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ABSTRACT

As Industry 4.0 evolves with the abundance of data, networking capabilities and new computing technologies,
manufacturers are looking for ways to exploit this revolution. The demands of machine tools and their feed drive
systems require manufacturers to optimally plan and schedule maintenance actions to minimize costs. These
actions can be supplemented by capitalizing on machine data and the idea of cyber-physical systems, with the
use of edge and cloud computing, by monitoring important machine characteristics. A substantial benefit to
manufacturers would be the ability to monitor the health characteristics of machine tools to aid them in their
maintenance planning. Some of the challenges manufacturers face with this are the computing time and effort
needed to analyze and evaluate the vast amount of machine data available. A step towards real-time condition
monitoring of machine characteristics includes rapid parameter estimation of CNC machine tool systems. The
estimation of mass and friction allow for the monitoring of CNC feed drive health. This work proposes the
estimation of such parameters from real-world industrial machine tool data. A Feed drive testing procedure is
developed for smart data acquisition. Data analysis and recursive least squares methods are used to extract key
parameters representative of machine health that are realizable on edge computing devices.
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1. INTRODUCTION

The manufacturing industry is moving towards the digitalization and networking of factories due to the demands
for increased quality, efficiency, and minimizing costs. The maintenance costs of industrial machines is of great
interest to manufacturers. One method in minimizing maintenance costs is to optimize the scheduling and
planning of maintenance activities. In the machine tool industry, this includes planning when to maintain,
repair, or replace machine tool systems and components. With the digital age of manufacturing, there exists an
abundance of machine data that is representative of machine tool health. With the correct analysis, this data
can aid maintenance personnel in minimizing maintenance related costs.

The core components of many machine tools, and often the most expensive to maintain, are the feed drives
used to position the tool and/or workpiece. Generally, feed drive systems contain ball screws, linear guideways,
gear reducers, and drive motors (typically AC servo motors). Feed drive monitoring has been reviewed by several
researchers.!™ However, there is a need for rapid parameter estimation techniques to characterize machine tool
feed drives and monitor their condition over time.

Parameters such as mass and friction can be used to monitor the health of a feed drive. As a machine
axis wears, the wear is reflected in the friction dynamics. Identifying and tracking the level of friction over
time can thus be beneficial to manufacturers. Such identification is made possible through the data captured
by machine tool numerical controllers (NCs) and includes measured positions and drive torque/current. The
proposed method utilizes axis positions and the motor drive current to estimate feed drive mass and friction
through recursive least squares (RLS) as presented by Ref. 6. The identification of feed drive mass allows for the
simulation of the feed drive dynamics
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The identification of friction parameters in feed drive systems has been investigated in the literature.5 4

Likewise mass/inertia identification has also been investigated.® 8115 Several of these methods only consider
experimental setups that are not indicative of real machine tools. Other methods also require the analysis of
frequency-domain characteristics which may require offline data analysis.

2. METHODOLOGY

The methods in this work include the derivation of a feed drive model which is converted to a parametric form
for recursive least squares (RLS) estimation. Feed drive test procedures are then used to measure the relevant
data required for parameter estimation.

2.1 Feed Drive Model

Estimating the parameters of a ball screw feed drive axis requires a model that can be converted into a linear
parametric form. Such a form includes the effects of inertia, friction dynamics, and the drive force. Therefore,
a linear axis can be modelled by

Mi=Fy—Fy (1)

where M is the mass, z is the axis position, Fy is the drive force provided by the motor, and FY is the friction
force. If the input current to the motor is known, then the drive force can be calculated as

Kt
Fy=—3" (2)

where K is the motor torque constant, ig is the drive current, and R = [/2x is the transmission ratio of the
drive with [ being the lead of the ball screw. The friction effects observed in linear machine axes can be modelled
by viscous, Coulomb, and Stribeck friction as follows:

|1

Fy =Bz + F¢ sgn(i")+(FB —Fc) sgn(j:)e_ Us | (3)

Here, B is the viscous friction coefficient, Fo is the Coulomb friction, Fg is the breakaway friction, and v, is the
Stribeck velocity. Combining equations (1), (2), and (3), the axis dynamics are modelled as

. Kiig . . ., -l
Mz = 7 Bi + Fosgn(x) + (Fp — Fo)sgn(d)e vs ). (4)

2.2 Parameter Estimation Method

The identification method follows that of Ref. 6 where recursive least squares (RLS) is used to identify the mass
and friction parameters of the feed drive. The identification method follows two steps: (1) the mass, viscous
coefficient, and the Coulomb friction are first estimated and (2) the breakaway friction and Stribeck velocity
are identified thereafter. This method is followed as Stribeck behavior is generally a low-velocity phenomenon.
Thus, the second step in the identification method is performed on low-velocity waveform data.

RLS attempts to minimize a cost function of the response variable, regressor data, and the model parameters.
Using the parametric form in equation (5) where y is the response data, ¢ is the regressor data, and 6 are the
model parameters,

y(k) = ¢" (k)0(k), (5)
the cost function is defined as the sum of least squares:
1 2
iy k—i N T NG
70,0 =33 (v) = 0" ()" (6)

The factor A is the exponential forgetting factor. The recursive solution that minimizes the cost function (6) is

60k = 0k — 1)+ L) (u(k) — 6" (1)O(k 1)) 7)
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where the gain vector L and the covariance matrix P are given as

P(k —1)¢(k)
) =17 oTP(k — 1)p(k) (®)

and Pk 1)

P(k) = (I = L(k)o" (k)) — (9)

To identify the mass, viscous coefficient, and the Coulomb friction, the feed drive model in equation (1) is
altered to exclude the effects of Stribeck friction and rearranged for the drive force or current:

i
gd = Mi + Bi + Fo sgn(i). (10)
The parametric model is then
M
y=9¢"0= (¢ & sgn(t)) | B (11)
Fo

where y = Kig/R and the linear velocity & and acceleration & are calculated via discrete differentiation.

To identify the breakaway friction and Stribeck velocity, first the Stribeck friction is estimated using the
identified mass, viscous coefficient, and Coulomb friction by

4 _ N5 — Bi — Fesgn(i). (12)

FStri =

Next, the Stribeck friction relationship is linearized by taking the natural logarithm,

T
ln|FStm-| :1D|F57Fc|f|vf‘ (13)

which forms the basis for the following parametric form:

y=dT0= (1 |i]) (IH'FETF C') (14)

Vs

where y = In|Fsy,;| where Fgy,; is given in equation (12).

2.3 Feed Drive Test Procedure

The axis test is comprised of a constant velocity reference trajectory performed at various locations along the
axis. The constant velocity waveform includes passes at increasing velocities so the effects of Stribeck friction
become negligible. The waveforms cover a distance of 30 mm and oscillate at velocities increases from 1250
mm/s to about 9350 mm/s. See Fig. 1 for the reference position trajectory. This work focused on the section of
the test data that oscillates about the position at —300 mm as shown in Fig. 2.

3. EXPERIMENTS AND RESULTS
3.1 Experimental Setup

Machine axis tests were performed on a Grob G515 machining center used in manufacturing processes. The
axis under consideration was the z-axis which consists of a ball screw driven by an AC servo motor controlled
by a Siemens SINUMERIK 840D NC. This controller uses a cascaded proportional-proportional-integral control
structure, or P-PI control. The AC motor has a rated torque of 26.0 Nm and a rated current of 18.0 A.
The measured signals include linear and angular position of the axis and the motor drive current. Linear
position measurements were measured by a glass scale encoder and angular measurements via the motor’s rotary
encoder. The velocity and acceleration is estimated through discrete differentiation. The current measurement
is determined from the NC.
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Figure 1. Constant velocity waveform used for feed drive parameter estimation.
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Figure 2. Constant velocity waveform at -300 mm used in this work.
3.2 Results

To estimate the feed drive mass, viscous coefficient, and Coulomb friction, RLS was applied to the waveform
shown in Fig. 2. The covariance matrix and the forgetting factor were initialized to

106 0 0
P=|0 10 0
0 0 10°
A = 0.99995
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for the estimation of the mass, viscous coefficient, and the Coulomb friction. For the Stribeck parameters, the

covariance and forgetting factor were

106 0
P= ( 0 106‘>
A = 0.99995.

The RLS estimates of the parameters with respect to time are shown in Fig. 3. The values of the parameters
were determined by taking the average of the estimates after the initial transient period ended. The parameters
are listed in Table 1.
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Figure 3. RLS estimates for feed drive mass, viscous friction coefficient, and Coulomb friction.

Table 1. Estimated Model Parameters

Parameter Value  Unit
Mass, M 69.1 kg
Viscous coeflicient. B 54.2 N-s/m

Coulomb friction, Fo  742.8 N

To estimate the Stribeck friction parameters, the input data was truncated at 10 seconds to exclude high-
velocity data that is not relevant to the Stribeck phenomenon. The estimated parameters are shown in Fig. 4
and listed in Table 2.

The measured friction and estimated friction are plotted in Fig. 5. A mismatch between the measured friction
and estimated friction is seen. The actual feed drive friction is not symmetric about the position. The CNC axis
experiences higher friction under negative velocity (i.e. the axis is moving in reverse). To achieve a more accurate
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Figure 4. RLS estimates for breakaway friction and Stribeck velocity.
Table 2. Estimated Stribeck Friction Parameters

Parameter Value Unit

Breakaway friction, Fg  946.2 N
Stribeck velocity, v 0.864 m/s

friction estimate, the model must account for different Coulomb friction for the forward and reverse directions.
Additionally, the Stribeck friction estimate is less pronounced than what is actually observed at lower velocities.
However, the viscous friction appears to be more accurate as the slop of the estimated friction is similar to what
is measured.

To validate the estimated feed drive model the position and velocity loop control gains must first be known.
These gains were estimated via RLS using the following error and reference velocity for the position loop pro-
portional gain, and the drive current and velocity error for the velocity loop proportional and integral gains (see
Ref. 6). The tracking errors and modelling error were calculated for a constant velocity trajectory. The tracking
error is defined as

€t = Tyref — Lact (15)

where zof is the reference position and x,c; is actual position achieved either by the CNC or by the model.
Likewise, the modelling error is defined as

em = LONC — T (16)

where zcne is the actual CNC feed drive position. The tracking and modelling errors are shown in Fig. 6 where
the tracking error of the model and actual CNC feed drive are given. The estimated model shows comparable
performance to the actual CNC. The tracking errors both increase as the velocity increases as the controller
struggles to maintain the reference position. Differences may be accounted for by the discrepancy in the friction
model. The mean absolute tracking errors were 1.19 mm and 1.37 mm for the model and the CNC, respectively.
The model error is relatively low in magnitude with a mean absolute error of 0.18 mm.
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Figure 5. Measured and estimated friction forces at varying feed drive velocity.
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Figure 6. Tracking errors for the model and actual CNC feed drive, and the modelling error.

4. CONCLUSIONS

A method for rapid parameter estimation of an industrial CNC machining center is proposed. The method
outlines a constant velocity axis test that yields the relevant data needed for RLS parameter estimation. Next
the feed drive mass, viscous friction coefficient, and Coulomb friction are first estimated, followed by the Stribeck
friction parameters including the breakaway friction and Stribeck velocity. With the combined effects of viscous,
Coulomb, and Stribeck friction, a complete feed drive model is attained.

The estimated model is then validated and compared with the tracking performance of the actual CNC
machine. With improvements to the measured data and estimation method, these parameters can be monitored
over time to evaluate the relative health of the feed drive.
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