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Abstract— This review covers the topics of cognitive 

dynamic systems and their definition following Simon Haykin’s 

work in the field as well as their application through cognitive 

radar, cognitive radio and cognitive control. Furthermore, the 

article presents the topic of cognitive IoT and discusses it under 

the lens of cognitive dynamic systems referencing research in 

the field. It also discusses the needs for interoperability between 

IoT architectures and the need to integrate cognitive radio with 

future IoT frameworks developments. 
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I. INTRODUCTION 

The augmentation of physical objects with the power of 

the internet has become commonplace in the midst of the 

fourth industrial revolution. Many elements are becoming 

increasingly intertwined, including wearable technology, 

healthcare, home appliances, and transportation. The Internet 

of Things (IoT) has been characterised as a deeper integration 

of all physical objects with the digital realm, including the 

advancement from simple control systems sensing devices 

and effectors to more complex systems capable of 

exchanging data between devices connected to the internet 

for more timely and productive decision-making. The 

magnitude of today's IoT applications has posed several 

issues in terms of building a system-to-system 

interoperability framework. Developing IoT services that are 

intended to adapt to the circumstances and self-adjust in 

response to unforeseen situations through cooperation. These 

should also use the acquired data to extract semantic 

notations and optimize the system's effectiveness. In a 

general context, the IoT model has been defined as a globally 

connected network of uniquely addressable devices 

following established communication protocols. This term 

refers to a theoretical model of complex multidimensional 

systems made up of interconnected and interdependent items 

[6]. Smaller subsystems collaborate to achieve results in the 

most efficient way possible. Social network analysis is a 

study tool that is used to explain the network of relationships 

that exists among the numerous objects that make up the 

larger Internet of Things, as well as to investigate the effects 

on data processing, context extrapolation, and semantic 

derivation. This is especially beneficial in time varying IoT 

systems like smart cities. 

In a point-of-view essay published in the Proceedings of 

the IEEE in 2006, Dr. Simon Haykin initially suggested the 

concept of a dynamic cognitive system (CDS) [3]. He went 

on to write "Cognitive Radio: Brain Enabled Wireless 

Communication" [2] and "Cognitive Radar: A Way of the 

Future" [3], both of which were hugely significant. The 

author of these defines CDS as systems that learn from 

repeated enduring interactions with the environment to 

develop norms of behaviour over time, allowing them to deal 

with environmental uncertainty. Following Fuster's work on 

cognition, Haykin refined this concept in [4], outlining the 

distinction between adaptation and cognition by outlining the 

norms by which a cognitive dynamic system is defined, the 

perception action cycle (PAC), memory, attention, language, 

and intelligence.  

 

Novel cyber-physical systems (CPS) are continually 

being launched in this new era of greater connectivity, 

upgrading things with the ability to control the world around 

them, compute the data acquired, and share it through the 

internet. This transformation affects a wide range of sectors 

and services, prompting the development of novel IoT 

architectures targeted at efficiently capturing and processing 

data to improve process efficiency. The concept of cognitive 

IoT (CIoT) has been introduced as a way to enhance current 

IoT systems with cognitive capabilities in order to better 

leverage the vast volumes of data being collected and tackle 

scalability issues. To better examine variables that impact 

functionality and data gathering, semantic computing, 

cognitive computing, and perceptual computing can be used 

[5]. The goal of CIoT is to make IoT systems capable of 

understanding environmental elements and capable of 

contextual awareness. This new paradigm aims to apply the 

principles of human cognition to IoT dynamic systems. The 

process of learning, reasoning, and understanding the 

physical and social environments by embedding cognition 

processes into IoT seeks to build a new class of systems 

capable of operating with minimal human intervention [7]. 

Some present obstacles for a scalable and reliable IoT must 
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also be faced and answered beforehand in order to build such 

systems. The existing constraints of wireless technology and 

mobile networks are the first major worry in terms of 

scalability of such systems. Regarding future large-scale IoT 

systems, the restricted range, data capacity, and spectrum 

availability are major concerns [8]. These difficulties will 

likely intensify in the coming years, given the rapid 

development of IoT.  

 

Cognitive Radio (CR) and Cognitive Radio Networks 

(CRN) have sparked the interest of academic and business 

communities in recent years as a potential solution to many 

of these issues [8]. Spectrum sensing, spectrum decision, 

spectrum management, and spectrum mobility are the main 

processes of cognitive radio, with the goal of taking full 

advantage of licenced spectrum bands through the effective 

application of dynamic allocation to fill present spectrum 

gaps.  

 

A further constraint in vast IoT network is the 

complexity of aggregating data from multiple sources. Since 

data collected in a multi-sensor IoT system can be 

heterogeneous, adaptive analytics approaches must be 

considered. Collecting such diverse datasets to get a holistic 

picture of the system can be difficult. The data collected can 

also be nonlinear, multidimensional, or partial, making its use 

for intelligent decision-making and services provisioning 

much more difficult [7][1]. This problem is addressed by 

Cognitive IoT, which adapts to the data type, situation, and 

setting, utilising techniques like association analysis, 

clustering analysis, and regression, for contextual data 

analysis. Big-data-driven applications, on the other hand, 

necessitate more intelligent decision-making to enable more 

efficient and flexible operations via cooperative self-

organized and self-optimized behaviours. Moreover, for 

large-scale IoT systems, centralized data handling is a 

significant barrier. The challenges associated with central 

data processing include single-node failure, restricted 

scalability, and massive trade overhead [7]. 

II. RELATED WORK AND MOTIVATION 

 

Because of the wide range of disciplines to which IoT 

may be applied, developments in architectural design for IoT 

systems have primarily been targeted to individual 

applications. As a result, cooperation amongst IoT systems is 

constrained, thereby restricting advancement toward a bridge 

architecture [9]. 

 

Although cognitive IoT is still a new topic, it is growing 

in prominence because of scientific research in cognitive 

dynamic system and cognitive control. This new paradigm 

could be used as a model for developing new IoT designs and 

as a framework for addressing specific IoT concerns. In 

principle, CIoT aspires to provide IoT systems with a 

cognition component that allows them to learn, reason, and 

comprehend both physical and social realms [7], bringing 

together a variety of professions and areas such as computer 

science, mathematics, cognitive science, neurology, and 

engineering. CIoT may improve the interconnection of 

diverse IoT networks and be applied beyond disciplines and 

sectors, spanning the physical and cyber worlds to improve 

smart distribution of resources, autonomous process controls, 

and intelligent service provisioning.  

 

The Internet of Things can be viewed as a macro-level 

development of ubiquitous computing combined with CPS. 

At the moment, IoT can only use permitted spectral bands, 

which are presumably already being used, posing an 

impediment for large-scale IoT implementation. As trillions 

of objects become more interconnected in the near term, we 

can anticipate the issue to intensify [14]. In turn, by 

significantly increasing IoT data transmission using 

cognitive radio and incorporating machine learning, signal 

processing, and other technologies, effective distribution of 

data transmission within 4G and 5G licenced available 

spectrum could be an answer [13]. 

 

 Cognitive Radio is a promising enabling 

communication technology for IoT, dealing with issues such 

as wireless access network conflict and severe congestion, as 

well as automaticity, scaling, dependability, energy 

consumption, and service quality [14]. The most immediate 

advantage of CR for IoT is that it allows for more efficient 

spectrum allocation and administration, which improves 

accessibility, usability, flexibility, and interconnectivity. 

Addressing efficient and flexible networks and addressing 

heterogeneity concerns are the two types of CR techniques, 

with flexible networking referring to the optimal use of 

available spectrum via spectrum aware optimization to 

enhance QoS. While addressing diversity, the aim is to 

strengthen environment discovery, self-organization, 

adaptability, and nodal cohabitation. 

 

Devices in both centralised and decentralised networks 

will require routing in order to convey data to a 

predetermined destination. However, traditional single-hop 

and multi-hop routing algorithms are incompatible with 

cognitive radio systems because they lack additional 

functions like flexible spectrum allocation. CR mesh 

networks (semi-static) and CR ad hoc networks (adaptable 

and self-reconfiguring using P2P interactions) have both 

been discussed in the literature [14]. By accessing data about 

interference zones and relaying this to the underlying 

common infrastructure or cluster leader, spectrum knowledge 

would be readily available to all nodes in centralised 

networks. Delay, hop count, energy usage, bandwidth, and 

route stability will be among the network parameters which 

will be collaboratively optimised. Simultaneously, single-

hop, D2D networking will most likely be used in centralised 

networks provided that the transmitter's range is not 

surpassed. 
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A. Cognitive Dynamic Systems and Cognitive Control 

 

Dr. Simon Haykin was the first to propose the concept 

of a cognitive dynamic system as an answer to the radio 

spectrum's utilisation inefficiencies. Prospective bandwidth 

users' capacity for using non - utilized bandwidths is 

constrained due to government organisations' control of 

electromagnetic bands in the nature of licences [2]. Cognitive 

radio was created to maximise the usage of existing radio 

frequencies by taking advantage of spectral gaps. The study 

describes it as a smart wireless communication technology 

that learns from the surroundings and adjusts its settings in 

real-time using the approach learning by building. 

 

       By assessing the electromagnetic environment, finding 

channels, and transmitting data through dynamic bandwidth 

control, cognitive radio seeks to maintain high reliability in 

connectivity utilising the radio spectrum efficiently. The 

radio scene analysis is performed by the receiver, which 

surveys the surroundings to detect spectrum holes and 

calculates the interference temperature. Dynamic 

beamforming is used for inference control in this passive 

activity, which requires interpreting non - stationarity 

temporal signals to accommodate for the spatial 

characteristics of radiofrequency inputs. This strategy relies 

on constant spectrum observation and the computation of 

alternate paths to recognised spectrum holes since it offers 

resilience whenever a main user requires the spectrum for its 

own purpose. 

 

      Difficulties in the channel estimation problem are solved 

by adopting semi-blind receiver training, resulting in a 

receiver with two modes: supervised learning and tracking. 

The first option acquires and estimates the channel value 

using a quick training cycle. The other, on the other hand, is 

intended to be used in operating condition and repeatedly 

evaluates the channel state. The computations are performed 

using a state-space model of the channel parameters, with the 

premise of linearity, utilising the process equation and 

measurement equation. Choosing an effective monitoring 

approach and filter choice addresses AR coefficients, 

dynamic noise, and measurement noise. 

 

       Cognitive radio might have to function in a distributed 

mode via a cooperative system that accomplishes 

collaboration among nearest neighbors in constant 

interaction, widening the reach of its application and making 

it easier for multiple users to adopt and implement the 

technology to existing networks. The challenge of transmit-

power regulation for different users can indeed be viewed as 

a game-theoretic problem. The author suggested Nash 

equilibrium and water-filling procedures as remedies. The 

transmit-power regulation problem affects the dynamic 

spectrum management system in a similar fashion. The 

transmitter handles each of these components of the 

operation, thus it employs the very same methods to address 

it.  

 
 

 

 
 

In [15] authors considerations are raised regarding 

modulation techniques and traffic control, with a focus on 

OFDM. Orthogonal frequency-division multiplexing 

(OFDM) is a powerful modulation approach for cognitive 

radio and a cost-effective way to enable dynamic bandwidth 

allocation. Co-channel interference must be avoided when 

using an OFMD, which necessitates the inclusion of a traffic 

control system in the dynamic spectrum management 

algorithm. This system will be able to anticipate the length of 

time the spectrum gap would be empty, as well as predicting 

traffic patterns, based on previous data. More information 

regarding routing protocol, gateways and more can be found 

in [16]-[19] 

 

Following the new paradigm outlined by the five 

principles of cognition, a system is deemed cognitive if it can 

perform the five basic cognitive processes: perception-action 

cycle (PAC), memory, attention, language, and intelligence. 

The perception-action 's cycle concept ties to feedback loops, 

using sensing devices to extract data regarding the system's 

condition and functioning, which is then used to trigger 

predetermined events that affect the environment and the 

system itself within the context of the Internet of Things. To 

reach intelligent decision-making, this approach employs 

advanced data analytics and the other components of 

cognitive dynamic systems. Expanding on the PAC, by using 

relevant stored information about the surroundings, the 

system, and past behavior, which are stored in order to 

improve the system’s reaction to hypothetical situations. 

perceptual, executive, and working memory are the three 

types of memory. 

The PAC and memory elements of CDS are responsible 

for attention. This refers to the cognitive system's ability to 

comprehend data and properly optimise all preceding 

operations. In a cognitive dynamic system, attention is the 

systematic method for prioritising the distribution of 

Figure 1: Cognitive Radio operational representation. [2] 
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computational capabilities to alleviate the problem of 

information overload.  As a result, dynamically filtering 

processed data by significance to aid learning and cognitive 

controller enhancement are employed. In CDS, attention is 

not defined by a physical state, but rather by an artificial 

process that shows itself within system. Network protocols 

used by devices to interact and send information to other 

systems represent speech in engineering systems. To share 

data, cognitive systems should be able to adjust to any 

communication protocol. Nevertheless, initiatives to 

standardise such protocols in the IoT are aimed at finding an 

easier solution. Intelligence is built on the preceding four 

cognitive operations and incorporates them into an analytical 

process capable of choosing the best decisions. Intelligence 

can carry out an assessment and develop appropriate action 

in the face of unanticipated conditions and uncertainty to then 

learn from it. 

 This innovative feature to Haykin's realisations sparked 

the special necessity to incorporate cognitive control further 

into conceptual frameworks of cognitive dynamic systems 

[10]. Fatemi et al. present a fresh perspective on cognitive 

control in this study, concentrating on two key components: 

training and planning, both of which are based on two basic 

ideas. Firstly, the global perception-action cycle, which in 

this case refers to a cyclic controlled stream of environmental 

information and is the basic premise of cognition. Secondly 

the two-state model is composed of the target state, or target 

of interest, and the current entropic state of the preceptor, 

which can be viewed as a measure of the lack of sufficient 

data in the cyclic flow of information from the global PAC. 

Mathematically it is represented by a state-space model of the 

environment defined by a process equation and a 

measurement equation. The target state, or target of concern, 

is made up of the goal state and the entropic state of the 

preceptor, which again can be thought of as a gauge of the 

insufficient data in the cyclical flow of information from the 

global PAC. A state-space model of the environment 

characterised by a process equation and a measurement 

equation is used to describe it analytically. 

 

       The purpose of cognitive control is to optimise cognitive 

strategy, which is defined as the probability density function 

of cognitive activities, such as the impact of past behaviour 

on present state, via learning and scheduling. The current 

state of the preceptor is described using Shannon's entropy 

notion, which quantifies the disturbance existing as a 

probability distribution depending on acquired data. The 

system attempts to estimate future entropic state of the 

system and apply it in the planning stage of the cycle through 

gradual variations, formalised by an automatic rewarding 

mechanism at the end of every iteration [10]. The core of the 

cognitive controller capabilities is the cognitive control 

algorithm, which is described in the article as a method to 

converge towards the optimal policy. This is defined and 

proved as a special example of dynamic programming that 

inherits the fundamental traits of convergence and optimality. 

The authors explain a combined strategy of pure exploration 

and pure exploitation dubbed the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦  strategy, 

which they adapted from Powell et al. [11], to accelerate the 

learning and convergence of the algorithm to optimized 

parameters. This balance among exploitation (selecting 

activities based on the highest value criterion) and 

exploration (purposeful sampling actions arbitrarily) could 

be considered as an attentiveness enhancer. Assigning 

computing resources to sustain developing awareness of the 

environment while avoiding local sub-optimal solutions [10]. 

Figure 2 depicts the global feedback loop as well as the 

interconnections between both the cognitive perceptor and 

the cognitive controller. The implementation of cognitive 

control studied in [10] uses this novel cognitive controller 

idea to solve a radar surveillance challenge. The cognitive 

controller adjusts the parameters in the system to enhance the 

prediction of the object's potion, velocity, and ballistic 

coefficients. When contrasted to a static waveform radar, 

dynamically modifying the waveform led to a four-order-of-

magnitude enhancement in performance. 

 

   
 

                                     
       In the face of future unforeseen uncertainty, cognitive 

control, as previously established, misses a strategy for 

anticipating undesirable outcomes or impediments, often 

known as risk. The researchers in [12] go even farther, 

recognising the necessity for a component able of interfacing 

with multiple parts of CDS, like the preceptor, working 

memory, and executive memory, in order to predictably 

adjust the system to the new unpredictable environment. To 

drive CDS via timely risk-avoidance actions, this redefined 

Figure 2: Cognitive Control flow diagram. [10] 

Figure 3: Architectural composition of CDS inclusive of Cognitive 
Risk Control mechanisms. [12] 
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subsystem employs a Bayesian filter algorithm and a Bayes 

generative model [12]. Figure 3 depicts the perceptor's 

engagement with the Bayesian-based subsystem. The 

posterior is calculated on the latest state derived from 

previous iterations in this generative model, with the caveat 

that each PAC cycle may have multiple repetitions. 

 

       The article's Bayesian filtering is the sub-optimal 

Kalman filter, which is applied under premise of a linear 

model. For nonlinear applications, the cubical Kalman filter 

is recommended. The screening phase' goal is to gather up 

valuable information from the generative model and discard 

useless details, all while refining the important information 

given to the entropic information processor in a top-down 

attention process. In addition, a shunt cycle is established to 

transfer bottom-up attention from the scheduler to that same 

reinforcement learning algorithm, culminating in localized 

feedback between the systems. The entropic state 

computation flows through into internal rewarding 

mechanism, which feeds into the executive for reinforcement 

learning and task switch control. This has two key qualities 

that let it distinguish between different scenarios: internal 

rewards are always positive in the absence of uncertainty and 

persistently negative in the presence of uncertainties. The 

reinforcement learning mechanism computes and transforms 

them into a value-to-go function, which is used as input to the 

cognitive controller. The action space (which contains all 

theorised activities), internal incentives, discount factor (a 

weight provided to progressively discount prior actions), and 

policy, all impact this.  

 

       The cognitive controller is made up of the planner and 

the policy, as defined earlier in this section (the function that 

leads to decision making) and of a classifier involved in 

decision-making, selecting risk-sensitive cognitive actions 

when there is ambiguity. The classifier assigns a specific 

posterior to prior disrupted cognitive activities stored in 

executive memory based on N past events. Moreover, a task 

switching mechanism is provided to avoid the disrupted 

cognitive operations from impacting executive memory; this 

directly connects with the internal reward systems' dual 

composition. Pre-adaptation is accomplished by correctly 

identifying events that took place in hazardous uncertain 

situations versus those that did not. In the CDS framework, a 

set of gates are employed to divert the flow of data to other 

regions, necessitating additional investigation if disruptive 

cognitive actions are required [12]. The implementation of 

effective policy decision is of major relevance in the 

administration of these systems, hence cognitive control is 

highly pertinent in the IoT field. 

 

       The following Section will discuss some attempts to 

apply the CDS framework to the IoT and more general trials 

to bring cognition into these systems. 

B. Cognitive IoT 

Incorporating a cognitive element to the Internet of 

Things advances existing studies in the areas, which is 

focused on enabling generic objects to detect their 

surroundings and share their findings with a central 

administrator. According to Wu et al. [7], simply being 

connected is insufficient. IoT systems should be able to learn, 

 

Figure 3: Cognitive Control flow diagram. [7] 
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think, and comprehend the physical and social world on their 

own, giving them "high-level intelligence" [7]. Based on past                  

work by Haykin and Fuster, the study proposes a new 

concept, the Cognitive Internet of Things (CIoT).  It presents 

a new implementation strategy based on interactions between 

five basic cognitive tasks: the perception-action cycle, large 

data analysis, semantic extraction, knowledge extraction, 

intelligent decision-making, as well as on demand resource 

provisioning [7]. 

 

By bridging the tangible, virtual, and social worlds and 

enabling smart distribution of resources, active network 

operation, and smart service provisioning, the researchers 

introduce a new network framework wherein physical/virtual 

objects are interconnected and act as autonomous agents with 

minimal intervention. The structure can be separated into 

layers. Through processing incoming inputs and feedback 

data, the sensory control layer, which is linked to the global 

PAC cycle, directly interacts with the surroundings. The 

semantic knowledge layer, which is concerned with semantic 

and ontological derivations, further analyses the input in 

order to provide context awareness. The decision-making 

layer reasoned, planned, and selected the best appropriate 

action for the interacting parts to take to use the information 

extracted from the preceding layer.         The service 

evaluation layer evaluates the services provided and 

the feedback, using innovative social world-related 

performance measures. 

 

Planning and choosing are the two aspects of decision-

making generally. The article refers to the process of 

selecting an action from a range of options based on gathered 

data and deduced knowledge in Cognitive Radio Networks 

(CRN), which is driven by their learning capabilities. The 

ability to cognitively modify based on previous and present 

data is known as cognitive selection. The research highlights 

three types of cognitive selection: Markovian decision 

processes, multibandit armed problems, and multiagent 

learning. Since a distributed IoT architecture is likely to have 

a high number of decision-makers, the authors focus on the 

last described method, modelling it using game theory and 

studying the learning approach with ambiguous, volatile, and 

incomplete data [7]. 

Noncooperative game theories, which characterise 

exchanges between individual decision whereby each player 

optimises its utility function, are indeed a good fit for the 

challenge. The development of this systems is primarily 

concerned with constructing a utility function and achieving 

acceptable stable solutions. Local relationships amongst 

actors and spatial game models present additional hurdles in 

sizable CIoT systems. While global information exchange is 

impossible in a traditional large-scale IoT system, local 

interactions between agents can be achieved via regional 

collaboration, resulting in near-optimal solutions. The paper 

does not address whether blockchain may be a plausible 

solution for the worldwide flow of information in an IoT 

ecosystem and could be a future topic for research in this 

field.  

 

In CIoT, evaluating the overall system performance is a 

difficult operation that is reduced by classifying the data into 

two dimensions: cost and profit. Three primary measures are 

presented in the profitability dimension. The quality of data 

(QoD) is the initial parameter, which assesses the data 

gathering procedure as well as the reliability of sensed data. 

Furthermore, the QoD ought to be able to measure data 

completeness, veracity, and timeliness. The next indicator is 

quality of information (QoI), which reflects the amount of 

useful data obtained over a certain task based on precision, 

accuracy recall, and volume by the decision-maker. These 

specifics define the quality of the information presented. 

Finally, the profit dimension's quality of experience (QoE) 

indicator assesses customer experience relating to access, 

steady operation, speed, and requirements. Device usage 

performance, computational complexity, energy efficiency, 

and storage efficiency, on the other hand, are the cost aspect 

measures provided in the study. 

 

Home automation provide an ideal platform for 

analysing the prospects of CIoT as a people centric IoT that 

enhances the quality of life by dynamically modifying the 

living spaces in the context of linking the cyber-physical and 

social worlds, as described in [21]. Additionally, the growing 

presence of intelligent sensors in households makes it 

feasible to introduce intelligence to today's smart homes, 

buildings, automobiles, and, eventually, cities. 

 

In a larger sense, CIoT could be deployed to smart cities 

in a variety of ways. Feng et al. detail a test case employing 

the CDS concept towards the Internet of Vehicles (IoV) in 

smart cities in [22], claiming that modernising the transport 

network has the potential to decrease traffic, vehicle crashes, 

and commuting expenses. CAVs (connected autonomous 

vehicles) are ideal for this since they can change their 

activities in response to perceived environmental data. To 

keep up with recent advancements in the use of electric 

automobiles, the article expands this description to RACE 

vehicles. The adoption of vast CAV networks could help both 

commercial and public mobility but would also expose them 

to cyber-attacks. While delving into the CDS framework for 

smart vehicles, the authors explain the cyber dangers that 

such networks may face and recommend countermeasures to 

maintain the system's resilience, security, and privacy. This 

study looks at active attacks like jamming, binding, and FDI 

attacks, as well as passive attacks such eavesdropping and 

stalking [22]. Due to complex, variable, and hostile 

environment in which CAV function, adding CDS as a 

proactive supervisor of all components existing in a car is 

desired to improve risk management reduction via joint 

interoperability and adaptability. Relying on the context 

extrapolation features of CRC, operational sensors like 

LIDAR, video cameras, radio receivers, and radar receivers 

might be dynamically modified to the scenario, increasing 
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their functionality. The authors offer an improved CRC 

framework that is based on a Bayesian generative model and 

entropic information processing, which uses a task switch 

method of control to change mode of operation situationally. 

The reinforcement learning and scheduler, action library, 

policy, classifier, working memory, and executive memory 

all make up the executive element of CDS, that would 

estimate the optimum cognitive action or policy based on the 

adaptive and filtered feedback information. Further studies in 

the application of CIoT to smart cities, smart manufacturing 

and smart energy grids can be found in [23]-[25]. 

III. CONCLUSION 

 

       This article provides an overview of Cognitive Dynamic 

Systems and how they can be used in the Internet of Things. 

The standardisation initiatives aimed at expediting the 

creation of new IoT designs were also discussed in order to 

highlight the current issues with interoperability in IoT 

architectures, which is required to develop larger scale and 

comprehensive IoT and CIoT architectures. In addition, 

based on current research, the usage of Cognitive Radio for 

IoT was examined.  Finally, IoT was used to improve 

cognitive policy selection and how CIoT is approached. 
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