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ABSTRACT 

In this paper, a new state and parameter estimation method is introduced based on the particle filter (PF) and 
the sliding innovation filter (SIF). The PF is a popular estimation method, which makes use of distributed point 
masses to form an approximation of the probability distribution function (PDF). The SIF is a relatively new 
estimation strategy based on sliding mode concepts, formulated in a predictor-corrector format. It has been 
shown to be very robust to modeling errors and uncertainties. The combined method (PF-SIF) utilizes the 
estimates and state error covariance of the SIF to formulate the proposal distribution which generates the 
particles used by the PF. The PF-SIF method is applied on a nonlinear target tracking problem, where the results 
are compared with other popular estimation methods. 
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1. INTRODUCTION  

The surveillance, guidance, obstacle avoidance or tracking of a target often involves making use of 
measurements made of the target of interest [1]. In typical target tracking scenarios, a signal of a target is 
processed and output by sensors as a measurement and are subsequently used to relate to the target state. These 
measurements are often noise-contaminated [1]. Kinematic information such as the position, velocity and 
acceleration of a target are usually contained in the target state. A sequence of target state estimates that vary 
with time are referred to as a tracks, which consist of processed measurements. It is possible for multiple targets 
and measurements to yield multiple tracks, which can benefit from gating and data association techniques in 
order to classify and determine the source of measurements, associating them with the appropriate track. 
Multiple targets and measurements may yield multiple tracks. Gating and data association techniques help 
classify the source of measurements and associate them to the appropriate track [2, 3, 4]. The use of gating 
techniques introduces the benefit of helping to avoid extraneous measurements, which would otherwise result 
in instability in the estimation process, and ultimately, failure. Tracking filters are often used in a recursive 
manner to carry out the estimation of the target state. 

The Kalman filter (KF), which was introduced in the 1960s, is considered to be the most popular and 
well-studied estimation strategy [2, 3]. The KF yields a statistically optimal solution for estimation problems 
that are linear in nature, as defined by (1.1) and (1.2), in the presence of Gaussian noise where 𝑃ሺ𝑤ሻ~𝒩ሺ0,𝑄ሻ 
and 𝑃ሺ𝑣ሻ~𝒩ሺ0,𝑅ሻ. A typical linear model is represented by the following equations: 

𝑥ାଵ ൌ 𝐹𝑥  𝐺𝑢  𝑤 (1.1) 

𝑧ାଵ ൌ 𝐻𝑥ାଵ  𝑣ାଵ (1.2) 

A list of the nomenclature used throughout this paper is provided in the appendix of this paper. It is the 
goal of a filter to eliminate the effects that the system 𝑤 and measurement 𝑣 noise have on extracting the true 
state values 𝑥 from the measurements 𝑧. The KF is formulated in a predictor-corrector manner, whereby the 
states are first estimated using the system model and termed as a priori estimates, or ‘prior to’ knowledge of 
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the observations. A correction term is then added based on the innovation (also called residuals or measurement 
errors), thus forming the updated or a posteriori (meaning ‘subsequent to’ the observations) state estimates. 
Problems covering state and parameter estimation, signal processing, target tracking, fault detection and 
diagnosis, and even financial analysis, have been extensively researched as applications of the KF [1, 4, 5]. The 
driving force behind the KF’s success is in virtue of the Kalman gain’s optimality in minimizing the trace of 
the a posteriori state error covariance matrix. The computation of the trace is carried out as it represents the 
state error vector in the estimation process of the filter [6]. Due to page constraints, the KF estimation process 
and equations have been omitted from this paper as there is a plethora of readily available literature on the 
subject [3]. 

In real-world scenarios and applications, the dynamics of systems are often nonlinear. For such 
nonlinear systems, the posterior density encapsulating all the information about the current and former state 
cannot be described by a finite number of summary statistics. Consequently, one must be content with only an 
approximate filtering solution, and such examples of popular suboptimal nonlinear filters include the extended 
Kalman filter (EKF) [6], the unscented Kalman filter (UKF) [7], the particle filter (PF) [1], and the recently 
introduced cubature Kalman filter (CKF) [8]. Of the filters just mentioned, the CKF is reportedly the most 
numerically stable and accurate, and furthermore, does not require Jacobians and is thus applicable to a wide 
range of problems and applications [8]. 

With the motivation of further increasing the estimation accuracy of the PF for nonlinear systems, it 
has been proposed to combine the PF with both the EKF and the UKF [9, 10, 11]. As such, the extended particle 
filter (EPF) and the unscented particle filter (UPF) utilize the EKF and UKF estimates and covariances, 
respectively, to result in a formulation of the distribution used to generate the particles [3, 12]. In this paper, a 
new PF combination is introduced, utilizing the newly proposed sliding innovation filter (SIF) [13].  The 
proposed method is implemented to be applied on a nonlinear target tracking problem. The performance of the 
proposed SIF-based PF is examined alongside the popular EKF, UKF and PF, and a comparative analysis is 
provided of each approach. 

2. ESTIMATION STRATEGIES 

The Particle Filter 

Many other names exist for the PF, such as Monte Carlo filters, interacting particle approximations [14], 
bootstrap filters [15], condensation algorithm [16], and survival of the fittest [17], to name just a few. Since its 
discovery in 1993, the PF has become a very popular method for tackling nonlinear estimation problems which 
can range from predicting chemical processes to target tracking, and even in financial econometrics [5]. The 
PF takes the Bayesian approach to dynamic state estimation, in which one attempts to accurately represent the 
probability distribution function (PDF) using values of interest [1]. 

The PF’s name comes from its use of weighted particles or ‘point masses’ (2.3) that are distributed 
throughout the state space, forming an approximation of the PDF as in (2.4). These particles are utilized in 
recursive fashion, whereby new particles and importance weights are obtained, with the goal being to create a 
more accurate approximation of the PDF with the progression of time. Generally, as the number of particles 
implemented increases and becomes very large, there is a positive correlation with the accuracy of the 
approximated PDF in that its accuracy improves [1]. 

ሼ𝑥
ሺሻ,𝜔

ሺሻሽୀଵ
ே  (2.3) 

𝑝൫𝑥ห𝑍൯ ൎ𝜔
ሺሻ𝛿ሺ𝑥 െ 𝑥

ሺሻሻ

ே

ୀଵ

 (2.4) 
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In order to avoid the degeneracy problem associated with the PF, it is important to involve resampling 
of the particles. Resampling eliminates the particles with low weights, increasing the prevalence of those with 
high weights [1]. This procedure prohibits a few number of particles from having significant importance 
weights following a large number of recursions, known as the degeneracy problem. An increase in the accuracy 
of the PDF approximation is resulted from resampling, as the particles and weights are redistributed near those 
that are of higher weights, while eliminating those with lower weights. 

A very popular form of the PF is the sequential importance resampling (SIR) algorithm, which is 
summarized by the following sets of equations [15]. The first equation draws samples or particles from the 
proposal distribution, here chosen as the state transition function: 

𝑥
ሺሻ ൌ 𝑓ሺ𝑥ିଵ

ሺሻ ,𝑢
ሺሻሻ (2.5) 

Next, the importance weights are updated, up to a normalizing constant, as follows: 

𝜔
ሺሻ ൌ 𝑓ሺ𝑥

ሺሻ|𝑥ିଵ
ሺሻ ሻ ∙ 𝜔ିଵ

ሺሻ  (2.6) 

The normalized weights are then calculated for each particle: 

𝜔
ሺሻ ൌ

1

∑ 𝜔
ሺሻே

ୀଵ

⋅ 𝜔
ሺሻ (2.7) 

Finally, a constant known as the effective number of particles is calculated as shown in (2.8). Resampling is 
performed if the effective number of particles is lower than some design threshold. 

𝑁 ൌ
1

𝑁 ⋅ ∑ ሺ𝜔
ሺሻሻଶே

ୀଵ

 (2.8) 

The final PF estimate of the states is typically calculated as a weighted sum of the particles, as follows: 

𝑥ො ൌ𝜔
ሺሻ𝑥

ሺሻ
ே

ୀଵ

 (2.9) 

The Sliding Innovation Filter 

Similar to the Kalman filter (KF), the SIF is formulated as a predictor-corrector estimation method. The state 
estimates and state error covariances are first predicted using values obtained at the previous time step (or 
initialization), and then the state estimates and state error covariance are updated based on the measurements 
and correction term at the current time step. The correction term in this case is referred to as the SIF gain. 

The prediction stage includes calculating the predicted or a priori (‘before the fact’) state estimates 
𝑥ොାଵ|, the predicted state error covariance 𝑃ାଵ|, and the predicted innovation �̃�ାଵ| as per the following 
three equations, respectively. Note that the nonlinear SIF process is the same as the nonlinear KF process, 
except that system and measurements equations are no longer linear. 

𝑥ොାଵ| ൌ 𝐴𝑥ො|  𝐵𝑢 ሺ2.10ሻ 

𝑃ାଵ| ൌ 𝐴𝑃|𝐴்  𝑄 ሺ2.11ሻ 

�̃�ାଵ| ൌ 𝑧ାଵ െ 𝐶𝑥ොାଵ| ሺ2.12ሻ 

The update stage includes calculating the SIF gain 𝐾ାଵ, the updated or a posteriori (‘after the fact’) 
state estimates 𝑥ොାଵ|ାଵ, and the updated state error covariance 𝑃ାଵ|ାଵ as per the following three equations, 
respectively: 
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𝐾ାଵ ൌ 𝐶ା𝑠𝑎𝑡തതതത൫ห�̃�ାଵ|ห 𝛿⁄ ൯ ሺ2.13ሻ 

𝑥ොାଵ|ାଵ ൌ 𝑥ොାଵ|  𝐾ାଵ�̃�ାଵ| ሺ2.14ሻ 

𝑃ାଵ|ାଵ ൌ ሺ𝐼 െ 𝐾ାଵ𝐶ሻ𝑃ାଵ|ሺ𝐼 െ 𝐾ାଵ𝐶ሻ் …

… 𝐾ାଵ𝑅ାଵ𝐾ାଵ
் ሺ2.15ሻ

 

Note that 𝐶ା refers to the pseudoinverse of the measurement matrix, 𝑠𝑎𝑡തതതത refers to the diagonal of the 
saturation term, 𝑠𝑎𝑡 refers to the saturation of a value (yields a result between -1 and +1), ห�̃�ାଵ|ห refers to the 
absolute value of the innovation, 𝛿 refers to the sliding boundary layer width, and 𝐼 refers to the identity matrix 
(of dimension 𝑛-by-𝑛 where 𝑛 is the number of states). Equations (2.10) through (2.15) represent the SIF 
estimation process for linear systems and measurements defined by (1.1) and (1.2), respectively. 

The main difference between the KF and SIF strategies is in the structure of the gain. For the KF, the 
gain is derived as a function of the state error covariance, which offers optimality [18, 19]. However, for the 
SIF, the gain is based on the measurement matrix, the innovation, and a sliding boundary layer term. Although 
the state error covariance is not used to calculate the SIF gain, it still provides useful information as it represents 
the amount of estimation error in the filtering process. Figure 1 provides an overview of the SIF estimation 
concept. An initial estimate is pushed towards the sliding boundary layer which is defined based on the amount 
of uncertainties in the estimation process. Once inside the sliding boundary layer, the estimates are forced to 
switch about the true state trajectory by the SIF gain. 

 

  

Figure 1. The above figure illustrates the SIF estimation concept. 

The state estimates are updated with their corresponding innovation and sliding boundary layer term. 
The SIF gain effectively acts as a switching term, which forces the measurement errors to be bounded towards 
the true state trajectory. The sliding boundary layer 𝛿 is defined as a function of the modeling uncertainty and 
noise present in the estimation process. The width can be tuned to obtain the desired estimation result. Another 
starting point for tuning is to use the values of the measurement noise covariance. For example, 𝛿 ൌ
10𝑑𝑖𝑎𝑔ሺ𝑅ሻ. The values can then be tuned by trial-and-error, grid search methods, or optimization techniques 
to reduce the estimation error. 

For the cases when there are fewer measurements than states ሺ𝑚 ൏ 𝑛ሻ, artificial measurements can be 
created based on existing measurements to create a full measurement matrix. The structure could also be 
modified as per a Luenberger observer or other strategies as per [20, 21]. This process would be required to 
estimate parameters of the system matrix using the SIF. 
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3. COMBINED STRATEGY 

Although the SIF is an estimation process that is sub-optimal, it has been shown in the literature to be robust 
and stable. Hence, it may prove auspicious to combine the accurate performances of the KF with the stability 
of the SIF; prior to combining it with the PF. An adaptive formulation of the SIF was presented in [22], where 
a time-varying delta formulation is derived. Consider the following: 

𝛿ାଵ ൌ 𝑆ାଵ൫𝐶𝑃ାଵ|𝐶்൯
ିଵ
ห�̃�ାଵ|തതതതതതതതห ሺ3.1ሻ 

Equation (3.1) represents the time-varying sliding boundary layer 𝛿ାଵ that is used by the proposed 
adaptive SIF. The width of 𝛿ାଵ is found to be a function of the innovation covariance matrix 𝑆ାଵ, the 
measurement matrix 𝐶, the state error covariance matrix 𝑃ାଵ|, and the absolute magnitude of the innovation 
�̃�ାଵ|. Note that (3.1) may be simplified even further as follows: 

𝛿ାଵ ൌ 𝑆ାଵሺ𝑆ାଵ െ 𝑅ାଵሻିଵห�̃�ାଵ|തതതതതതതതห ሺ3.2ሻ 

The adaptive SIF strategy remains the same as the standard SIF strategy presented in Section 2, except 
that 𝛿 is no longer fixed and is calculated at each time step as per (3.2). Now, consider the following sets of 
figures to help describe the overall implementation of the adaptive SIF strategy; prior to combining it with the 
PF. 

 

Figure 2. Boundary Layer Concept for the Well-Defined System Case [23] 

 

Figure 2 illustrates the case when the constant smoothing boundary layer width used by the SIF is 
defined larger than the optimal smoothing boundary layer (i.e., a conservative choice) calculated by (3.2). The 
difference between the constant and upper layers leads to a loss in optimality for the SIF. Essentially, in this 
case, the KF gain should be used to obtain the best result (for the linear system and measurement case). 
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Figure 3. Presence of Fault or Poorly-Defined System Case [23] 

Figure 3 illustrates the case when the optimal smoothing boundary layer is calculated to exist beyond 
the constant smoothing boundary layer. This typically occurs when there is modeling uncertainty (which leads 
to a loss in optimality) that exceed the limits of a constant smoothing boundary layer. The limits are set by the 
width of the existence subspace, which was discussed earlier. In a situation defined by Fig. 3, to ensure a stable 
estimate, the SIF gain should be used to update the state estimates. The sliding boundary layer widths are 
saturated at the constant values. This ensures a stable estimate, as defined by the proof of stability for the SIF 
[13]. Furthermore, to improve the SIF results, the averaged sliding boundary layers (for the well-defined 
system) can be used to set the constant boundary layer widths. Doing so provides a well-tuned existence 
subspace that yields more accurate estimates. 

Next, to combine the aforementioned SIF strategy with the PF, a similar approach to formulating the 
EPF and UKF will be taken [12]. Essentially, the updated state estimates and state error covariance are used to 
formulate the proposal distribution used by the PF to generate the particles, such that: 

𝑥
ሺሻ ൌ 𝑞ሺ𝑥ොାଵ|ାଵ,𝑃ାଵ|ାଵሻ (3.3) 

Following the distribution of the particles, the PF continues as normal [1]. 

4. COMPUTER EXPERIMENTS 

Tracking Scenario 

The tracking problem being studied in this research is described in this section, which involves one of the most 
well studied aerospace applications: ballistic objects on reentry [1]. A ballistic target reentering the atmosphere 
is considered in the experimental simulations of this study, as described in [1]. The experimental setup for the 
ballistic target problem under examination is shown in the following figure. 
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Figure 4. Ballistic Target Tracking Scenario [1] 

Assuming that drag 𝐷 and gravity 𝑔 are the only forces acting on the object, the following differential 
equations govern its motion [1, 24]: 

ℎሶ ൌ 𝑣 (4.1) 

𝑣ሶ ൌ െ
𝜌ሺℎሻ𝑔𝑣ଶ

2𝛽
 𝑔 (4.2) 

𝛽ሶ ൌ 0 (4.3) 

The state vector is defined as 𝑥 ൌ ሾℎ 𝑣 𝛽ሿ், which refers to the target altitude, velocity, and ballistic 
coefficient, respectively. The air density 𝜌 is modeled as follows: 

𝜌 ൌ 𝛾𝑒ିఎ (4.4) 

where γ ൌ 1.754 and η ൌ 1.49 ൈ 10ିସ. The discrete-time state equation is defined as follows [1]: 

𝑥ାଵ ൌ 𝐹𝑥 െ 𝐺ሾ𝐷ሺ𝑥ሻ െ 𝑔ሿ  𝑤  (4.5) 

With matrices 𝐹 and 𝐺 defined by: 

𝐹 ൌ 
1 െ𝑇 0
0 1 0
0 0 1

൩ (4.6) 

𝐺 ൌ ሾ0 𝑇 0ሿ்  (4.7) 

Furthermore, the function for drag 𝐷ሺ𝑥ሻ (the only nonlinear term) is defined by: 

𝐷ሺ𝑥ሻ ൌ
𝑔𝜌൫𝑥,ଵ൯𝑥,ଶ

ଶ

2𝑥,ଷ
𝑥ାଵ ൌ 𝐹𝑥 െ 𝐺ሾ𝐷ሺ𝑥ሻ െ 𝑔ሿ  𝑤  (4.8) 

As in [1], the system noise w୩ is assumed to be zero-mean Gaussian with a covariance matrix 𝑄 defined by: 
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𝑄 ൎ

⎣
⎢
⎢
⎢
⎡𝑞ଵ

𝑇ଷ

3
 𝑞ଵ

𝑇ଶ

2
0

𝑞ଵ
𝑇ଶ

2
𝑞ଵ𝑇 0

0 0 𝑞ଶ𝑇⎦
⎥
⎥
⎥
⎤

 (4.9) 

Note that the parameters 𝑞1 and 𝑞2 respectively control the amount of system noise in the target dynamics and 
the ballistic coefficient [1]. As shown in Figure 4, a radar is positioned on the ground below the target. The 
measurement equation in this scenario is defined by: 

𝑧 ൌ 𝐻𝑥  𝑣  (4.10) 

where it is assumed that two measurements are available, such that: 

𝐻 ൌ ቂ1 0 0
0 1 0

ቃ (4.11) 

In the tracking scenario involved in this study, the initial states are defined as follows: 𝑥ଵ, ൌ 61,000 𝑚, 
𝑥ଶ, ൌ 3,048 𝑚/𝑠, and 𝑥ଷ, ൌ 19,161 𝑘𝑔/𝑚𝑠ଶ. Other notable parameters were defined as: 𝑞ଵ ൌ 10ସ, 𝑞ଶ ൌ
10, 𝑇 ൌ 0.1 𝑠𝑒𝑐, 𝑅 ൌ 𝑑𝑖𝑎𝑔ሺሾ10ସ 10ଷሿሻ, and 𝑔 ൌ  9.81 𝑚/𝑠ଶ. 

As per the earlier SIF discussion, it is required to transform (4.11) into a square matrix (i.e., identity), 
such that an ‘artificial’ measurement is created. A number of methods exist, such as the reduced order or 
Luenberger’s approach, which are presented in [25, 26, 27]. Consider a system model involving phase variables. 
It is possible to derive a third ‘artificial’ measurement 𝑦ଷ, based on the available measurements (𝑧ଵ, and 𝑧ଶ,). 
In (4.11), the ballistic coefficient measurement is not available. If the system model (4.5) is known with 
complete confidence, then it is possible to derive an artificial measurement for the ballistic coefficient from the 
first two measurements. Hence, consider the following from (4.5): 

𝑦ଷ, ൌ
𝑇𝑔𝛾𝑧ଶ,

ଶ

2൫𝑧ଶ,ାଵ െ 𝑧ଶ,  𝑇𝑔൯𝑒ିఎ௭భ,ೖ
 (4.12) 

The accuracy of (4.12) depends on the sampling rate 𝑇. Applying (4.12) allows a measurement matrix 
equivalent to the identity matrix. The estimation process would continue as in the previous section, where a full 
measurement matrix was available. Note however that the artificial acceleration measurement would be delayed 
one time step. Furthermore, note that the artificial measurement would have to be initialized (i.e., 0 is a typical 
value). Equation (4.12) essentially propagates the known measurements through the system model to obtain the 
artificial ballistic coefficient measurement. It is conceptually similar to the method presented in [27] and creates 
a full measurement matrix. 

The initial state estimates 𝑥ො were set 10% away from the true values 𝑥. The initial state error 
covariance matrix was set to 𝑃  ൌ  10𝑄. The following figure shows the object altitude and estimates over 
time. 

The accuracy of (4.12) depends on the sampling rate 𝑇. Applying (4.12) allows a measurement matrix 
equivalent to the identity matrix. The estimation process would continue as in the previous section, where a full 
measurement matrix was available. Note however that the artificial acceleration measurement would be delayed 
one time step. Furthermore, note that the artificial measurement would have to be initialized (i.e., 0 is a typical 
value). Equation (4.12) essentially propagates the known measurements through the system model to obtain the 
artificial ballistic coefficient measurement. It is conceptually similar to the method presented in [27] and creates 
a full measurement matrix. 

Proc. of SPIE Vol. 12122  1212204-8



 
 

 

 

The initial state estimates 𝑥ො were set 10% away from the true values 𝑥. The initial state error 
covariance matrix was set to 𝑃  ൌ  10𝑄. The following figure shows the object altitude and estimates over 
time. 

 

Figure 5. Object Altitude and Estimates 

 

 

Figure 6. Object Altitude and Estimates with the Presence of Modeling Error at 15 seconds 

 

Simulation Results 

In Table 1 below, the summarized results of the RMSE are shown for each filter applied to the tracking scenario 
defined in earlier sections of this paper (note: these results are repeatable). Overall, the proposed PF-SIF 
algorithm provides the best result in terms of estimation accuracy. The PF performs very well, with the 
exception of the ballistic coefficient (it fails to provide a good estimate). The SIF also performed well. The EKF 
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provided the worst estimate, most likely due to the slower convergence rate. An interesting result occurs when 
one introduces modeling errors into the system model (4.5). As an example, in an effort to demonstrate the 
robustness of the PF-SIF and SIF to modeling uncertainties, consider the case when the gravity coefficient is 
doubled. The following figure shows the implications of modeling error being introduced at 15 seconds during 
the tracking scenario. The filters begin to diverge from the true state trajectory, with the PF being the furthest 
at 30 seconds. The RMSE for this case was calculated for each filter, and is shown in the following table. 

 

Table 1. RMSE of the Tracking Scenario 

Filter 
Altitude 
ሺ𝑚ሻ 

Velocity 
ሺ𝑚/𝑠 ሻ 

Ballistic 
ሺ𝑘𝑔/𝑚𝑠ଶሻ 

EKF 1,902 286 1,916 

UKF 957 64.5 2,329 

PF 425 29.3 23,674 

SIF 443 87.6 1,846 

PF-SIF 335 20.2 1,641 

 

Table 2. RMSE of Tracking with Modeling Errors 

Filter 
Altitude 
ሺ𝑚ሻ 

Velocity 
ሺ𝑚/𝑠 ሻ 

Ballistic 
ሺ𝑘𝑔/𝑚𝑠ଶሻ 

EKF 1,918 306 1,917 

UKF 1,166 116 3,382 

PF 619 88.9 39,814 

SIF 472 124 1,992 

PF-SIF 348 38.8 2,101 

 

It is interesting to note that the PF-SIF estimates remained relatively insensitive to the added modeling 
error. The combination of the SIF and the PF improved the overall accuracy and stability of the PF estimation 
strategy. 

5. CONCLUSIONS 

In this paper, a new state and parameter estimation based on the combination of the PF and the SIF was 
introduced. The combined method (PF-SIF) utilizes the estimates and state error covariance of the SIF to 
formulate the proposal distribution which generates the particles used by the PF. The PF-SIF method was 
applied on a nonlinear target tracking problem. The results of this tracking scenario demonstrate the improved 
performance of the combined methodology. Future research work will involve studying other nonlinear 
estimation problems, and analyzing how the PF-SIF performs. 
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APPENDIX 
 

Table 3. List of Nomenclature 

Parameter Definition 

𝑥 State vector or values 

𝑧 Measurement (system output) vector or values 

𝑦 Artificial measurement vector or values 

𝑢 Input to the system 

𝑤 System noise vector 

𝑣 Measurement noise vector 

𝐹 Linear system transition matrix 

𝐺 Input gain matrix 

𝐻 Linear measurement (output) matrix 

𝐾 Filter gain matrix (i.e., KF or SIF) 

𝑃 State error covariance matrix 

𝑄 System noise covariance matrix 

𝑅 Measurement noise covariance matrix 

𝑆 Innovation covariance matrix 

𝑒 Measurement (output) error vector 

𝑑𝑖𝑎𝑔ሺ𝑎ሻ or 𝑎ത Defines a diagonal matrix of some vector a 

𝑠𝑎𝑡ሺ𝑎ሻ Defines a saturation of the term a 

𝛿 SIF boundary layer width 

|𝑎| Absolute value of some parameter a 

𝐸ሼ∙ሽ Expectation of some vector or value 

𝑇 Sample time, or transpose of some vector or matrix 

^ Estimated vector or values 

𝑥
ሺሻ Particles used by the PF 

𝜔
ሺሻ Importance weights used by the PF 

𝑁 Effective threshold for the PF 

𝑘  1|𝑘 A priori time step (i.e., before applied gain) 

𝑘  1|𝑘  1 A posteriori time step (i.e., after update) 
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