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ABSTRACT 

The sliding innovation filter (SIF) is a state and parameter estimation strategy based on sliding mode concepts. 
It has seen significant development and research activity in recent years. In an effort to improve upon the 
numerical stability of the SIF, a square-root formulation is derived. The square-root SIF is based on Potter’s 
algorithm. The proposed formulation is computationally more efficient and reduces the risks of failure due to 
numerical instability. The new strategy is applied on target tracking scenarios for the purposes of state 
estimation. The results are compared with the popular Kalman filter. 
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1. INTRODUCTION  

Estimation theory is a field of study considered to be a branch of statistics and signal processing [1]. True states 
of a system are typically plagued by noisy measurements or observations made of that system, and 
consequently, estimation theory deals with extracting knowledge of these true states from such measurements. 
Since the purpose is to remove unwanted noise from a signal, the term ‘filter’ is appropriate and commonly 
used for estimation theory techniques. Many estimation strategies rely on the update or refinement of estimates 
based on some gain [2]. The Kalman filter (KF) is considered to be one of the most population estimation theory 
techniques and is formulated in a predictor-corrector fashion [3]. The KF is known to yield an optimal solution 
for estimation problem linear in nature, and its gain optimization is based on minimizing the state error 
covariance matrix [4]. It has been demonstrated in the literature that a symmetric and positive-definite error 
covariance matrix is necessary to properly represent the state vector components’ statistics [5]. By definition, 
a symmetric matrix is defined as any square matrix with its corresponding transpose being exactly equal. 
Consider a symmetric matrix 𝑃, then 𝑃 ൌ 𝑃் is satisfied, and it can subsequently be considered positive-definite 
if  𝑏்𝑃𝑏  0 is also satisfied, where 𝑏 is a non-zero vector with real entries. These two definitions mentioned 
basically ensure that the state error covariance matrix’s off-diagonal elements are equal to each other (i.e., 𝑝 ൌ
𝑝), as well as ensuring elements along the diagonal are real and positive values. This means that the square of 
each estimation error is guaranteed to be positive. 

Square-root, or factored-form filters as described in [6], make use of three powerful linear algebra 
techniques to help ensure numerical stability [7, 8, 9]. These three techniques include QR decomposition, 
Cholesky factor updating, and efficient least squares [10, 11]. Breaking up the covariance matrix into factored 
terms is involved, which are then propagated forward and updated at each measurement [5]. Then, these factors 
are multiplied together to form the covariance matrix once again, ensuring its positive-definiteness. Potter’s 
square-root filter and Bierman-Thornton’s UD filters are two of the most popular square-root filters [12]. 
Although the accuracy of Potter’s square-root filter is similar to that of the UD filter, it is computationally more 
expensive [13].  
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UD filtering was introduced in the late 1970s and is based on transformation methods which involve an upper 
triangle covariance factorization [14, 15]. Despite being considered a square-root filter variant, UD filtering 
does not involve computing any square roots. Instead, the covariance 𝑃 is defined by: 

𝑃 ൌ 𝑈𝐷𝑈் (1.1) 

where 𝑈 is an upper triangular matrix with diagonal elements that are unity (all 1), and 𝐷 ൌ 𝑑𝑖𝑎𝑔ሺ𝑑ଵ, … ,𝑑ሻ. 
The matrices 𝑈 and 𝐷 are referred to as the UD factors of the covariance matrix 𝑃. Several different strategies 
exist to perform UD decomposition, creating 𝑈 and 𝐷 matrices [16]. Furthermore, the numerical stability of 
filtering strategies can be improved by factoring the covariance matrix into Cholesky factors [17]. This 
improvement in stability was first encountered through attempts to improve the stability of the KF with finite-
precision arithmetic [16]. In essence, the nature of the KF is unchanged, and instead an equivalent statistical 
parameter is used which has been found to be more resistant to round-off errors [18]. An increase in the 
arithmetic precision results in a reduction of the effects of round-errors, improving the overall stability of the 
filter. 

This paper is organized as follows: a background on the Kalman filter (KF) and sliding innovation filter 
(SIF) and their equations are summarized in section 2. In section 3, the square-root formulations of the KF are 
introduced, followed by an exposition of the new square-root SIF. Section 4 presents and describes the target 
tracking scenario. The results of implementing the square-root KF and square-root SIF are then outlined, and a 
comparison of the different methods is provided. Finally, the paper is concluded and future work is described 
in section 5. 

 

2. ESTIMATION STRATEGIES 

The Kalman Filter 

The core of the Kalman filter (KF) algorithm are shown in the following equations, and are used in an iterative 
fashion. In equations (2.1) and (2.2), the a priori state estimate 𝑥ොାଵ| is defined based on knowledge of the 
system 𝐹 and previous state estimate 𝑥ො|, and the corresponding state error covariance matrix 𝑃ାଵ|, 
respectively. 

𝑥ොାଵ| ൌ 𝐹𝑥ො|  𝐺𝑢 (2.1) 

𝑃ାଵ| ൌ 𝐹𝑃|𝐹்  𝑄 (2.2) 

The Kalman gain 𝐾ାଵ is defined by (2.3), and is used to update the state estimate 𝑥ොାଵ|ାଵ as shown 
in (2.4). The gain makes use of an innovation covariance 𝑆ାଵ, which is defined as the inverse term found in 
(2.3). 

𝐾ାଵ ൌ 𝑃ାଵ|𝐻்൫𝐻𝑃ାଵ|𝐻்  𝑅ାଵ൯
ିଵ

 (2.3) 

𝑥ොାଵ|ାଵ ൌ 𝑥ොାଵ|  𝐾ାଵ൫𝑧ାଵ െ 𝐻𝑥ොାଵ|൯ (2.4) 

The a posteriori state error covariance matrix 𝑃ାଵ|ାଵ is then calculated by (2.5), and is used 
iteratively, as per (2.2). 

𝑃ାଵ|ାଵ ൌ ሺ𝐼 െ 𝐾ାଵ𝐻ሻ𝑃ାଵ|ሺ𝐼 െ 𝐾ାଵ𝐻ሻ்  𝐾ାଵ𝑅ାଵ𝐾ାଵ
்  (2.5) 

The derivation of the KF is well documented, with details available in [19, 3, 20]. The KF gain is unique 
in its ability to yield an optimal solution to the linear estimation problem, however, this comes at a cost of 
stability and robustness. Assumptions used in the derivation include the system model being known and linear, 
that the system and measurement noises are white, and that the states have initial conditions with known means 
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and variances [21, 13]. However, the previous assumptions often do not hold in a number of applications, and 
if violated, the KF yields suboptimal results and can become unstable [22]. In addition, the KF is sensitive to 
computer precision and the complexity associated with computations of matrix inversions [16]. However, with 
modern computing power and capabilities, this drawback has been significantly reduced. The extended Kalman 
filter (EKF) is a natural extension of the KF method for nonlinear systems and measurements. A nonlinear 
system or measurement equations can be linearized according to their Jacobian matrix. The partial derivatives 
are used to compute linearized system and measurement matrices 𝐹 and 𝐻, respectively found as follows [23]: 

𝐹 ൌ
𝜕𝑓
𝜕𝑥
ฬ
௫ොೖ|ೖ,௨ೖ

 (2.6) 

𝐻ାଵ ൌ
𝜕ℎ
𝜕𝑥
ฬ
௫ොೖశభ|ೖ

 (2.7) 

The equations (2.6) and (2.7) linearize the nonlinear system or measurement functions around the 
current estimate of the state [3]. These values can then be used as per equations (2.1) through (2.5). This comes 
the tradeoff of optimality; as such, the EKF yields a suboptimal solution to the nonlinear estimation problem 
[20]. Other Kalman-based methods exist beyond the EKF, and include the unscented Kalman filter (UKF) and 
the cubature Kalman filter (CKF) [24]. Although these methods yield improvements on the EKF, a number of 
strict assumptions still apply. Furthermore, the presence of modeling errors, uncertainties, and disturbances can 
still lead to unstable estimates. 

The Sliding Innovation Filter 

Similar to the Kalman filter (KF), the SIF is formulated as a predictor-corrector estimation method [25]. The 
state estimates and state error covariances are first predicted using values obtained at the previous time step (or 
initialization), and then the state estimates and state error covariance are updated based on the measurements 
and correction term at the current time step. The correction term in this case is referred to as the SIF gain. 

The prediction stage includes calculating the predicted or a priori (‘before the fact’) state estimates 
𝑥ොାଵ|, the predicted state error covariance 𝑃ାଵ|, and the predicted innovation �̃�ାଵ| as per the following 
three equations, respectively. Note that the nonlinear SIF process is the same as the nonlinear KF process, 
except that system and measurements equations are no longer linear. 

𝑥ොାଵ| ൌ 𝐴𝑥ො|  𝐵𝑢  ሺ2.8ሻ 

𝑃ାଵ| ൌ 𝐴𝑃|𝐴்  𝑄  ሺ2.9ሻ 

�̃�ାଵ| ൌ 𝑧ାଵ െ 𝐶𝑥ොାଵ| ሺ2.10ሻ 

The update stage includes calculating the SIF gain 𝐾ାଵ, the updated or a posteriori (‘after the fact’) 
state estimates 𝑥ොାଵ|ାଵ, and the updated state error covariance 𝑃ାଵ|ାଵ as per the following three equations, 
respectively: 

𝐾ାଵ ൌ 𝐶ା𝑠𝑎𝑡തതതത൫ห�̃�ାଵ|ห 𝛿⁄ ൯ ሺ2.11ሻ 

𝑥ොାଵ|ାଵ ൌ 𝑥ොାଵ|  𝐾ାଵ�̃�ାଵ| ሺ2.12ሻ 

𝑃ାଵ|ାଵ ൌ ሺ𝐼 െ 𝐾ାଵ𝐶ሻ𝑃ାଵ|ሺ𝐼 െ 𝐾ାଵ𝐶ሻ் …

… 𝐾ାଵ𝑅ାଵ𝐾ାଵ
் ሺ2.13ሻ

 

Note that 𝐶ା refers to the pseudoinverse of the measurement matrix, 𝑠𝑎𝑡തതതത refers to the diagonal of the 
saturation term, 𝑠𝑎𝑡 refers to the saturation of a value (yields a result between -1 and +1), ห�̃�ାଵ|ห refers to the 
absolute value of the innovation, 𝛿 refers to the sliding boundary layer width, and 𝐼 refers to the identity matrix 
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(of dimension 𝑛-by-𝑛 where 𝑛 is the number of states). Equations (2.8) through (2.13) represent the SIF 
estimation process for linear systems and measurements defined by (2.1) and (2.2), respectively. 

The main difference between the KF and SIF strategies is in the structure of the gain. For the KF, the 
gain is derived as a function of the state error covariance, which offers optimality [26, 27]. However, for the 
SIF, the gain is based on the measurement matrix, the innovation, and a sliding boundary layer term. Although 
the state error covariance is not used to calculate the SIF gain, it still provides useful information as it represents 
the amount of estimation error in the filtering process. Figure 1 provides an overview of the SIF estimation 
concept. An initial estimate is pushed towards the sliding boundary layer which is defined based on the amount 
of uncertainties in the estimation process. Once inside the sliding boundary layer, the estimates are forced to 
switch about the true state trajectory by the SIF gain. 

 

  

Figure 1. The above figure illustrates the SIF estimation concept. 

The state estimates are updated with their corresponding innovation and sliding boundary layer term. 
The SIF gain effectively acts as a switching term, which forces the measurement errors to be bounded towards 
the true state trajectory. The sliding boundary layer 𝛿 is defined as a function of the modeling uncertainty and 
noise present in the estimation process. The width can be tuned to obtain the desired estimation result. Another 
starting point for tuning is to use the values of the measurement noise covariance. For example, 𝛿 ൌ
10𝑑𝑖𝑎𝑔ሺ𝑅ሻ. The values can then be tuned by trial-and-error, grid search methods, or optimization techniques 
to reduce the estimation error. 

For the cases when there are fewer measurements than states ሺ𝑚 ൏ 𝑛ሻ, artificial measurements can be 
created based on existing measurements to create a full measurement matrix. The structure could also be 
modified as per a Luenberger observer or other strategies as per [28, 29]. This process would be required to 
estimate parameters of the system matrix using the SIF. 

 

3. SQUARE-ROOT FORMULATIONS 

The Square-Root Kalman Filter 

James Potter and Angus Andrews developed the square-root formulation of the KF, and the method described 
in this section is often referred to as Potter’s algorithm [13, 16]. As per Cholesky factorization, suppose that 
the square root of the state error covariance matrix 𝑃 is available, such that 𝑃 ൌ 𝑆𝑆். Modifying (2.2) yields: 

𝑃ାଵ| ൌ 𝑆ାଵ|𝑆ାଵ|
 ൌ 𝐹𝑆|𝑆|

் 𝐹்  𝑄
ଵ/ଶ𝑄

்/ଶ (3.1) 

Equation (3.1) is essentially (2.2). Modifying (2.3) yields: 
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𝐾ାଵ ൌ 𝑆ାଵ|𝑆ାଵ|
் 𝐻்൫𝐻𝑆ାଵ|𝑆ାଵ|

் 𝐻்  𝑅ାଵ൯
ିଵ

 (3.2) 

The updated state error covariance (2.5) then becomes: 

𝑃ାଵ|ାଵ ൌ ሺ𝐼 െ 𝐾ାଵ𝐻ሻ𝑆ାଵ|𝑆ାଵ|
் ሺ𝐼 െ 𝐾ାଵ𝐻ሻ்  𝐾ାଵ𝑅ାଵ𝐾ାଵ

்  (3.3) 

Alternatively, this can be written as follows [13]: 

𝑃ାଵ|ାଵ ൌ 𝑆ାଵ|ሺ𝐼 െ 𝑎𝜙𝜙்ሻ𝑆ାଵ|
்  (3.4) 

where 𝑎 and 𝜙 are defined as: 

𝑎 ൌ ൫𝜙்𝜙  𝑅,ାଵ൯
ିଵ

 

𝜙 ൌ 𝑆ାଵ|
் 𝐻் 

(3.5) 

Note that 𝑖 refers to the 𝑖௧ element of the corresponding matrix or vector. As per [13], the a posteriori 
square-root covariance matrix can be calculated as follows: 

𝑆ାଵ|ାଵ ൌ 𝑆ାଵ|ሺ𝐼 െ 𝑎𝛾𝜙𝜙்ሻ (3.6) 

where 𝛾 is given as [13]: 

𝛾 ൌ ൫1  ඥ𝑎𝑅,ାଵ൯ (3.7) 

Equations (3.1) through (3.7) can be used in conjunction with the standard KF estimation process. The 
main difference is that the update equation is used to update 𝑆 instead of 𝑃, and the process is repeatedly 
iteratively [13]. 

 

The Square-Root SIF 

This paper introduces the square-root formulation of the SIF, hereafter referred as to SR-SIF. It is based on the 
same approach as the square-root KF. For linear systems and measurements, the SR-SIF estimation processed 
is summarized by the following set of equations. For nonlinear systems and measurements, the nonlinearities 
may be linearized as per the EKF methodology. The state estimates 𝑥ොାଵ| and square-root covariance 𝑆ାଵ| 
are first calculated (noting the change in notation), as follows: 

𝑥ොାଵ| ൌ 𝐹𝑥ො|  𝐺𝑢 (3.8) 

𝑆ାଵ|𝑆ାଵ|
் ൌ 𝐹𝑆|𝑆|

் 𝐹்  𝑄
ଵ/ଶ𝑄

்/ଶ (3.9) 

The predicted measurement �̂�ାଵ| and measurement errors 𝑒௭,ାଵ| are calculated next. 

�̂�ାଵ| ൌ 𝐻𝑥ොାଵ| (3.10) 

𝑒௭,ାଵ| ൌ 𝑧ାଵ െ �̂�ାଵ| (3.11) 

Next, the gain 𝐾ାଵ is calculated as per (3.12). 

𝐾ାଵ ൌ 𝐶ା𝑠𝑎𝑡തതതത൫ห𝑒௭,ାଵ|ห 𝛿⁄ ൯ (3.12) 

The a posteriori square-root covariance matrix 𝑆ାଵ|ାଵ is calculated next as follows: 

𝑆ାଵ|ାଵ ൌ 𝑆ାଵ|ሺ𝐼 െ 𝑎𝛾𝜙𝜙்ሻ (3.13) 

where 𝑎 ൌ ൫𝜙்𝜙  𝑅,ାଵ൯
ିଵ

, 𝜙 ൌ 𝑆ାଵ|
் 𝐻், and 𝛾 ൌ ൫1  ඥ𝑎𝑅,ାଵ൯. 
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 The SR-SIF estimation process is summarized by (3.8) through (3.13). It is important to note that in 
this case, the gain is not affected by the square-root covariance calculation. However, the SR-SIF formulation 
sets the framework for future work and implementation in other types of SIF that rely on the covariance [4]. 

4. COMPUTER EXPERIMENTS 

Target Tracking Problem Setup 

The target tracking problem involved in this study is based on a generic air traffic control (ATC) scenario found 
in [21] and is as described in [4]. A radar stationed at the origin provides direct position-only measurements, 
with a standard deviation of 50 𝑚 in each coordinate. The average motion of the target of interest is illustrated 
in Figure 2.  

 

Figure 2. True target trajectory for the nonlinear estimation problem. 

As shown in Figure 2, an aircraft starts from an initial position of ሾ25,000 𝑚, 10,000 𝑚ሿ at time 𝑡 ൌ
 0 𝑠, and flies westward at 120 𝑚/𝑠 for 125 𝑠. A coordinated turn is then performed by the aircraft for a period 
of 90 𝑠 at a rate of 1˚/𝑠. Then, the aircraft proceeds to fly southward at 120 𝑚/𝑠 for 125 𝑠, followed by another 
coordinated turn for 30 𝑠 at 3˚/𝑠. Finally, the aircraft continues to fly westward until it reaches the ultimate 
points of its trajectory, indicating the end of the simulation. 

The behaviour of civilian aircraft in ATC scenarios may be modeled by two different modes of 
operation: uniform motion (UM) which involves a straight flight path with a constant speed and course, and 
maneuvering which includes turning or climbing and descending [21]. In the case of this study, maneuvering 
refers to a coordinated turn (CT) model, where a turn is made at a constant turn rate and speed. The uniform 
motion model used for this target tracking problem is given by (4.1) [21, 30]. 
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𝑥ାଵ ൌ ൦

1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

൪ 𝑥 

⎣
⎢
⎢
⎢
⎢
⎡
1
2
𝑇ଶ 0

0
1
2
𝑇ଶ

𝑇 0
0 𝑇 ⎦

⎥
⎥
⎥
⎥
⎤

𝑤 (4.1) 

The state vector of the aircraft may be defined as follows: 

𝑥 ൌ ሾ𝜉 𝜂 𝜉ሶ 𝜂ሶሿ
் (4.2) 

The first two states refer to the position along the 𝑥-axis and 𝑦-axis, respectively, and the last two states 
refer to the velocity along the 𝑥-axis and 𝑦-axis, respectively. The sampling time used in this simulation was 5 
seconds. When using the CT model, the state vector needs to be augmented to include the turn rate, as shown 
in (4.3) [21]. The CT model may be considered nonlinear if the turn rate of the aircraft is not known. Note that 
a left turn corresponds to a positive turn rate, and a right turn has a negative turn rate. This sign convention 
follows the commonly used trigonometric convention (the opposite is true for navigation convention) [21]. As 
per [21, 30], the CT model is given by (4.4). 

𝑥 ൌ ሾ𝜉 𝜂 𝜉ሶ 𝜂ሶ 𝜔ሿ
் (4.3) 

𝑥ାଵ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 0

𝑠𝑖𝑛𝜔𝑇
𝜔

െ
1 െ 𝑐𝑜𝑠𝜔𝑇

𝜔
0

0 1
1 െ 𝑐𝑜𝑠𝜔𝑇

𝜔

𝑠𝑖𝑛𝜔𝑇
𝜔

0

0 0 𝑐𝑜𝑠𝜔𝑇 െ𝑠𝑖𝑛𝜔𝑇 0
0 0 𝑠𝑖𝑛𝜔𝑇 𝑐𝑜𝑠𝜔𝑇 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑥 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
2
𝑇ଶ 0 0

0
1
2
𝑇ଶ 0

𝑇 0 0
0 𝑇 0
0 0 𝑇⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑤 (4.4) 

Since the radar stationed at the origin provides direct position measurements only, the measurement 
equation may be linearly formed as follows: 

𝑧 ൌ ቂ1 0 0 0 0
0 1 0 0 0

ቃ 𝑥  𝑣 (4.5) 

Equations (4.1) through (4.5) were used to generate the true state values of the trajectory and the radar 
measurements for this target tracking scenario. As previously mentioned, the EKF uses a linearized form of the 
system and measurement matrices. In this case, the system defined by (4.4) is nonlinear, such that the Jacobian 
of it yields a linearized form as shown in (4.6). The terms in the last column of (4.6) are correspondingly defined 
in (4.7) [21]. 

ൣ∇௫𝐹,௫
் ൧

்
ቚ
௫ೖୀ௫ොೖ

ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 0

𝑠𝑖𝑛𝜔ෝ𝑇
𝜔ෝ

െ
1 െ 𝑐𝑜𝑠𝜔ෝ𝑇

𝜔ෝ
𝐹ఠෝଵ

0 1
1 െ 𝑐𝑜𝑠𝜔ෝ𝑇

𝜔ෝ

𝑠𝑖𝑛𝜔ෝ𝑇
𝜔ෝ

𝐹ఠෝଶ

0 0 𝑐𝑜𝑠𝜔ෝ𝑇 െ𝑠𝑖𝑛𝜔ෝ𝑇 𝐹ఠෝଷ
0 0 𝑠𝑖𝑛𝜔ෝ𝑇 𝑐𝑜𝑠𝜔ෝ𝑇 𝐹ఠෝସ
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.6) 
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൦

𝐹ఠෝଵ
𝐹ఠෝଶ
𝐹ఠෝଷ
𝐹ఠෝସ

൪ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ሺ𝑐𝑜𝑠𝜔ෝ𝑇ሻ𝑇

𝜔ෝ
𝜉ሶ
 െ

ሺ𝑠𝑖𝑛𝜔ෝ𝑇ሻ

𝜔ෝ
ଶ 𝜉ሶ

 െ
ሺ𝑠𝑖𝑛𝜔ෝ𝑇ሻ𝑇

𝜔ෝ
𝜂ሶ െ

ሺെ1  𝑐𝑜𝑠𝜔ෝ𝑇ሻ

𝜔ෝ
ଶ 𝜂ሶ

ሺ𝑠𝑖𝑛𝜔ෝ𝑇ሻ𝑇
𝜔ෝ

𝜉ሶ
 െ

ሺ1 െ 𝑐𝑜𝑠𝜔ෝ𝑇ሻ

𝜔ෝ
ଶ 𝜉ሶ

 െ
ሺ𝑐𝑜𝑠𝜔ෝ𝑇ሻ𝑇

𝜔ෝ
𝜂ሶ െ

ሺ𝑠𝑖𝑛𝜔ෝ𝑇ሻ

𝜔ෝ
ଶ 𝜂ሶ

െሺ𝑠𝑖𝑛𝜔ෝ𝑇ሻ𝑇𝜉ሶ
 െ ሺ𝑐𝑜𝑠𝜔ෝ𝑇ሻ𝑇𝜂ሶ

ሺ𝑐𝑜𝑠𝜔ෝ𝑇ሻ𝑇𝜉ሶ
 െ ሺ𝑠𝑖𝑛𝜔ෝ𝑇ሻ𝑇𝜂ሶ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.7) 

To generate the results for this section, the following values were used for the initial state error 
covariance matrix 𝑃|, the system noise matrix 𝑄, and the measurement noise matrix 𝑅. 

𝑃| ൌ

⎣
⎢
⎢
⎢
⎡
𝑅ଵଵ 0 0 0 0

0 𝑅ଶଶ 0 0 0
0 0 100 0 0
0 0 0 100 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤

 (4.8) 

𝑄 ൌ 𝐿ଵ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑇ଷ

3
0

𝑇ଶ

2
0 0

0
𝑇ଷ

3
0

𝑇ଶ

2
0

𝑇ଶ

2
0 𝑇 0 0

0
𝑇ଶ

2
0 𝑇 0

0 0 0 0
𝐿ଶ
𝐿ଵ
𝑇
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.9) 

𝑅 ൌ 50ଶ ቂ1 0
0 1

ቃ (4.10) 

Note that 𝐿ଵ and 𝐿ଶ are referred to as power spectral densities, and were defined as 0.16 and 0.01, 
respectively [30]. The system and measurement noise (𝑤 and 𝑣) were generated using their respective 
covariance values (𝑄 and 𝑅). Also, when using the UM model, the fifth row and column of (4.8) and (4.9) were 
truncated. For the standalone SVSF estimation process, the limit on the sliding boundary layer widths were 
defined as 𝛿 ൌ ሾ500 1,000 500 1,000 1ሿ். These parameters were tuned based on some knowledge of 
the uncertainties (i.e., magnitude of noise) and with the goal of decreasing the estimation error. It is required to 
transform the measurement matrix into a square matrix (i.e., identity), such that an ‘artificial’ measurement is 
created. It is possible to derive ‘artificial’ velocity measurements based on the available position measurements. 
For example, consider the following artificial measurement vector 𝑦 for the SIF: 

𝑦 ൌ

⎣
⎢
⎢
⎢
⎡

𝑧ଵ,
𝑧ଶ,

൫𝑧ଵ,ାଵ െ 𝑧ଵ,൯/𝑇

൫𝑧ଶ,ାଵ െ 𝑧ଶ,൯/𝑇
0 ⎦

⎥
⎥
⎥
⎤

 (4.11) 

The accuracy of (4.11) depends on the sampling rate 𝑇. Applying the above type of transformation to 
non-measured states allows a measurement matrix equivalent to the identity matrix. The estimation process 
would continue as in the previous section, where 𝐻 ൌ 𝐼. Note however that the artificial velocity measurements 
would be delayed one time step. Furthermore, it is assumed that the artificial turn rate measurement is set to 0, 
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since no artificial measurement could be created based on the available measurements. A total of 500 Monte 
Carlo runs were performed, and the results were averaged. 

Simulation Results 

In this study’s experimentation, both the square-root KF and the proposed SR-SIF were implemented and 
applied to the target tracking problem and setup described in earlier sections. Results of the target tracking are 
shown below in Figure 3. 

The square-root based SIF was able to accurately follow the target trajectory, regardless of which flight 
model was in operation. The square-root based EKF, however, had trouble at the occurrence of the coordinated 
aircraft turns. The difficult experienced is primarily due to the difference between the model used by the EKF 
and the actual model experienced by the target. The estimation error of each filter is shown in Figure 4. It is 
easily noticeable from this figure that the SR-SIF yielded relatively similar results, regardless of the type of 
model implemented. This is primarily attributed to the robust estimation process inherent to the switching gain 
involved in the SIF. A second case was studied, in which the measurement at 50 seconds was increased a 
thousand-fold, and it was also determined that this case further demonstrates the robustness of the SR-SIF. The 
SR-EKF was unable to overcome the measurement error, however the SR-SIF was able to maintain the true 
target state trajectory. This behaviour is further illustrated by Figures 5 and 6.  

 

Figure 3. True and estimated target trajectories for the nonlinear estimation problem. 
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Figure 4. Estimation errors for the nonlinear estimation problem. 

 
 

 
Figure 5. True and estimated target trajectories with the presence of measurement errors. 
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Figure 6. Estimation errors for the square-root filters with presence of measurement errors. 

5. CONCLUSIONS 

This paper introduced a new version of the sliding innovation filter (SIF) based on Potter’s square-root 
algorithm. The new methodology, referred to simply as the SR-SIF, was applied on a nonlinear target tracking 
problem. The results were compared with the popular Kalman filter strategy. It was determined that the 
robustness of the SIF switching gain yielded a stable and accurate estimation of the target. The estimates were 
found to be founded to the true state trajectory. At the presence of measurement errors, the KF-based strategy 
failed to yield a good result, however the SIF-based strategy remained stable. Future work includes 
implementing the SR-SIF on real-life data and benchmark problems. 
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