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ABSTRACT 

In this paper, the newly developed sliding innovation filter (SIF) is reformulated to accommodate the ability of extracting 

the hidden states. This is accomplished by using the well-known Luenberger technique, which is commonly used by 

observers. In this paper, the SIF is applied to a linear system, which has fewer measurements than states. The results show 

that the proposed filter extracts the hidden state with small RMSE, as low as 0.1, and small MAE, as low as 1. 
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1. INTRODUCTION 

Filters are widely used in estimation applications. Their main purpose is to extract some valuable information from the 

available signals while overcoming the disturbances, uncertainties, and noise that they may contain [1-9]. This improves 

the quality of the controller and the dynamics performance of the system [10-20]. This work covers a new formulation for 

the sliding innovation filter (SIF) [21-29]. SIF is a model based filter that is derived from the sliding mode theory. It uses 

a model that represent the actual system and excites it with the system’s input to obtain an unrefined estimate. Then it 

refines the estimate using a corrective gain that is derived from the Lyapunov stability theorem. Hence, the filter belongs 

to the robust filter types, i.e. the smooth variable structure filter [30-46] and Sliding mode observer [47-71].  

 

Although, SIF is stable, its performance is not optimal. Moreover, the performance gets worse when disturbances and noise 

present. If the number of measured signal becomes fewer than the number of states, then the filter highly depends on the 

system and measurement matrices. If the non-measured states, i.e. hidden states, are not directly linked to the measured 

states, or the measurement, the filter fails to extract the required information. To overcome this, the filter was combined 

with other filters like the Regular [72-87], Extended [88-93], and Sigma-point Kalman filters [94-111]. However, the 

algorithm becomes more complicated, and the simulation time increases. 

 

This work proposes a new form of SIF that is simple, yet efficient for certain applications. The proposed method combines 

the SIF with the Luenberger method [112-113]. The latter extracts the hidden states from the available measurement and 

feeds them to the SIF to do the filtering and maintain the stability and robustness of the process. 

 

This brief paper is organized as follows. The SIF and the proposed method are introduced in Section 2. Section 3 discuss 

the application of the proposed method to a third order system. Section 4 concludes the paper and hint on the future works.  
 

2. METHODOLOGY 

2.1. Linear system model 

The linear system can be represented in a matrix form as follow:  

𝐱𝑘 = 𝐀𝑘−1𝐱𝑘−1 + 𝐁𝑘−1𝐮𝑘−1 + 𝐰𝑘−1        (1) 

𝐳𝑘 = 𝐇𝑘𝐱𝑘 + 𝐯𝑘           (2) 

Where 𝐱𝑘 and 𝐳𝑘 are the state and measurement vectors at time 𝑘. These represent the system dynamics and the output of 
the sensors that are used to measure these states, respectively. The system is defined by the matrices 𝐀𝑘−1 and 𝐁𝑘−1, which 
are called the system and the input matrices, respectively. The system’s parameters are included in these matrices.  
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The measurement matrix, 𝐇𝑘, represent the model of the sensors and it includes their parameters. The signals obtained from 
system and sensors are subjected to disturbances, 𝐰𝑘−1 and 𝐯𝑘, respectively. 

If the number of states is fewer than the number of measurements, then the system has hidden states. The idea of estimation 
is to extract all states from the available measurement signals while reducing the effect of 𝐯𝑘. This paper discusses the use 
of Luenburger method combined with the SIF to extract the hidden states. We will assume that sensor model is linear and 
is defined as: 

 𝐇𝑘 = [𝐈𝑚×𝑚 𝟎𝑚×(𝑛−𝑚)]          (3) 

Where 𝑚 and 𝑛 are the number of measurement and state signals, respectively. 𝐈 is the identity matrix, and 𝟎 is a matrix 
with zero elements. 

 

2.2. SIF algorithm 

The sliding Innovation filter consists of two steps: 

1- Prediction Stage, where the a priori estimate and its measurement, 𝐱̂𝑘+1|𝑘 and 𝐳̂𝑘+1|𝑘, respectively, are calculated 

using the following equations: 

𝐱̂𝑘|𝑘−1 = 𝐀𝑘−1𝐱̂𝑘−1|𝑘−1 + 𝐁𝑘−1𝐮𝑘−1        (4) 

𝐳̂𝑘|𝑘−1 = 𝐇𝑘𝐱̂𝑘|𝑘−1          (5) 

 

2- Update/Correction Stage, where the a posteriori estimate and its measurements, 𝐱̂𝑘|𝑘 and 𝐳̂𝑘|𝑘, respectively, are 

calculated using the following 

𝐱̂𝑘|𝑘 = 𝐱̂𝑘|𝑘−1 + [𝐇𝑘
+(𝐳𝑘 − 𝐳̂𝑘|𝑘−1)]°𝑠𝑎𝑡(|𝐳𝑘 − 𝐳̂𝑘|𝑘−1|, 𝚿𝑘)      (6) 

𝐳̂𝑘|𝑘 = 𝐇𝑘𝐱̂𝑘|𝑘           (7) 

Where 𝐇𝑘
+ is the pseudoinverse vector of  𝐇𝑘, 𝚿𝑘 is the boundary layer, 𝐴°𝐵 is schur product that is done by multiplying 

each element of 𝐴 with it corresponding element in 𝐵, and 𝑠𝑎𝑡 is the saturated function. 

The SIF performance for fewer number of measurements compared to the number of states depends highly on the 
interconnectivity between the states through the matrix 𝐀𝑘−1, and the mapping between the sensors and the hidden states 
through the matrix 𝐇𝑘

+. If 𝐇𝑘 is defined as in (3), then the filter cannot correct the values of the hidden states as they are not 
connect to the measurement. Hence, the filter performance degrades. To overcome this issue, the filter is reformulated using 
the Luenberger method to map the hidden states to the measurement. 

 

2.3. Luenberger/SIF algorithm 

The Luenberger method is used for observers rather than the filter, as it assumes no disturbances, neither uncertainties exist 
in the signals. The method can be explained and derived as follows [112-113]: 

By subtracting (4) from (1) and assume 𝐰𝑘−1 is zero, the following can be obtained: 

𝐱𝑘 − 𝐱̂𝑘|𝑘−1 = 𝐀𝑘−1𝐱𝑘−1 + 𝐁𝑘−1𝐮𝑘−1 − 𝐀𝑘−1𝐱̂𝑘−1|𝑘−1 − 𝐁𝑘−1𝐮𝑘−1     (8) 

𝐱𝑘 − 𝐱̂𝑘|𝑘−1 = 𝐀𝑘−1(𝐱𝑘−1 − 𝐱̂𝑘−1|𝑘−1) → 𝑒𝑥,𝑘|𝑘−1 = 𝐀𝑘−1𝑒𝑥,𝑘−1|𝑘−1     (9) 

Where 𝑒𝑥 represents the error in estimation. 

Assuming the availability of imaginary sensors that measure the hidden states to be, 𝐲𝑘, then a full rank measurement vector 
can be obtained, 𝐙𝑘, as follows: 

𝐙𝑘 = [
𝐳𝑘

𝐲𝑘
]            (10) 

And the measurement matrices, 𝐇𝑘 and 𝐇̂𝑘 become identity matrices. In this case: 
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𝐙𝑘 = 𝐱𝑘            (11) 

And  

𝐙̂𝑘 = 𝐱̂𝑘            (12) 

Substitute (11) and (12) in (9) yields: 

𝑒𝑍,𝑘|𝑘−1 = 𝐀𝑘−1𝑒𝑍,𝑘−1|𝑘−1          (13) 

Or 

[
𝑒𝑧,𝑘|𝑘−1

𝑒𝑦,𝑘|𝑘−1
] = [

𝐴11

𝐴21
   

𝐴12

𝐴22
] [

𝑒𝑧,𝑘−1|𝑘−1

𝑒𝑦,𝑘−1|𝑘−1
]         (14) 

Where  

𝐀11 ∈ ℝ𝑚×𝑚, 𝐀12 ∈ ℝ𝑚×(𝑛−𝑚), 𝐀21 ∈ ℝ(𝑛−𝑚)×𝑚 and 𝐀22 ∈ ℝ(𝑛−𝑚)×(𝑛−𝑚) are submatrices from the matrix 𝐀𝑘−1. 

Luenberger is assumed stable for such application if 𝑒𝑧,𝑘−1|𝑘−1 vanished. Then (14) becomes: 

 [
𝑒𝑧,𝑘|𝑘−1

𝑒𝑦,𝑘|𝑘−1
] = [

𝐴11

𝐴21
   

𝐴12

𝐴22
] [

0
𝑒𝑦,𝑘−1|𝑘−1

]         (15) 

By expanding the matrices, the followings are obtained: 

𝑒𝑧,𝑘|𝑘−1 = 𝐴12𝑒𝑦,𝑘−1|𝑘−1          (16) 

𝑒𝑦,𝑘|𝑘−1 = 𝐴22𝑒𝑦,𝑘−1|𝑘−1          (17) 

Substitute (16) in (17) yields 

𝑒𝑦,𝑘|𝑘−1 = 𝐴22𝐴12
−1𝑒𝑧,𝑘|𝑘−1          (18) 

Equation (18) relates the error in the imaginary measurement vector to the actual measurement vector, which means that (6) 
is rewritten as: 

𝐱̂𝑘|𝑘 = 𝐱̂𝑘|𝑘−1 + [
[𝐇𝑘

+(𝐳𝑘 − 𝐳̂𝑘|𝑘−1)]°𝑠𝑎𝑡(|𝐳𝑘 − 𝐳̂𝑘|𝑘−1|, 𝚿𝑘)

[𝐇𝑘
+𝐴22𝐴12

−1(𝐳𝑘 − 𝐳̂𝑘|𝑘−1)]°𝑠𝑎𝑡(|𝐴22𝐴12
−1(𝐳𝑘 − 𝐳̂𝑘|𝑘−1)|, 𝚿𝑘)

]    (19) 

𝐳̂𝑘|𝑘 = 𝐱̂𝑘|𝑘           (20) 

The boundary layer can be adjusted to reduce the effect of the disturbances and uncertainties. 

3. CASE STUDY 

The method of section 2 is tested on a third order system that is defined by (1) and (2) assuming: 

𝐀𝑘−1 = 𝐀 = [
1
0
0

   

𝜏
1

−𝜔𝑛
2𝜏

   
0
𝜏

1 − 2𝜁𝜔𝑛𝜏
]        (21) 

 𝐁𝑘−1 = 𝐁 = [
0
0

𝑏𝜏
]          (22) 

Where 𝜔𝑛 , b, ξ and 𝜏 have values of 360 Hz, 30 
m

sec×rad
, 0.4 and 0.001 sec, respectively [112]. The input is assumed to be 

multiple level random signal as shown in figure 1. 

The results are obtained for applying SIF to the system, and they are illustrated by Fig. 2 and tables 1 and 2. Fig. (2-a), Fig. 
(2-c) and Fig. (2-e) show the estimation of the position, velocity and acceleration, respectively, while the error in their 
estimation are shown in Fig. (2-b), Fig. (2-d) and Fig. (2-f), respectively. Table 1 shows the root mean squared error and 
Table 2 shows the maximum absolute error in the results, which are calculated using the following: 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝐴𝑐𝑡𝑢𝑎𝑙,𝑖−𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,𝑖)
2𝑛𝑠

𝑖=1

𝑛𝑠
        (23) 
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𝑀𝐴𝐸 = max(|𝑥𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|)        (24) 

 

Figure 1. Input signal to the system 

 

Figure 2. The results of the SIF compared to the true states, (a) position, (b) error in position, (c) velocity, (d) error in 
velocity, (e) acceleration and (f) error in acceleration 
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Table 1. RMSE of the SIF’s results 

 𝑅𝑀𝑆𝐸 in 

 𝑥1 (𝑐𝑚) 𝑥2(𝑐𝑚/𝑠) 𝑥3(𝑐𝑚/𝑠2) 

SIF 7.8983 × 10−05 1.27793 × 10−04 9.7940 × 10−02 

Table 2. MAE of the SIF’s results 

 𝑀𝐴𝐸 in 

 𝑥1 (𝑐𝑚) 𝑥2(𝑐𝑚/𝑠) 𝑥3(𝑐𝑚) 

SIF 2.756 × 10−04 1.18 × 10−03 8.043 × 10−01 

 

The results show that Luenberger/SIF is capable of extracting the hidden states with excellent performance. The highest 

RMSE is found in the acceleration state and it is less than 0.1 cm/s2. This value is less than 0.1% of the maximum 

acceleration’s amplitude. Similar results are found for RMSE in position and velocity estimations, where they are equal to 

0.001% and 0.02%, respectively. The MAE is found to be 10 times the results of RMSE, where it has values less than 

0.01%, 0.2% and 1% for position, velocity and acceleration estimates, respectively. These values are small and can be 

neglected. 

4. CONCLUSION 

In this article, the SIF is formulated and combined with Luenberger method. This gives the benefit of extracting the hidden 
states from the available measurement. The formulated filter maps the information in the measurement to the entire states. 
Moreover, the SIF keeps the filter stable. The results show that RMSE and MAE are in acceptable range, as the highest 
values of RMSE is less than 0.1% and for MAE is less than 1%. In future work, the filter will be tested using an experimental 
setup and the results will be compared to other filters. 
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