 
memory stores long-term cognitive actions made by the 
cognitive controller based on input from the perceptor and can 
be utilised as a reference for future cognitive activities. A new 
policy that considers both long-term and short-term experiences 
is produced by adding the output of the executive memory to 
the cognitive controller and incorporating it into future policies 
[8]. The executive memory effectively keeps track of the 
cognitive controller's action space in a probabilistic fashion. 

The working memory's function is to reciprocally couple 
the executive and perceptual memories, acting as a short-term 
memory interface between the two inside the CDS [4]. The 
cognitive controller may carry out its actions in each PAC in a 
synchronised manner as a result of this integration, and in 
summation, memory's general job is to continuously learn from 
and model the behaviour of the environment and the CDS's 
action space [8]. 

C. Attention 

Unlike the PAC and memory, which have their own 
physical locations in the CDS, the cognitive process of attention 
reveals itself through computational mechanisms inside the 
framework. There are two types of attention: perceptual and 
executive attention, which are both based on localised cycles 
and feedback linkages in their respective sections of the CDS 
[5]. Their responsibilities include prioritisation of activities and 
effective resource allocation, and they work closely with and 
are driven primarily by the presence of memory. This is 
accomplished in the perceptor, for example, by a variety of 
strategies that can be utilised to filter out unnecessary input 
using previously stored characterizations of the environment. 
On the executive side, attention uses the well-known explore-

 
Fig. 1 Block diagram of the basic structure of a cognitive dynamic system and its architecture 
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exploit tradeoff to help the RL learn from and plan cognitive 
actions for future cycles, primarily by reducing the action space 
of the memory for the RL to consider based on the relevance to 
the perceived information in each cycle [4] [8]. 

D. Intelligence 

Intelligence, like attention, does not have its own physical 
location in a CDS. It, on the other hand, draws on all prior 
cognitive processes like memory and attention and integrates 
them with the PAC to promote computational intelligence 
through efficient decision-making [2] [10]. Intelligence has an 
impact over the entire CDS, and its power and effectiveness in 
information processing are generated from leveraging all of the 
system's feedback loops, both global and local. As a result, 
intelligence plays a critical part in the CDS framework in terms 
of optimal decision-making in terms of the controller's actions 
on the system or environment of interest [7]. 

 

III. COGNITIVE CONTROL 

A. Overview of Cognitive Control 

Cognitive control is a paradigm that was first introduced in 
2012 by Haykin et al. [5] and is additive in nature rather than a 
replacement system design paradigm. CC can increase the 
usage of computational resources and lower the correctly 
defined risk functional for the work at hand by complementing 
state-control paradigms such as adaptive control and 
neurocontrol. However, before defining CC, the concept of an 
information gap must be established, which is related to the risk 
associated with a policy or action. It is thus possible to define 
CC with the goal of minimizing the information gap. 

The following is a useful summary of the concept of the 
information gap [5]: From noise-affected data, available 
information is retrieved and transformed from the measurement 
space to the information space. The accessible information is 
then partitioned into useful and redundant information based on 
the task at hand. In addition, sufficient information must be 
defined as the information required to complete the task at hand 
while reducing risk; relevant information is thus the intersection 
of available information and sufficient information. 
Furthermore, the information gap can be defined as the 
difference between sufficient information and relevant 
information. 

Quantifying and reducing the information gap necessitates 
the development of a task-specific metric  this concept equates 
to a new state that must be managed. The state of a dynamic 
system represents the basic information characterising the 
system's conditions at a given point in time, and the state 
trajectory, or change in state over time, describes the system's 
behaviour. The state, on the other hand, can only be obtained 
through noisy measurements, which necessitates a perception 
process in order to determine a posterior distribution of the state 
using a Bayesian generative model. The information gap is the 
difference between the maximal relevant information in the 
posterior distribution and the required statistics for a specific 
job. this quantity is also known as the entropic state, which gets 
its name from Shannon's entropy [5] [11]. As a result, thinking 
about a two-state model of a CC system, composed of a state-

space model, which describes the evolution of the system state 
over time, and an entropic-state model, which quantifies the 
information gap given the posterior computed by perception, 
seems intuitive. According to statistical differences in the 
environment, both models may change from one cycle to the 
next. It's also worth emphasising that the entropic state is 
simply the feedback information sent on to the cognitive 
controller, and that CC is merely a paradigm for minimising the 
entropic state [5]. 

The mathematical paradigm of RL is concerned with 
learning the best possible actions purely through positive and 
negative reinforcement or rewards. In CC, RL is in charge of 
ensuring that the entropic state is reduced after each cognitive 
cycle and establishing a policy in a particular environment that 
is driven solely by rewards [8]. The entropic reward is defined 
as the entropic-state decrement after each consecutive cycle. It 
can be anticipated using a Bayesian filter if the environment is 
modelled. Thus, learning and planning are two independent 
ideas in RL for CC, the former using real values of the entropic 
reward for a particular action and the latter using the predicted 
entropic reward from the Bayesian filter [8] [12]. It is worth 
noting that RL can only learn once for each PAC's chosen 
action; but, RL can prepare for arbitrary number of simulated 
future cycles and actions [5]. The number of actions that can be 
performed during planning is limited by considerations such as 
computing effort and cost, as well as time limits that need 
planning to be done before a single PAC finishes. 

B. Related Works in Cognitive Control 

1) Tracking Radar 
The authors of [9] create a cognitive radar system and install 

a cognitive controller within it. The goal of the research is to 
show how powerful the cognitive controller's information 
processing capabilities are, as well as the system's potential 
tracking performance increases as a result. The literature 
provides details on the parameters of relevance, such as the 
measurement and system noise covariances, as well as relevant 
state-space and entropic-state models for the study's 
applicability. The cubature Kalman filter (CKF) [13] is used to 
estimate the perceptor's state covariance matrix, which is then 
utilised to compute the entropic-state. 

The system is stated as having 382 distinct cognitive actions 
(the number of different transmit-waveform library 
combinations), each of which affects the measurement noise 
covariance matrix during a cycle of the PAC. Three different 
scenarios are investigated in the first trials; the first is the 
absence of CC on the system (fixed radar waveform). In the 
second situation, the cognitive controller learns but does not 
plan; the algorithm merely remembers the entropic reward 
values from the previous step. The third and final scenario 
introduces planning by using an explore-only method in the 
planning phase, which means the learning process is repeated 
for three different cases: the exploration of only one, two, or 
three random cognitive actions in each cycle of the PAC. 

To reduce the impacts of randomness in the author's 
experimental simulations, 50 cycles were run across 1000 
Monte Carlo runs [9]. Because the total number of cycles is 
substantially fewer than the number of possible cognitive 
activities (50 vs. 382) [9], performance in entropic-state 
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reduction in the scenario without planning is not much better 
than in the absence of CC. However, in the scenario with 
varying numbers of cognitive actions per cycle, it was 
discovered that even just one random cognitive action in the 
planning phase, which is a fraction of the total number of 
possible cognitive actions, is sufficient to demonstrate a four-
order-of-magnitude improvement in entropic-state reduction 
[9]. In addition, the cases of two or three random cognitive 
actions showed the same drop in entropy but with faster 
convergence. In comparison to standard fixed waveform 
techniques, the planning process in CC was shown to 
dramatically improve the entropic-state of the model. 

Further simulations in the study attempted to see how three 
distinct CC algorithms, such as dynamic optimization, Q-
learning, and the authors' newly suggested algorithm, which 
combines Q-learning with learning and planning processes, 
affected the results. The suggested approach, which was 
configured to plan for three cognitive acts, outperformed both 
Q-learning and dynamic optimization in terms of minimising 
the entropic-state while also having a lower computational load 
[9]. The suggested technique achieved an entropic state value 
of 100.4  in a 250-cycle trial, compared to about 100.7  for both 
Q-learning and dynamic optimization [9]. Finally, the authors 
point out that while the Q-learning technique is computationally 
tractable, it can be inefficient in terms of performance. As a 
result, it may be useful to focus future research on developing 
algorithms designed specifically for this purpose. 

2) Communication-Based Train Control 
Communication-based train control (CBTC) systems are 

automated train control systems that use bidirectional train-
ground wireless communications to assure the safe and efficient 
running of rail vehicles. These solutions aid in the better usage 
of railway network infrastructure while also improving 
customer service. However, there are concerns with train-
ground communications and train control, which are usually 
treated as different topics in the literature.  

Recent studies have explored combining many concerns 
into a single problem with the goal of overcoming each 
challenge using a CC-inspired technique, as in [14]. The 
authors employ the entropic state to objectively explain the 
packet delay and drop of information exchanged between the 
train-ground connection and the train control centre [14]. 
Wireless local area networks (WLAN) are widely employed in 
urban rail transit systems around the world as a medium for 
train-ground communication [15]. The linear-quadratic cost is 
utilised as a performance metric for train control, and Q-
learning is then used to find the best policy based on this metric 
and the entropic state. In order to characterise high-speed 
railway and Rayleigh fading, the wireless channels are 
modelled as finite-state Markov chains with various state 
transition probability matrices. The CC model is in charge of 
ensuring that wireless communications and handoffs are 
reliable and uninterrupted, guaranteeing that the current train 
receives accurate information about the front train. As a result, 
the authors believe that adopting CC to increase communication 
between the train and the control centre will result in a more 
robust control of CBTC systems in terms of acceleration, 
deceleration, speed, distance, and emergency brake profiles 
[14]. 

With the proposed approach, more reliable velocity 
management between the system's front and back trains was 
proved through experimental trials with measurements 
retrieved from antennas on a train placed within a tunnel and 
subsequent MATLAB simulations [14]. When compared to 
alternative control policies like the semi-Markov decision 
process (SMDP) and greedy policies, which showed tiny 
disturbances in the difference in front and back train velocities, 
CC showed completely smooth and significantly safer 
behaviour. Furthermore, when compared to handoff delays of 
one second using the SMDP and greedy policies [14], the 
handoff delay with CC was significantly reduced to 0.2 
seconds, half of the train response time parameter. Finally, 
while looking at the failure rate of the CBTC system under 
various policies, it is obvious that the CC approach proposed is 
the most effective due to its 99.78 percent availability. In 
comparison to the SMDP policy, which has a 10-2  
unavailability rate, and the greedy policy, which has a 10-1  
unavailability rate, this figure leads to unavailability rates of the 
order of 10-3  using CC [14]. Overall, the results demonstrate 
the usefulness of the proposed approach; however, the authors 
advise that more research is needed to investigate more 
advanced train-ground communication technologies, such as 
relaying, in order to increase the performance of CBTC 
systems. 

3) Smart Grid Control 
Oozeer and Haykin [16] suggest a CDS as a supervisor for 

smart grid networks utilising a CC method, as shown in Fig. 2. 
The authors present a new method for calculating the entropic 
state that is customised to the smart grid application, and they 
use it to create a control-sensing mechanism that can recognise 
and detect incorrect data from sensor measurements in the grid 
network. Bad measurements caused by erroneous readings, 
broken hardware components, or power system disruptions can 
result in a cascade of domino effects that obstruct the state 
estimation process and can degrade the performance of ordinary 
control systems [16]. 

The direct current (DC) state estimator is regarded as the 
environment in which the CDS acts in the author's suggested 
framework because it is the recipient of measurements in the 
network. To classify the observables from the environment, a 
generative model based on the cumulative sum (CUSUM) is 
used, followed by a Kalman filter (KF) filter to produce updated 
estimates for future cycles. The cognitive controller is thus in 
charge of learning and planning (as illustrated in Fig. 2), as well 
as providing the network with the ability to prioritise and 
disregard specific measurements for optimal state estimation by 
customising the weights assigned to each sensor or metre. By 
functioning in the opposite direction and independently of the 
PAC, the shunt cycles facilitate planning. With the use of the 
memory system in the perceptual and executive sections, this 
cycle engages both the perceptor and the executive to account 
for all planned prospective actions in each PAC [16]. The 
Bayesian Upper Confidence Bounds (Bayes-UCB) algorithm is 
used to optimise the system's newly tailored entropic state and 
provide a means for the cognitive controller to learn the best 
policy of actions, in this case, measurements weights, which are 
stored in working memory and applied to the system [16]. 
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Experimental simulations on a 4-bus network are used to 
evaluate the suggested CC approach's performance in detecting 
and correcting erroneous data by changing measurement 
weights of various metres in the network. With CC, the system 
was shown to respond dynamically, selecting the optimum 
collection of metres to obtain readings from at the same time 
and efficiently assigning the best weight to each measurement 
for optimal state estimate [16]. Only a few PACs are required 
when a metre malfunctions in order to learn from the situation 
and adapt by lowering the weight of the faulty metre. 

It is also demonstrated that the cognitive controller's weight 
assignment to the various measurements is done in such a way 
that it adapts to the probabilistic characteristics of noisy signals, 
and that the mean squared error (MSE) of the estimates 
obtained with the cognitive controller is much lower than 
without CC [16]. Furthermore, the authors demonstrate that 
when dealing with cyberattacks such as fake data injection 
assaults (FDI), the entropic state can be used as a metric to 
detect such attacks. However, it is noted that the model's 
structure must be expanded to include CRC in order to 
effectively deal with and reduce the risk associated with these 
types of attacks, which the authors address in later works [17] 
that will be discussed in section IV. 

A disadvantage of the suggested framework in dealing with 
inaccurate measurement data is that it is not scalable to real 
smart grid networks, which typically have thousands of metres. 
The rationale provided is that performing an inverse calculation 
during state estimation is computationally expensive. We 
believe that machine learning techniques, notably a neural 
network, might be used to speed up processing and reduce the 
complexity of the approach. Regardless, the proposed model 
was more accurate, less prone to false positives, and cost less to 
compute than existing detection algorithms proposed in [18]. 
Finally, when scaling up to larger networks, the Bayes-UCB 
algorithm in the proposed CC model is expected to encounter 
challenges in terms of response time in determining optimal 

configurations in the face of metre malfunctions [16]. In this 
situation, it may be possible to reduce the algorithm's response 
time by fine-tuning it and increasing the algorithm's sensitivity. 

  

IV. COGNITIVE RISK CONTROL 

A. Overview of Cognitive Risk Control 

The CRC model adds a subsystem to the executive side of 
the CC model to allow for more complex reasoning, which 
necessitates the coining of a new term, the classifier, as shown 
in Fig. 3. In this illustration, the subsystem is configured in 
version II, which entails a disturbed cognitive action to the 
classifier rather than directly to the physical system. The 
executive memory, in turn, selects a collection of past acts or 
experiences for the classifier. There are also two pairs of 
switches, as indicated in Fig. 3, switches 1 and 2, and switches 
3 and 4. Switches 1 and 2 are open in version II, preventing the 
controller from acting directly on the physical system and 
providing feedback to the executive memory. Instead, as 
previously stated, a perturbed cognitive action is delivered to 
the classifier, which is then in charge of making decisions by 
selecting a past experience that most closely fits the supplied 
perturbed cognitive action and then updating executive memory 
[19]. Switches 1 and 2 are closed, but switches 3 and 4 are 
opened, when the physical system is working without 
ambiguity, or under version I. In this case, the controller has 
direct access to the physical system and can change the 
executive memory. 

The classifier's disrupted cognitive action is of probabilistic 
origin, and the executive memory's projected past events are 
similarly probabilistic because they are picked at random from 
its own action space. The Bayesian paradigm is used as a 
mechanism of decision-making in recognition of these truths, 
laying the stage for CRC [19]. For each of the past experiences 
in the specified set, the probability of the perturbed action's 

 
Fig. 2  Structure of a CDS with cognitive control as the supervisor of a smart grid network. 
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posterior given a past experience is determined using Bayes' 
rule. The risk-sensitive cognitive activity directed to the 
physical system is then defined as the experience with the 
highest likelihood [19].  

Task-switch control (TSK) is a CRC framework function 
that exploits the presence of pairs of switches and controls their 
configuration depending on the presence or absence of 
uncertainty. The entropic rewards from the feedback channel 
serve as the foundation for defining TSC methods. The entropic 
reward in CRC can either be positive or negative, and it can 
never be zero. These two qualities are crucial in characterising 
TSC: positive rewards indicate the absence of uncertainty, 
while negative rewards imply uncertainty [19]. The choice of 
function to compute the rewards, as well as the tuning of design 
parameters in the chosen function, are essential considerations 
when applying CRC to physical systems using this approach. 
To summarise, when there are no uncertainties, the entropic 
reward must be positive, so switches 1 and 2 are closed, but 
switches 3 and 4 are open. When there are uncertainties, the 
entropic reward must be negative, therefore switches 1 and 2 
must be opened and switches 3 and 4 must be closed.  

B. Related Works in Cognitive Risk Control 

1) Radar and Communications 
Feng and Haykin published the first experimental research 

employing the CRC framework in [20]. The paradigm is studied 
and used in a cognitive vehicular radar system for self-driving 
cars by the authors. Recognizing the hazards posed to 
autonomous vehicles in the presence of uncertainty, the authors 
attempt to improve the performance of vehicular radar systems 
in such dangerous situations. The literature discusses the 
architectural structure of the CRC adapted to the problem of 
transmit-waveform selection in vehicular radar systems, as well 
as a simple vehicle-following scenario. A host vehicle is going 
forward in the stated scenario, and ahead of it is a target vehicle 
moving in the same direction, both of which are defined by their 
own velocities and accelerations. Details on state-space 
dynamics and modelling of the scenario are provided, and we 
refer the reader directly to the literature in [20] for these 
specifics. The purpose of the proposed model is to deal with 

risky events caused by other physical entities robustly when 
applied as the supervisor for transmit-waveform selection in the 
radar system. 

The authors remove the Bayesian generative model from the 
perceptual element of the CDS in their work because, in the 
case of automotive radars, observables are typically taken in a 
fashion that can be directly processed by the Bayesian filter 
[20]. As a result, the Bayesian filter has been relocated to the 
bottom of the perceptor, and the entropic-information processor 
has been added to take its place and preserve the feedforward 
link. Aside from that, the suggested work follows the same 
structure as Fig. 4. The KF is chosen as the Bayesian filter to 
represent the vehicle-following scenario, and it is formulated 
according to the transmit-waveform option, which mixes the 
linear frequency modulated (LFM) waveform with Gaussian 
amplitude modulation. Invoking Shannon's information theory 
[20], the entropic state is determined using the filtered posterior 
from the KF as input. The entropic state uses a defined function 
to determine entropic or internal incentives, which it 
subsequently passes on to the executive. The internal incentives 
are sent through a defined function in the CRC framework's 
TSC mechanism, which is then subjected to particular 
conditions and thresholds formulated in the literature to 
determine the existence or absence of uncertainty. The rest of 
the methodology follows the standard CC framework described 
in earlier sections, which is also depicted in Fig. 4 by the red 
dashed boundary. 

The suggested CRC model with Q-learning for RL was 
compared to alternative systems, such as a radar with fixed 
transmit-waveform (FTW), the CC framework, and merely Q-
learning on its own for waveform creation, using experimental 
simulations [20]. The root mean squared error (RMSE) was 
calculated against each model's five states: the velocity and 
acceleration of the host vehicle, the longitudinal distance 
between the host and target vehicle, and finally the velocity and 
acceleration of the target vehicle. Based on simulation findings, 
the suggested model has the lowest RMSE for each state in the 
depicted qualitative graphs, with CC and Q-learning 
performing similarly [20]. These findings show that regardless 
of the algorithm used, the executive's learning algorithms will 

 
Fig. 3  Structure of the subsystem that is tasked with dealing with risk in the CRC architecture. 

Authorized licensed use limited to: McMaster University. Downloaded on March 03,2025 at 20:30:15 UTC from IEEE Xplore.  Restrictions apply. 



result in better decision-making and action choices. During the 
trial, the authors add a structural uncertainty term to the system 
model to create a dangerous scenario in the experiment, which 
lasts less than a second. In this circumstance, the Q-learning 
and CC algorithms were unable to adjust to the uncertainty, 
resulting in substantial spikes and erratic behaviour in the 
RMSE, which took upwards of eight seconds to recover from. 
However, the proposed CRC model relative to the other 
approaches was only slightly affected in terms of RMSE and 
recovered within a matter of two or three seconds at most. 
Overall, the model achieved impressive results and was also 
deemed a promising alternative to traditional approaches in 
handling uncertainties and risky events in vehicular radar [20].  

These research have culminated in the most current work of 
Feng and Haykin in [21], in which the authors propose merging 
cognitive vehicular radar (CVR) and vehicle to vehicle (V2V) 
communications with a coordinated CRC (C-CRC) model that 
bridges both systems together. C-CRC investigates the benefits 
of mutual aid by utilising information emanating from one of 
the systems that may be useful to the other. In addition, unlike 
earlier investigations, a nonlinear target-tracking model is used, 
and the analysis is done with a CKF [21]. The formula for the 
interference measure in V2V communications in this approach 
includes tracking findings as well as other practical aspects 
inferred from those results, such as vehicle motion and channel 
availability. The CVR also relies on communication system 
data to determine whether it is operating on a one-vehicle or 
two-vehicle model, with the latter indicating the presence of a 
second vehicle engaged in target tracking [21]. Each system in 
the C-CRC model has its own TSC mechanism and is 
implemented with a risk-sensitive subsystem. Furthermore, the 
TSC in each system plays a part in determining what 
information should be transferred from one system to the next 
for their dual system. 

The authors show that the suggested C-CRC model 
outperforms previous radar techniques such as FTW and Q-
learning in minimising the peak RMSE achieved in tracking 
longitudinal distance when faced with uncertainty by up to 70% 
and 67 percent, respectively. Although the typical CRC design 
in [22] had equivalent performance, it was still 41 percent 
worse to the C-CRC in terms of RMSE peak reduction. C-
performance CRC's is improving across the board, including 
tracking performance in terms of the utility of power selection 
in vehicle and jammer communications, total regret from 
channel selection, and finally, user utility. 

However, the ability of V2V communications to keep up 
with busy networks in specific locations or conditions has been 
noted in the literature. With less spectrum opportunity, user 
utility decreases while jammer utility grows, according to 
further examination of studies relating to the effects of channel 
availability on power and channel selection [21]. This scenario 
also leads to a greater regret measure for the host vehicle, a 
reduced multi-armed bandit (MAB) related reward, and 
increased channel switching costs. As a result, vehicle networks 
with several entities sharing available wireless resources in a 
local area present fascinating and practical V2V performance 
issues that demand additional research. The authors also 
highlight that security vulnerabilities in large-scale adversarial 
CAV networks would be investigated in the future as part of 
their research efforts. 

2) Cybersecurity in Smart Grids 
In [17], Oozeer et al. improved on their CC technique for 

smart grid attack detection from [16] by proposing an upgraded 
CRC-enabled model capable of also defending against such 
assaults. The entropic state was utilised as a metric in the initial 
experiments to detect the existence of FDI attacks, which was 
signified by the entropic state dropping below a predetermined 

 
Fig. 4  Structure of the CRC framework. Green coloured elements represent the newly introduced risk-sensitive subsystem. 
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threshold, setting the stage for TSC in the extended CRC 
version of the model. When an FDI assault is detected and TSC 
is triggered in the extended framework, the cognitive controller 
is deemed inactive, while CRC is activated to protect against 
these attacks [17]. 

The authors note that the action space involved in this 
scenario involving CRC differs from CC, recognising that FDI 
attacks try to produce deviation in specific states to trigger a 
cascade of incorrect control decisions. Unlike the cognitive 
controller, which has an action space of possible measurement 
weights, CRC includes picking tuning parameters to be applied 
to the DC system's configuration matrix [17]. However, if an 
assault has been discovered, the predictor or classifier must first 
recognise the states that are at risk. As explained in the literature 
[17], the affected states are recognised by whether they exceed 
the maximum deviation allowed by a formulation based on each 
estimate's mean recorded in the perceptual memory. Following 
that, once the attacker states have been identified, the planner 
must carefully pick tuning parameters in the columns of the DC 
system's configuration matrix corresponding to the impacted 
states without interrupting the estimation of other states [17]. 
Each shunt cycle is dedicated to resolving the hazards 
associated with one of the states at a time during this planning 
phase of operation, and a new reward connected with a specific 
action in the cycle is determined. The Bayes-UCB algorithm, 
as suggested in [16], is then in charge of optimising the policy 
in such a way that it prioritises actions that will return current 
attack states to a condition that is closest to past perceptual 
memories. Similar to CC, the actions that get the highest 
quantile from the Bayes-UCB algorithm are stored in the 
working memory and applied once the shunt cycles have 
expired. Once the impacted states have been restored to 
acceptable levels, the risk is considered controlled, and no 
further actions will be taken in those columns of the system 
configuration matrix. Finally, once the attacks have been 
determined as having finished, a mechanism is implemented by 
supplying the TSC with memory and a watchdog timer that 
restores the system configuration to its original state and marks 
the end of the current PAC [17]. 

The experimental simulations used in the author's research 
are comparable in configuration to those used in their prior 
investigations [16], which used IEEE 4-bus and 14-bus 
networks. The literature shows how the cognitive controller and 
CRC can operate together in the 4-bus network to bring FDI 
attacks under control once they've been introduced to the 
system. The network configuration matrix of the system is 
detailed in the study along with other pertinent parameters, and 
it is mentioned that the simulations run for a total of 2000 
seconds while allowing for 15 shunt cycles in each PAC for 
learning and planning. The action space for CRC consists of 63 
different tuner values, each of which can be tuned with a 
specific range of values for relevant columns of the network 
configuration matrix. In the 4-bus network, three states are 
measured, and an assault is launched on the first two states 1000 
seconds into the simulation, lasting 300 seconds. The phase 
angles of the desired states are shifted by predefined values to 
imitate FDI attacks [17]. Before the attacks, the CRC only 
needs 20 cycles to get the estimations or measurements for the 
impacted states under control and restored to a tolerable 

threshold [17]. When the attacks are over, the suggested model 
continues to run under CRC for another 39 cycles, according to 
the authors, because the model ensures that conditions for 
matching current and previous events are met. The altered 
network configuration matrix is then restored to its original 
condition before TSC and CRC are triggered. 

However, one of the proposed studies' disadvantages is that 
when other forms of FDI attacks, such as the slowly evolving 
ramp attack, are used, the detection time can be altered and 
increased [17]. Furthermore, scaling up the architecture to 
larger and more realistic networks will necessitate more shunt 
cycles in each PAC, creating major processing resource and 
efficiency difficulties. This problem is exacerbated by the fact 
that other types of FDI attacks, such as developing ramp 
attacks, necessitate a longer sample time for the DC estimator 
to overcome them. Another use of this CDS that the author's 
investigations have not looked into is not just identifying 
attacked states, but also identifying which sensors or metres 
have been attacked. Finally, there is a suggestion in the 
literature that applying a predetermined threshold on the 
absolute estimated error of the estimated readings might be 
used to identify the attacked metres in a network [17]. 

 

V. CONCLUDING REMARKS 

Cognitive dynamic systems, as well as their two particular 
functions, cognitive control and cognitive risk control, were 
comprehensively examined in this study. This work is the first 
attempt to compile data from the voluminous literature 
published in this young and evolving topic. The goal of this 
study's methodology was to encourage and facilitate additional 
research into cognitive dynamic systems. We did so by alerting 
the reader about advancements in each specialized field, 
outlining the benefits and limits of the surveyed literature, and 
providing suggestions and directions for future research. 
Finally, the contents and outcomes of this survey will serve as 
a foundation for future research, and will hopefully be useful to 
other academics working in this fascinating new subject. 
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