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ABSTRACT 

The sliding innovation filter (SIF) is a newly developed filter that may be applied to both linear and non-linear systems. 

The SIF shares similar principles with sliding mode observers (SMO) and other variable structure filters such as the smooth 

variable structure filter (SVSF). The SIF utilizes the true trajectory as a hyperplane and forces the estimates to stay within 

a region of the hyperplane through the use of a discontinuous correction gain. In this paper, the SIF is applied to the well-

known complex road estimation problem with nonlinear system function. The results of the application are compared with 

the SVSF, and future work is discussed. 
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1. INTRODUCTION 

Sliding Innovation Filter (SIF) is a newly developed filter that was proposed in 2020 [1-7]. The filter is a model-based 

filter [8-15] that uses the same principle of sliding mode observer [16-39] and smooth variable structure filter [40-51]. The 

filter uses the actual trajectory as hyperplane and forces the estimates to remain in its neighborhood using a corrective gain 

that is developed from Lyapunov theorem. The filter is considered stable and robust against disturbances and uncertainties. 

If the filter is combined with controller, the system performance is improved [52-62].   

 

SIF has simple structure and is considered efficient. It can be easily modified or combined with other filters to improve its 

performance in terms of optimality and extracting the hidden states [63-67]. In this work, the filter is used to estimate 

vehicle trajectories while it is maneuvering in 2D plane. This paper is organized as follows: The SIF and the proposed 

method are introduced in Section 2. Section 3 discuss the application of the proposed method to a third order system. 

Section 4 concludes the paper and hint on the future works.  
 

2. METHODOLOGY 

2.1. System under study 

In this paper, a complex maneuvering system is considered where a vehicle moves at different velocities and different 

shapes in x-y plane. Both filters; SVSF and SIF are tested on this system and then the results are compared. The 

maneuvering model is considered nonlinear system as the relations are not linear and it involves with sinusoidal signals. 

The system has five states, including the positions on the x- and y- axes, 𝑥1 and 𝑥2, respectively, the velocities on both 

axes, 𝑥3 and 𝑥4, respectively, and the maneuvering rotational angle, 𝑥5. All the states are assumed to be measured. The 

discrete form of the model is defined below through equations (1) to (14), including the sensors’ equations.  

𝑥1,𝑘+1 = 𝑥1,𝑘 + 𝑀 𝑥3,𝑘 + 𝑁 𝑥4,𝑘 + 𝑤1,𝑘        (1) 

𝑥2,𝑘+1 = 𝑥2,𝑘 + 𝑁 𝑥3,𝑘 + 𝑀 𝑥4,𝑘 + 𝑤2,𝑘        (2) 

𝑥3,𝑘+1 = 𝐶 𝑥3,𝑘 − 𝑆 𝑥4,𝑘 + 𝑤3,𝑘         (3) 

𝑥4,𝑘+1 = 𝑆 𝑥3,𝑘 + 𝐶 𝑥4,𝑘 + 𝑤4,𝑘         (4) 

𝑥5,𝑘+1 = 𝑥5,𝑘 + 𝑤5,𝑘          (5) 

𝑧1,𝑘+1 = 𝑥1,𝑘+1 + 𝑣2,𝑘+1          (6) 

𝑧2,𝑘+1 = 𝑥2,𝑘+1 + 𝑣2,𝑘+1          (7) 
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𝑧3,𝑘+1 = 𝑥3,𝑘+1 + 𝑣3,𝑘+1          (8) 

𝑧4,𝑘+1 = 𝑥4,𝑘+1 + 𝑣4,𝑘+1          (9) 

𝑧5,𝑘+1 = 𝑥5,𝑘+1 + 𝑣5,𝑘+1          (10) 

 

Where 𝑤 and 𝑣 are the system and measurement noise vectors. 𝑀 and 𝑁 are defined as: 

𝑀 = 𝑆/𝑥5,𝑘           (11) 

𝑁 =  (1 − 𝐶)/𝑥5,𝑘          (12) 

 

And 𝑆 and 𝐶 are defined as: 

𝑆 = 𝑠𝑖𝑛(𝑥5,𝑘)           (13) 

𝐶 = 𝑐𝑜𝑠(𝑥5,𝑘)           (14) 

 

 

2.2. Smooth Variable Structure Filter 

In this section, the SVSF is derived as a non-matrix form to solve the model in section 2.1. The SVSF consists of two 

steps: 

 

1- Prediction Stage, where the a priori estimate and its measurement, 𝑥̂𝑘+1|𝑘 and 𝑧̂𝑘+1|𝑘, respectively, are calculated 

using the following equations: 

𝑥̂1,𝑘+1|𝑘 = 𝑥̂1,𝑘|𝑘 + 𝑀̂ 𝑥̂3,𝑘|𝑘 + 𝑁̂ 𝑥̂4,𝑘|𝑘        (15) 

𝑥̂2,𝑘+1|𝑘 = 𝑥̂2,𝑘|𝑘 + 𝑁̂ 𝑥̂3,𝑘|𝑘 + 𝑀̂ 𝑥̂4,𝑘|𝑘        (16) 

𝑥̂3,𝑘+1|𝑘 = 𝐶̂ 𝑥̂3,𝑘|𝑘 − 𝑆̂ 𝑥̂4,𝑘|𝑘         (17) 

𝑥̂4,𝑘+1|𝑘 = 𝑆̂ 𝑥̂3,𝑘|𝑘 + 𝐶̂ 𝑥̂4,𝑘|𝑘         (18) 

𝑥̂5,𝑘+1|𝑘 = 𝑥̂5,𝑘|𝑘           (19) 

𝑧̂1,𝑘+1|𝑘 = 𝑥̂1,𝑘+1|𝑘          (20) 

𝑧̂2,𝑘+1|𝑘 = 𝑥̂2,𝑘+1|𝑘          (21) 

𝑧̂3,𝑘+1|𝑘 = 𝑥̂3,𝑘+1|𝑘          (22) 

𝑧̂4,𝑘+1|𝑘 = 𝑥̂4,𝑘+1|𝑘          (23) 

𝑧̂5,𝑘+1|𝑘 = 𝑥̂5,𝑘+1|𝑘          (24) 

 

Where 𝑀̂ and 𝑁̂ are defined as: 

𝑀̂ = 𝑆̂/𝑥̂5,𝑘|𝑘           (25) 

𝑁̂  =  (1 − 𝐶̂)/𝑥̂5,𝑘|𝑘          (26) 

 

And 𝑆̂ and 𝐶̂ are defined as: 
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𝑆̂  = sin(𝑥̂5,𝑘|𝑘)           (27) 

𝐶̂  = cos(𝑥̂5,𝑘|𝑘)           (28) 

2- Update/Correction Stage, where the a posteriori estimate and its measurements, 𝑥̂k+1|k+1  and 𝑧̂𝑘+1|𝑘+1 , 

respectively, are calculated using the following equations 

a. Calculating the a priori estimation error 

𝐞1,𝑘+1|𝑘 = 𝑧1,𝑘+1 − 𝑧̂1,𝑘+1|𝑘         (29) 

𝐞2,𝑘+1|𝑘 = 𝑧2,𝑘+1 − 𝑧̂2,𝑘+1|𝑘          (30) 

𝐞3,𝑘+1|𝑘 = 𝑧3,𝑘+1 − 𝑧̂3,𝑘+1|𝑘          (31) 

𝐞4,𝑘+1|𝑘 = 𝑧4,𝑘+1 − 𝑧̂4,𝑘+1|𝑘          (32) 

𝐞5,𝑘+1|𝑘 = 𝑧5,𝑘+1 − 𝑧̂5,𝑘+1|𝑘          (33) 

 
b. Calculating the correction gain 

𝐊1 = (|𝑒1,𝑘+1|𝑘| + 𝛾|𝑒1,𝑘|𝑘|)𝑠𝑎𝑡(𝑒1,𝑘+1|𝑘 , Ψ1)       (34) 

𝐊2 = (|𝑒2,𝑘+1|𝑘| + 𝛾|𝑒2,𝑘|𝑘|)𝑠𝑎𝑡(𝑒2,𝑘+1|𝑘 , Ψ2)       (35) 

𝐊3 = (|𝑒3,𝑘+1|𝑘| + 𝛾|𝑒3,𝑘|𝑘|)𝑠𝑎𝑡(𝑒3,𝑘+1|𝑘 , Ψ3)       (36) 

𝐊4 = (|𝑒4,𝑘+1|𝑘| + 𝛾|𝑒4,𝑘|𝑘|)𝑠𝑎𝑡(𝑒4,𝑘+1|𝑘 , Ψ4)       (37) 

𝐊5 = (|𝑒5,𝑘+1|𝑘| + 𝛾|𝑒5,𝑘|𝑘|)𝑠𝑎𝑡(𝑒5,𝑘+1|𝑘 , Ψ5)       (38) 

 
 

c. Calculating the a posteriori estimates and their measurements 

𝑥1,𝑘+1|𝑘+1 = 𝑥1,𝑘+1|𝑘 + 𝐊1         (39)  

𝑥2,𝑘+1|𝑘+1 = 𝑥2,𝑘+1|𝑘 + 𝐊2         (40) 

𝑥3,𝑘+1|𝑘+1 = 𝑥3,𝑘+1|𝑘 + 𝐊3         (41)  

𝑥4,𝑘+1|𝑘+1 = 𝑥4,𝑘+1|𝑘 + 𝐊4         (42) 

𝑥5,𝑘+1|𝑘+1 = 𝑥5,𝑘+1|𝑘 + 𝐊5         (43)  

 
𝑧̂1,𝑘+1|𝑘+1 = 𝑥̂1,𝑘+1|𝑘+1          (44) 

𝑧̂2,𝑘+1|𝑘+1 = 𝑥̂2,𝑘+1+𝑘+1          (45) 

𝑧̂3,𝑘+1|𝑘+1 = 𝑥̂3,𝑘+1|𝑘+1          (46) 

𝑧̂4,𝑘+1|𝑘+1 = 𝑥̂4,𝑘+1+𝑘+1          (47) 

𝑧̂5,𝑘+1|𝑘+1 = 𝑥̂5,𝑘+1|𝑘+1          (48) 

 

d. Calculating the a posteriori estimation error, 𝑒𝑘+1|𝑘+1  

𝐞1,𝑘+1|𝑘+1 = 𝑧1,𝑘+1 − 𝑧̂1,𝑘+1|𝑘+1         (49) 

𝐞2,𝑘+1|𝑘+1 = 𝑧2,𝑘+1 − 𝑧̂2,𝑘+1|𝑘+1         (50) 

𝐞3,𝑘+1|𝑘+1 = 𝑧3,𝑘+1 − 𝑧̂3,𝑘+1|𝑘+1         (51) 

𝐞4,𝑘+1|𝑘+1 = 𝑧4,𝑘+1 − 𝑧̂4,𝑘+1|𝑘+1         (52) 

𝐞5,𝑘+1|𝑘+1 = 𝑧5,𝑘+1 − 𝑧̂5,𝑘+1|𝑘+1         (53) 

 

2.3. Sliding Innovation Filter 

In this section, the SIF is derived as a non-matrix form to solve the model in section 2.1. The SIF consists of two steps: 
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1- Prediction Stage, where the a priori estimate and its measurement, 𝑥̂𝑘+1|𝑘 and 𝑧̂𝑘+1|𝑘, respectively, are calculated 

using the equations (15) to (28). 

2- Update/Correction Stage, where the a posteriori estimate and its measurements, 𝑥̂k+1|k+1  and 𝑧̂𝑘+1|𝑘+1 , 

respectively, are calculated using the following equations 

a. Calculating the a priori estimation error 

𝐞1,𝑘+1|𝑘 = 𝑧1,𝑘+1 − 𝑧̂1,𝑘+1|𝑘         (54) 

𝐞2,𝑘+1|𝑘 = 𝑧2,𝑘+1 − 𝑧̂2,𝑘+1|𝑘          (55) 

𝐞3,𝑘+1|𝑘 = 𝑧3,𝑘+1 − 𝑧̂3,𝑘+1|𝑘          (56) 

𝐞4,𝑘+1|𝑘 = 𝑧4,𝑘+1 − 𝑧̂4,𝑘+1|𝑘          (57) 

𝐞5,𝑘+1|𝑘 = 𝑧5,𝑘+1 − 𝑧̂5,𝑘+1|𝑘          (58) 

 
b. Calculating the correction gain 

𝐊1 = 𝑒1,𝑘+1|𝑘𝑠𝑎𝑡(|𝑒1,𝑘+1|𝑘|, Ψ1)         (59) 

𝐊2 = 𝑒2,𝑘+1|𝑘𝑠𝑎𝑡(|𝑒2,𝑘+1|𝑘|, Ψ2)         (60) 

𝐊3 = 𝑒3,𝑘+1|𝑘𝑠𝑎𝑡(|𝑒3,𝑘+1|𝑘|, Ψ3)         (61) 

𝐊4 = 𝑒4,𝑘+1|𝑘𝑠𝑎𝑡(|𝑒4,𝑘+1|𝑘|, Ψ4)         (62) 

𝐊5 = 𝑒5,𝑘+1|𝑘𝑠𝑎𝑡(|𝑒5,𝑘+1|𝑘|, Ψ5)         (63) 

 
 

c. Calculating the a posteriori estimates and their measurements 

𝑥1,𝑘+1|𝑘+1 = 𝑥1,𝑘+1|𝑘 + 𝐊1         (64)  

𝑥2,𝑘+1|𝑘+1 = 𝑥2,𝑘+1|𝑘 + 𝐊2         (65) 

𝑥3,𝑘+1|𝑘+1 = 𝑥3,𝑘+1|𝑘 + 𝐊3         (66)  

𝑥4,𝑘+1|𝑘+1 = 𝑥4,𝑘+1|𝑘 + 𝐊4         (67) 

𝑥5,𝑘+1|𝑘+1 = 𝑥5,𝑘+1|𝑘 + 𝐊5         (68)  

 
 

  

3. RESULTS AND DISCUSSION 

In this work, the SVSF and SIF are applied to the maneuvering system of section 2.1. Fig. 1, Fig. 2 and Fig. 3 show the 
results for the vehicle positions, velocities and maneuvering rotational angle. The results are compared in two terms: the 
root mean squared error (RMSE) and the maximum absolute value of the error, using the following equations: 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝐴𝑐𝑡𝑢𝑎𝑙,𝑖−𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,𝑖)
2𝑛𝑠

𝑖=1

𝑛𝑠
        (69) 

𝑀𝐴𝐸 = max(|𝑥𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|)        (70) 

 

The RMSE and MAE are listed in table 1 and table 2, respectively. The results show that both SVSF and SIF have a good 
estimation for the states. Moreover, the results show that SIF has a slightly better performance compare to SVSF, where it 
has 0.5% less RMSE and better estimation for the fifth state in term of MAE. Moreover, the SIF has a structure that is 
simpler than the structure of SVSF and does not need a memory. 
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Fig. 1. The estimation of the position in x-y plane for SVSF and SIF 

 

 

Fig. 2.  The estimation of the velocity in x-y plane for SVSF and SIF 
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Fig. 3. Estimation of the fifth state for SVSF and SIF 

Table 1. RMSE of the simulated results 

 𝑅𝑀𝑆𝐸 in 

 𝑥1 (𝑐𝑚) 𝑥3(𝑐𝑚/𝑠) 𝑥2(𝑐𝑚) 𝑥4(𝑐𝑚/𝑠) 𝑥5(𝑟𝑎𝑑/𝑠) 

SVSF 18.7818  13.5279 30.3701 1.3798 0.024827 

SIF 18.6895 13.4552 30.2192 1.3749 0.024702 

Table 2. MAE of the simulated results 

 𝑀𝐴𝐸 in 

 𝑥1 (𝑐𝑚) 𝑥3(𝑐𝑚/𝑠) 𝑥2(𝑐𝑚) 𝑥4(𝑐𝑚/𝑠) 𝑥5(𝑟𝑎𝑑/𝑠) 

SVSF 414.94 299.2 674.8 5.17775 0.5524 

SIF 414.96 299.2 674.8 5.16775 0.5524 

𝑆𝑉𝑆𝐹 𝑤𝑖𝑡ℎ𝑜𝑢𝑡  

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 
11.4 4.203 7.629 5.178 1.5 × 10−3 

𝑆𝐼𝐹 𝑤𝑖𝑡ℎ𝑜𝑢𝑡  

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 
11.4 4.188 7.623 5.168 3.5 × 10−17 
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4. CONCLUSION 

In this article, the SVSF and SIF are used to estimate vehicle trajectories, velocities and maneuvering rotational speed. The 
results show that both filters performance well on the system with slightly superior performance to the SIF, where the results 
are improved 0.5% in term RMSE and significantly large improvement for the maneuvering rotational speed in term of 
MAE. For future work, the filters will be tested using an experimental setup and the results will be compared to other state 
of art filters. 
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