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ABSTRACT 

Medical image analysis continues to evolve at an unprecedented rate with the integration of contemporary computer 
systems.  Image registration is fundamental to the task of medical image analysis. Traditional methods of medical image 
registration are extremely time consuming and at times can be inaccurate. Novel techniques, including the amalgamation 
of machine learning, have proven to be fast, accurate and reliable. However, supervised learning models are difficult to 
train due to the lack of ground truth data. Therefore, researchers have endeavoured to explore variant avenues of machine 
learning, including the implementation of unsupervised learning. In this paper, we continue to explore the use of 
unsupervised learning for the task of image registration across medical imaging. We postulate that a greater focus on 
channel-wise data can largely improve model performance. To this end, we employ a sequence generation model, a squeeze 
excitation network, a convolutional neural network variation of long-short term memory and a spatial transformer network 
for a channel optimized image registration architecture. To test the proposed approach, we utilize a dataset of 2D brain 
scans and compare the results against a state-of-the-art baseline model.  
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1. BRIEF INTRODUCTION 
Contemporary medical image analysis techniques have paved the way for its continuous widespread integration within the 
greater scope of the healthcare process. At the fundamental layer, medical image analysis can be framed as the extraction 
of quantitative information, with a clear and specific goal in mind, from one or more medical images.  With rapid 
advancements in the technological paradigm, efficiently processing vast sums of data has become considerably more 
manageable. These advancements have enabled the integration of computer-aided image interpretation in routine clinical 
practice, spanning across several domains and applications. This in turn has replaced the tedious and time-consuming 
traditional practice procedure entailing manual measurements being conducted by human experts.  

Medical image analysis, however, commonly deals with the quantification of specific geometric features and the 
assessment of anatomical changes over time. Medical image analysis is highly application-specific, requiring thorough 
design and formulation prior to practical implementation [1]. Nonetheless, there are two core tasks in the domain of 
medical image analysis, namely, image segmentation and registration. Image segmentation involves the detection of 
objects of interest while drawing and establishing object boundaries. Image segmentation can be a prerequisite for 
numerous tasks where the identification of geometric properties is necessary, such as the definition of object shape and 
texture, including registration [2]. Image registration involves the realization of spatial relationships between numerous 
images. Establishing spatial correspondence across various images allows for image complementation [3]. Thus, variant 
images taken from different temporal or spatial alignment, or even variant modalities, can be effectively utilized to provide 
a holistic depiction of the object/region of interest. 

Medical image registration aims at resolving the variability between medical images introduced by the utilization of 
variant imaging modalities, temporal differences, or varying subjects. A study that aims at examining the change across 
numerous brain images may find it extremely challenging when provided with images taken with two or more varying 
modalities, such as Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI). In addition, images of 
the same participant may have been taken during different times, causing increased variability between the proposed 
images. Evidently so, the task of achieving spatial correspondence between the images, or image registration, is vital to 
the central thesis of medical image analysis [4].   
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The process of medical image registration begins with the introduction of two, in the case of pair-wise registration, or 
more, in the case group-wise registration, medical images with a common region of interest. One of the images is 
referred to as the moving or source and the others are referred to as the target, fixed or sensed image. Image registration 
involves spatially transforming the source/moving image(s) to align with the target image. The image registration 
procedure can be broken down into three separate components. The first of which is the identification of similarity 
between the proposed images, completed with the assistance of a similarity or dissimilarity measure. Transformation is 
then applied to one of the selected images with the aim of achieving spatial correspondence with its image pair. 
However, a wide variety of transformations can be applied to the image, therefore the algorithmic process involves the 
estimation of the optimal transformation, which when employed maximizes or minimizes the similarity or dissimilarity, 
respectively [5]. 

2. PROPOSED METHODOLOGY  
 
2.1 Problem Statement 

The registration problem necessities the input of two images, a moving image, 𝐼!, and a fixed image, 𝐼". The goal of the 
network is to establish spatial correspondence between the two input images through the application of a transformation, 
𝑇, on the moving image, therein producing a moving image, 𝐼# [6].   

𝐼# = 𝑇(𝐼!	) (1) 

2.2 Optimization Problem  

To solve the problem of unsupervised image registration we can take an optimization-based viewpoint. Simply stated, the 
goal of the model will be to utilize a similarity metric,	𝐸, to iteratively compare the moved image,	𝐼#, to the respective 
fixed image,	𝐼". At each iteration, the model will aim to make the necessary updates to the learning parameters, such that 
the value of the similarity metric is reduced from the previous iteration. The completion flag of the registration procedure 
is invocated at the arrival of a set number of epochs or predefined similarity metric output value, ℒ$%&!"# [7].  

𝑇'()%&*+ = 	𝑜𝑝𝑡𝑖𝑚𝑢𝑚	0ℒ,-.(𝐼/	– 	I0	)3 = 𝑜𝑝𝑡𝑖𝑚𝑢𝑚	 4ℒ0𝐼/	– 	𝑇	(𝐼1)35 (2) 

Note that the proposed methodology is unsupervised in nature. Therefore, no ‘true’ optimal transform is provided to the 
model. In theory, a random deformation can be applied to 𝐼!, therein producing an 𝐼" with a known transformation. 
However, with aim of generating practical results that can be truly compared with a state-of-the-art baseline, we do not 
utilize this approach. Rather, 𝐼!  and 𝐼" are images sampled from a dataset where the ‘true’ transformation is not known 
apriori.  

2.3 Overview  

The model architecture can be decomposed into three variant sequential phases, namely the sequence generator, 
registration field prediction and transformation. The architecture draws inspiration from state-of-the-art unsupervised 
image registration algorithm, VoxelMorph, however, differs heavily in processes leading to the production of the pixel-
oriented registration field and application of the transformation [8]. The proposed approach relies heavily on channel-wise 
features and exploits their interdependencies.  

 
Figure 1: Cumulative Model Overview 
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2.4 Squeeze and Excitation  

The fundamental building block of the network is the squeeze and excitation block, which is depicted in Figure 2. The 
goal of the proposed model is to utilize channel interdependencies throughout the architecture, regardless of if they are 
input channels or feature map channels. The squeeze and excitation network enables this by using a parallel path and a 
skip connection [9].   

 
Figure 2: Squeeze and Excitation Network 

 
The parallel path will squeeze the input, with the dimensionality of 𝐻 ×𝑊 × 𝐶, into a dimensionality of 1 × 1 × 𝐶, where 
C is the number of channels in the input image. This is conducted with the employment of global average pooling, although 
more complex aggregation methods may be used. The process is formulated as:   

𝑧2 = 𝐹$3(𝑋2) = 	
1

𝐻	 ×𝑊>>𝑋2(𝑖, 𝑗)													
4

567

8

%67

(3) 

A gating mechanism is then employed to capture channel-wise dependencies. Two fully connected layers are utilized to 
limit model complexity while enhancing generalization.  

𝑠 = 𝐹9:(𝑧,𝑊) = 	𝜎0𝑔(𝑧,𝑊)3 = 	𝜎0𝑊;𝛿(𝑊7𝑧)3, (4) 

where 𝑟 is the reduction ratio controlling computational cost and capacity, 𝜎 and δ refers to the sigmoid and rectified 
linear unit (ReLU) function, 𝑊7 ∈ 𝑅

	$%	×	>  and 𝑊; ∈ 𝑅
>	×		$%	. In the proposed approach, we use an 𝑟 value of 8, however 

we find that modifying the 𝑟 value for the according data can assist with overall model performance.  

Lastly, the original input is scaled using channel-wise multiplication of the channel scalar, 𝑠2 and feature map 𝑢2:  

𝑋J = 𝐹$2*+9(𝑢2 , 𝑠2) = 𝑠2 ∙ 𝑢2 , (5) 

where 𝑋J = 	 [𝑥O 7, 𝑥P;…	, 𝑥P>] and 𝑢2 ∈ 𝑅8	×4.  

 

Proc. of SPIE Vol. 12097  120970D-3



 
 

 
 

2.5 Architecture  

The initial step of the proposed architecture is the sequence generator, which aims at generating a set of sequential, channel 
oriented, feature maps. For this purpose, a channel attention variant of the U-Net is employed. In a typical U-Net 
architecture, the encoder, or down-stack, provides the model with contextual information about the input images, while 
the decoder, or up-stack, projects the lower resolution features to the pixel space [10]. The encoder and decoder are coupled 
with skip connections, which will assist in the transfer of pixel-related data that may be lost because of the pooling 
operations. The output of a typical U-Net model is a segmented image corresponding to its respective input image.  

However, the goal of the proposed sequence predictor is not to generate a segmented variation of the input images, like a 
typical U-Net implementation, but rather to generate a sequential set of feature maps from both input images, which will 
later assist in the prediction of the flow field. The sequential set of feature maps will be discussed shortly, but for now, we 
focus on the necessary modifications that need to be made to the U-Net architecture to increase channel attention.  

 
Figure 3: Sequence Generation Model 

 

There is a fundamental lack of focus on channel-wise attention throughout the design of the classical U-Net. Rundo et al. 
showcased this with the addition of squeeze and excitation blocks after each step in the encoder and decoder pathways, to 
which they achieved excellent generalization results [11]. The addition of squeeze and excitation blocks to the network 
allows for a low complexity channel attention scheme. We implement a similar but reduced architecture, where channel 
attention is employed solely across the skip connections. Applying the squeeze and excitation blocks to only the skip 
connections achieves the channel attention benefits necessary to assist in bridging the semantic gap without the increased 
computational complexity entailed when they are added to each step in the encoder and decoder.  

In addition, we implement a funnelling approach to connect the highest layers of the U-Net architecture to the lowest 
levels. This approach allows for the amalgamation of the highest resolution features to the lowest resolution features. The 
goal, again, is to bridge the semantic gap between the encoder and decoder. This connection is made after the application 
of channel attention, conducted on the skip connections.  

In abstract, the process can be viewed as the selective weighting of high-resolution features, propagated by the highest 
layers in the U-Net architecture, amalgamated with the selectively weighted low-resolution features of the lowest levels.  
The resultant feature map is then processed using Long Short-Term Memory (LSTM), such that each channel is processed 
sequentially [12]. The channels are therefore treated as spatiotemporal sequences. 

[𝑥, 𝑦, 𝑛] → 𝑛	 × [𝑥, 𝑦, 1]	 (6) 
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The formulation of a classical LSTM is given by [13,14]:  

𝑖) = 𝜎(𝑊:% 	𝑥) +𝑊?%ℎ)@7 +𝑊2% ∘ 𝑐)@7 + 𝑏%)	 (7) 

𝑓) = 𝜎0𝑊:A	𝑥) +𝑊?Aℎ)@7 +𝑊2A ∘ 𝑐)@7 + 𝑏A3	 (8) 

𝑐) = 𝑓) ∘ 𝑐)@7 + 𝑖) 	 ∘ tanh(𝑊:2𝑥) +𝑊?2ℎ)@7 + 𝑏2)	 (9) 

𝑜) = 𝜎(𝑊:'	𝑥) +𝑊?'ℎ)@7 +𝑊2' ∘ 𝑐) + 𝑏')	 (10) 

ℎ) = 𝑜)		 ∘ tanh(𝑐))	 (11) 

where ∘ represents the Hadamard product. 𝑖, 𝑓, 𝑜	are the input gate’s activation vector, forget gate’s activation vector, 
output gate’s activation vector, respectively;	𝑐 is the memory cell state vector and 𝑊 is a weight matrix to be learned 
during the training phase.  

However, as stated, the input and output of the model will be spatiotemporal sequences. Therefore, we modify the structure 
of the LSTM for the purpose of processing spatiotemporal sequences with the convolution operation. The ConvLSTM can 
be formulated as, where the convolution operator is represented with ∗ [15]:  

𝑖) = 𝜎(𝑊:% ∗ 𝒳) +𝑊?% ∗ ℋ)@7 +𝑊2% ∘ 𝒞)@7 + 𝑏%)	 (12) 

𝑓) = 𝜎0𝑊:A ∗ 𝒳) +𝑊?A ∗ ℋ)@7 +𝑊2A ∘ 𝒞)@7 + 𝑏A3	 (13) 

𝑐) = 𝑓) ∘ 𝒞)@7 + 𝑖) 	 ∘ tanh(𝑊:2 ∗ 𝒳) +𝑊?2 ∗ ℋ)@7 + 𝑏2) (14) 

𝑜) = 𝜎(𝑊:' ∗ 𝒳) +𝑊?' ∗ ℋ)@7 +𝑊2' ∘ 𝒞) + 𝑏')	 (15) 

ℋ) = 𝑜)		 ∘ tanh(𝒞))	 (16) 

The produced set of sequential feature maps is then propagated through a squeeze and excitation block, in aim of modeling 
feature map interdependencies. A convolution operation is then conducted on the output of the squeeze and excitation 
block, however, as the goal is to continually capture and exploit channel relationships, the convolution operation is initially 
performed on individual channels. This operation is known as a depthwise convolution, where a single convolutional filter 
is applied to each individual channel [16]. Our primary goal in doing such is to create a dense representation of the features 
prevalent in each channel, which later will be fused with other channels. 

[𝑊,𝐻, 𝐶] → [𝐶𝑜𝑛𝑣([𝑊,𝐻]2&), … , 𝐶𝑜𝑛𝑣([𝑊,𝐻]2#)]	 (17) 

The last layer is a 2-dimensional convolution layer with a set of f filters, where f	represents the dimensionality of the 
optical flow. For this paper, the registration is conducted on 2-D moving and fixed images; therefore, f = 2. For 3-D 
registration spaces f = 3. This has essentially allowed for greater modelling of channel interdependencies in the set of 
channel sequences, therefore increasing the accuracy of the registration field prediction.   

𝐷 = 𝐶𝑜𝑛𝑣([𝐶𝑜𝑛𝑣([𝑊,𝐻]2&), … , 𝐶𝑜𝑛𝑣([𝑊,𝐻]2#)])	 (18) 

The last phase in the model architecture is the transformation stage. To conduct the necessary dense transformation, we 
employ a spatial transformer network where bilinear interpolation is utilized to predict the new value of pixels in 
accordance with their respectively assigned flow [17].  

𝑉%> =	>>𝑈B&2 max(0,1 − |𝑥%$ −𝑚|)max	(0,1 − |𝑦%$ − 𝑛|)
4

&

8

B

				 (19) 

However, it is crucial to note that in the spatial transformer network proposed by in 2015 by Jaderberg, sampling is 
conducted identically for each channel for the purpose of maintaining spatial consistency. This can be a large issue if the 
input channels carry varying semantic concepts. To prevent this, we employ a squeeze and excitation block to the 
registration field input of the spatial transformer.  

The goal in doing such is to weigh each of the channels in the input adaptively, therefore, the model can learn an optimal 
weighting scheme for the bilinear interpolation procedure without directly disturbing spatial consistency. The weighted  

Proc. of SPIE Vol. 12097  120970D-5



 
 

 
 

 
Figure 4: Cumulative Model Architecture. Moving image and fixed image are passed into the sequence generator, 

producing a sequential channel-wise output. The resultant output is sequentially processed with a ConvLSTM, producing 
a set of feature maps to be channeled down into the respective registration field. The output is passed into a spatial 

transformer network to produce the moved image.  
 
channels are therein fed into the spatial transformer network, which conducts the respective bilinear interpolation with a 
weighted channel approach. The final transformation is given by:  

𝐼# = 	𝑇(𝐼!) = 𝑆𝑇𝑁(𝐷)	 (20) 

 

2.6 Defining Training Loss 

As aforementioned, defining the cumulative registration process as an optimization problem will involve the 
implementation of a similarity measure. Mean squared error is typically implemented for solving this problem, where the 
average squared difference between 𝐼A and 𝐼C is estimated.  

ℒ$%&(𝐼" , 𝐼#) = ℒ$%&(𝐼" , 𝑇(𝐼!) = 𝑀𝑆𝐸0𝐼" , 𝑇(𝐼!)3 = 	
1
𝛼>u𝐼"( − 𝑇(𝐼!)(v

;

(∃E

	 (21) 

However, if we focus on only optimizing the similarity loss, then we typically produce a discontinuous 𝑇, thereby affecting 
the quality of 𝐼C.  A smoothness loss is also defined for the model based on diffusion regularization to combat this.  

ℒ$&'')?(𝐷) =>w|Ñ	𝐷(𝑝)|w;

(∃E

	
	 (22) 

We can define the total loss as the sum of both the similarity loss and smoothness loss, with the addition of a regularization 
parameter, 𝜆, to regulate the weighting of smoothness.  

ℒ$%&(𝐼" , 𝐷, 𝐼#) = 	ℒ$%&(𝐼" , 𝐼#) + 𝜆	ℒ$&'')?(𝐷)	 (23)	 

We note that the integration of various other losses, such as mean absolute error and Huber’s loss, can be implemented. 
We also find that Huber’s loss can decrease instability during the training procedure, as it is less sensitive to outliers. 
However, we choose to employ the same loss implemented by VoxelMorph, described above, with the aim of providing a 
controlled assessment of only the model dynamics.  
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3 DATASET AND IMPLEMENTATION 
To comparatively test the model, we use a larger dataset of 1024 MRI brain scans acquired from various publicly 
available datasets, namely OASIS, MCIC, PPMI, HABS, ADHD, Harvard GSP and ABIDE. The dataset is further 
augmented to 1500 using simple augmentation techniques. 
 
The proposed method was built using Keras with a Tensorflow backend. Adam is used as the gradient optimization 
method with a learning rate of 10𝑒@F. The sample code is available at https://www.github.com/nalsadi/lstm-cor. The 
model is tested against a baseline, VoxelMorph, which was trained using the same compute instances. The code for the 
VoxelMorph model is publicly available at https://github.com/voxelmorph/voxelmorph.  

 

5 RESULTS 
The comparative analysis is conducted with the assistance of 2D MR brain images from the dataset discussed prior. The 
loss during the training procedure is recorded in Figure 5, where both models are trained for 900 epochs with a batch 
size of 8.  
 

  
Figure 5: Training loss over 900 epochs. The figure on the left indicates the true results of the training procedure. The 

figure on the right showcases the same loss over the training procedure with a moving average.  
 
The results show that the proposed method achieved a lower average loss over the training period. This is more 
evident in the smoothed plot shown in Figure 5 with the assistance of a moving average. In addition, the average 
training loss incurred over the training period, as well as the average mean squared error and mean absolute error is 
listed in Table 1.  The results indicate the proposed method outperformed the baseline, VoxelMorph, in achieving 
lower mean squared error and mean absolute error during both training and testing. Although, due to increased 
model complexity, the training time increased dramatically. 
 

Table 1: Proposed Method and Baseline Performance 
Approach Mean Training 

Loss 
Mean Testing 

MSE 
Mean 

Testing 
MAE 

Dice Score 

 

GPU Time 

Proposed Method 0.002502 0.001227 0.017150 0.7642* 0.09(0.004) 

VoxelMorph 0.002766 0.001576 0.019996 0.7521 0.0459(0.03) 

 
It is quite evident from the reported execution time that that model is relatively slower than the baseline. The results 
displayed in Table 2 show the proposed method performs very well in registering the respective moving image. 
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Table 2: Results of the proposed method on three pairs of variant scans. 
 

Moving Fixed Moved 

 
 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 
 

 
 
 

 

 
The proposed method is further compared with the baseline with a qualitative comparison of their registration results 
displayed in Table 3.  
 
 
 
 
 

Proc. of SPIE Vol. 12097  120970D-8



 
 

 
 

 
 

Table 3: Comparison of the proposed method and VoxelMorph on the same input image pair 
Approach Moving Fixed Moved 

Proposed 
Method 

  
 
 

 
 
 
 
 

VoxelMorph 

 
 

 
 

 
 
 
 

 
 
The results indicate that the proposed method outperformed the baseline model in terms of accuracy, achieving a higher 
testing MSE and Dice score. In addition, the qualitative analysis of the performance of the proposed method shows 
excellent registration performance. However, the execution time has almost doubled for registering a pair of images. 
Figure 6 depicts the substantial increase in execution time.  
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Figure 6: Execution Time of Proposed Method and Baseline Model 

 
The execution time will need to be reduced for the proposed method to be practically implemented within clinical 
settings. Processing thousands of images with an increased execution time, almost doubling the baseline model, will 
introduce massive delays to the registration process.  

CONCLUSION 
In conclusion, we present a novel approach to unsupervised image registration where channel attention is prioritized. 
Squeeze and excitation blocks introduce an adaptive weighting scheme of channel-wise information captured via a 
sequence generator, composed of an encoder and decoder, from the input of a moving and fixed image. The output 
feature maps are viewed as a channel-wise spatiotemporal sequence. We process this sequence with the employment of a 
modified LSTM, namely the ConvLSTM. The features maps are then processed using convolution operations on each 
channel or a depthwise convolution layer. The output is then fed into a squeeze and excitation block and a spatial 
transformer network to produce a weighted channel approach for bilinear interpolation without disturbing spatial 
consistency. We test the proposed method on a two-dimension registration space with brain scans and compare it against 
a baseline, VoxelMorph. The proposed method achieved a lower MSE during the training and testing procedure and a 
higher DICE score, 0.7642, than the baseline. However, we note that the proposed method increased computational time 
but did so with an improved accuracy across all other metrics. Future work will be dedicated to maintaining accuracy 
while reducing execution time.  
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