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ABSTRACT 

Artificial feedforward neural networks (ANN) have been traditionally trained by backpropagation algorithms involving 
gradient descent algorithms. This is in order to optimize the network’s weights and parameters in the training phase to 
minimize the out of sample error in the output during testing. However, gradient descent (GD) has been proven to be slow 
and computationally inefficient in comparison with studies implementing the extended Kalman filter (EKF) and unscented 
Kalman filter (UKF) as optimizers in ANNs. In this paper, a new method of training ANNs is proposed utilizing the sliding 
innovation filter (SIF). The SIF by Gadsden et al. has demonstrated to be a more robust predictor-corrector than the Kalman 
filters, especially in ill-conditioned situations or the presence of modelling uncertainties. In this paper, we propose 
implementing the SIF as an optimizer for training ANNs. The ANN proposed is trained with the SIF to predict the Mackey-
Glass Chaotic series, and results demonstrate that the proposed method results in improved computation time compared to 
current estimation strategies for training ANNs while achieving results comparable to a UKF-trained neural network. 

Keywords: Optimization, Estimation Theory, Kalman Filter, Gradient Descent, Smooth Variable Structure Filter, 
Sliding Modes, State-Space Methods, Deep Learning, Machine Learning, Neural Networks 

BRIEF INTRODUCTION
Gradient descent (GD) is an algorithmic optimization technique that minimizes a function iteratively. In the field of 
machine learning and deep learning, gradient descent has been widely recognized as the most popular optimization 
algorithm for the training of models due to its simplicity and ease of implementation. Deep learning models rely on the 
existence of data to train the model to modify its parameters such as weights and biases. Subsequently, the model is trained 
with the subset of the existing data by determining the cost function, which represents the error between the predicted 
output and the actual training data output. The optimization algorithm works to minimize this cost function as much as 
possible by adjusting the weights and biases of the learning model. 

Artificial neural networks (ANN) can approximate any function with arbitrary precision [1]. Du et al. proved that for 
over-parameterized deep neural networks, gradient descent converges to a global minimum of a cost function and achieves 
zero training loss despite the non-convexity of the objective function [2, 3]. Their analysis was extended to residual 
convolutional neural networks to prove similar convergence. These findings were also confirmed in Zhang et al., which 
showed that the stochastic gradient descent manages to efficiently train a convolutional neural network used for image 
classification and easily fits randomized labelling of the data [4]. 

    The use of gradient descent has also extended to other architectures of neural networks, such as radial basis neural 
networks which arose due to the slow convergence of the gradient descent algorithms developed for feedforward neural 
networks [5, 6]. Furthermore, Wijnhoven et al. explored the use of gradient descent in object detection instead of support 
vector machine (SVM) when analyzing very large training datasets as the existing models were computationally complex 
[7]. The studies showed that gradient descent converges quickly to the overall optimum, requires only one iteration over 
the training set, and is faster than SVM by two to three orders of magnitude without loss of classification performance [7]. 
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    It was shown by Puskorius et al. that applications of artificial neural networks in non-linear dynamic control were sparse 
and that systems were predominantly static network architectures that are trained by gradient descent [8, 9]. However, in 
recurrent neural networks (RNN), gradient descent has been widely overlooked due to practical difficulties such as being 
slow and also ineffective in converging to a solution [8, 10]. Additionally, in the case of random initialization, gradient 
descent generally performs poorly with deep neural networks [11]. These issues with gradient descent have resulted in the 
exploration of other training methods for neural networks such as the Kalman filter (KF) and Extended Kalman filter 
(EKF) [8]. 
 
    Gradient descent remains the most prominent training loss optimization algorithm, however, it does not necessarily 
converge to the global minima. In numerous cases, gradient descent struggles to find global minima, only to achieve local 
convergence [12]. When employing a gradient descent-based optimization methodology for training a neural network, 
there are two common outcomes. The first of which is the nonconvex nature of the training criterion and the second is the 
magnitude of nonglobal local  
minima [13]. As a direct consequence of these two outcomes, the potential for local convergence becomes a seemingly 
indispensable characteristic of gradient descent.  
 
    The issue of local convergence has become known as the local minima problem, and there has been extensive work 
conducted on methods to avoid this complication when training neural networks [14]. Some authors have attempted to 
build upon gradient descent while introducing novel methods to the greater neural network architecture. However, there is 
a steep cost associated with the reduction of local minima. Lo et al.  advised that a methodology grounded in 
convexification will ultimately lead to the lowest cost and greatest utility. The authors propose convexification of the sum 
of squared errors to solve the problem at hand [15].   
    Additionally, researchers have taken steps to replace gradient descent by employing variant optimization functions. 
Ahmad et al. proposes the utilization of genetic algorithms to replace gradient descent, with the aim of locating a global 
optimal solution in a complex space [16]. The authors explored the potential advantages of using variant optimization 
algorithms in numerous situations. The results show that the introduction of genetic algorithms yields a smaller 
classification error than gradient descent in specific applications [16]. There is plenty of literature discussing numerous 
substitutes for gradient descent [17, 18]. 
 
    Of interest to the core topic, is the advantages of using estimation strategies to augment model performance. Various 
authors posit the use of KF to reduce the chance of local convergence. Literature suggests that whilst classical gradient 
descent is susceptible to adopting a local minima, the KF can be utilized to avoid this issue. Benromdhane et al. postulated 
that using an EKF over gradient descent will enable escaping the ‘local minima’ problem. The authors report that the 
proposed method converged to a satisfactory minima under various initial conditions, however, led to a substantial 
computational cost [19]. Katić et al. advance a method to maintain convergence properties while reducing computational 
complexity. The authors suggest that applying the EKF to all network parameters is inherently computationally complex. 
Therefore, the authors opt for the decomposition of the network into variant layers, leaving the cumulative network 
optimization process to be conducted layer by layer. The authors report that the proposed method converged much faster 
than its gradient descent-based counterpart, while also offering an excellent compromise between the computation 
complexity and convergence properties [20].  
 
    Li et al. propose the implementation of an EKF-based training loss optimization algorithm. The authors discover that 
the EKF produced improved convergence properties and a quicker training speed than its gradient descent-based 
counterpart [21].  
    Darojah et al. conducted a comparative study between the EKF and a classical gradient descent-based backpropagation 
algorithm. The authors use the EKF as a method of state estimation for a nonlinear dynamic system, where the state vector 
is a cumulative representation of the network’s synaptic weights. The authors reported lower computation time and higher 
performance rates when using the EKF [22]. 
 
 As asserted previously, when using the EKF to train a neural network, the process becomes that of nonlinear state 
estimation. The literature shows that when dealing with nonlinear state estimation, the unscented Kalman filter (UKF) 
yields better results than the EKF [23]. Various authors, however, postulate that the superiority of the UKF not only lies 
within performance characteristics but rather within the implementation itself. LaViola et al. pointed to an advantage, 
namely that when dealing with an UKF, there is no requirement for linearizing with the Jacobian matrices [24]. The authors 
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allude to the fact that the UKF will utilize a minimum set of sample points to locate the mean and covariance estimates. 
Furthermore, the paper affirms that the UKF is a superior alternative to the EKF for numerous applications, including 
neural networks [24]. In addition to improved performance and noncomplex implementation, the UKF does not increase 
computational complexity, rather it can operate at the same level of computational complexity as the EKF [25]. 
 
    In another study, Darojah et al. compare the results achieved in the previously mentioned paper, in which the EKF was 
used, to an UKF implementation [26]. The authors report that although for this specific implementation there was no 
significant variance in performance, the advantage held by the UFK was the lack of requirement for calculating the 
Jacobian [24, 26].  
    Zhan et al. suggest that while the EKF provides a straightforward implementation, several drawbacks can be combated 
with the use of the UKF [27]. Some of these drawbacks include a biased nature of estimates, instability to linearization, 
and costly calculation of the Jacobian matrices. The authors show that when dealing with neural network training, an UKF 
implementation can outperform an EKF implementation [27].     
 
Contemporary advancements have progressed the condition of nonlinear state estimation methodologies. Alternatively, 
sliding mode observers (SMO) were presented to estimate the true states by utilizing variable structure techniques [28]. 
Based on these two techniques, the smooth variable structure filter (SVSF) was formed to estimate the true states as an 
alternative method [29]. An enhanced alternative, the sliding innovation filter (SIF) was proposed as a predictor-corrector 
estimator for linear systems with a similar principle as the SVSF. However, the SIF achieves more robust results against 
disturbances by utilizing a simpler gain structure [29].  
 
    Nowadays, neural networks are the most used learning algorithms to model non-linear and complex relationships [30]. 
Optimizers help to adjust the weights and the learning rates to converge a faster result. The EKF neural network training 
technique was first proposed in 1989 by Singhal et al. [31]. According to their paper, the EKF is a faster optimal estimator 
compared to the standard backpropagation (SBP). Also, the KF based techniques achieve the global optimal solution in 
fewer iterations with less training effort [32]. The SVSF was also utilized to tune the network weights as a novel training 
method, and it achieved guaranteed stability with a great static input-output mapping [33]. Since the SIF accomplishes a 
greater accuracy compared to the SVSF, greater performance is expected from the implementation of the SIF as an 
optimization technique [29]. Therefore, the implementation of the SIF in neural network training is proposed as an 
improvement to current techniques of optimization. 
 
 In this paper, Section II provides an overview of neural networks and the equations involved in forward propagation. 
Section III summarizes the process and equations of the UKF, followed by the SIF equations in Section IV. In Section V, 
the proposed work and experimental simulations are stated followed by an analysis and discussion of the results. Finally, 
concluding statements and remarks are presented in Section VI. 

I. NEURAL NETWORKS 
Neural Networks (NN) are computer algorithms that mimic the working principle of the human brain [34]. The 

processing elements, known as neurons, consist of weights and biases. The network structure consists of an arbitrary 
number of neurons placed inside three main layers: the input layer, the hidden layers and the output layer [35]. The network 
is densely connected, which means that each input neuron is connected to every hidden layer neuron, which are also in 
turn connected to every neuron in the output layer. Feedforward neural networks (FFNN) are the simplest form among 
neural networks, moving only in one direction (forward) from the input layer, through the hidden layers, to the output layer 
[36]. Each neuron inside the layers is fired by an activation function [34]. There are a vast majority of activation functions 
that can be used, but due to the restricted size of weights and biases the rectified linear (ReLu) is the most practical one 
for our case [37]. The function returns itself if the output is positive, otherwise it returns zero.  

 
 𝑅𝑒𝐿𝑢(𝑥) = max	(𝑥, 0) (1) 
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Fig. 1.  Illustration of an artificial neural network with an input layer, one hidden layer and an output layer. 

Let us assume that 𝑤 represents the weights of the NN, 𝑏 represents the biases, 𝑥 refers to the input, with the output 
referred to as 𝑧, 𝑛 is the total number of neurons inside the previous layer and each neuron is assigned with 𝑖. The equation 
below (2) provides the sample calculation of a neuron’s output in a NN [34, 36, 38]: 

  
 𝑧 = 𝑤!𝑥 + 𝑏 (2) 

 
An activation function is then applied to each output of every neuron within the hidden layer. The training “learning” 
process involves tuning the network’s synaptic weights iteratively to build an accurate prediction from given inputs. A 
common way to attack this non-convex problem is using gradient descent (GD) to find local minima of the function [2]. 
Stochastic gradient descent (SGD) is preferable for smaller datasets due to its less significant computation complexity 
[38]. Let us assume that 𝑦 is the true value, 𝑓(𝑤, 𝑏) denotes the loss function, noting that ∇",$ is the gradient of the loss 
function. The objective is to minimize the loss function by tuning the weights and the biases so that the overall network 
produces an output that results in the smallest cost, or error, as possible. The cost function shows how precise is our model 
at predicting the output, and is shown in equation (3) follows [39]:  
 

 
𝑓(𝑤, 𝑏) =
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In order to find the slope pointing in the direction of the global minima, the gradient parameter is calculated by using 
partial derivatives in equation (4) as follows [39]: 
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(4) 

 
After calculating the gradient, new weights and biases are computed with equations (5) and (6) [38, 40]. The adjustment 

of the step magnitude is expressed with 𝛼 which determines the step size of the GD. Then, the whole process repeats itself 
recursively until the global minima is reached. 
 

 𝑤*+) = 𝑤* − 𝛼∇",$𝑓(𝑤, 𝑏) 
 

(5) 

 𝑏*+) = 𝑏* − 𝛼∇",$𝑓(𝑤, 𝑏) (6) 
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II. THE UNSCENTED KALMAN FILTER 
The UKF was a method proposed by Julier et al. to generalize the KF to nonlinear systems based on a weighted statistical 

linear regression strategy, linearizing the model statistically [41, 42]. The UKF is considered superior to the EKF in terms 
of accuracy and is much simpler to implement. A set of weighted samples or ‘sigma-points’ is generated from the states’ 
projected probability distribution around the mean and covariance [42, 43]. The sigma-points are subsequently propagated 
through nonlinear functions leading to an approximation of the desired estimate’s mean and covariance [42, 43]. A 
deterministic sampling technique known as the unscented transform is used by the UKF, which has been shown to provide 
a more accurate a priori estimate of the mean and covariance in comparison to its predecessor, the EKF [42].  

 
These strategies involved in the UKF allow it to eliminate the need for linearization of the system model by determining 

the Jacobian matrices, which is considered cumbersome and the limiting factor for the EKF’s performance [42, 43, 44]. 
For applications with significantly nonlinear models, there is evidence that approximating the linear model by evaluating 
the Jacobian introduces significant error when determining the estimate of the covariance matrices, further highlighting 
the superiority of the UKF [44]. 

 
An overview of the equations involved in the UKF as well as a summary of the process is detailed as follows [42, 43]. 

First, (2n + 1) sigma points are generated to approximate the n-dimensional random variable 𝑥* which has a mean 𝑥G*|* 
and covariance 𝑃*|*. The calculation of these sigma points’ initial samples and weights is as follows: 

 
 𝑋-,*|* = 𝑥G*|* (7) 

 

 𝑊- = 𝑘/(𝑛 + 𝑘) (8) 
 

Calculating subsequent n sigma points is then possible by the following equations: 
 𝑋%,*|* = 𝑥G*|* + MN(𝑛 + 𝑘)𝑃*|*O

%
 (9) 

 
 𝑊% = 1/[2(𝑛 + 𝑘)] (10) 

 
Similarly, the rest of the remaining n sigma points are determined as follows: 

 𝑋%+',*|* = 𝑥G*|* − MN(𝑛 + 𝑘)𝑃*|*O
%
 (11) 

 
 𝑊%+' = 1/[2(𝑛 + 𝑘)] (12) 

 
In the sigma point initialization equations, k is a design parameter that is usually much smaller than 1. The weight 

associated with the ith sample point is denoted as 𝑊% [42]. Next, the sigma points are propagated through the system’s 
nonlinear model (13) and with the weight for each respective point, a state estimate prediction is calculated (14) as follows: 

 
 𝑋R%,*+)|* = 𝑓(𝑋%,*|* , 𝑢*) (13) 

 
 

𝑥G*+)|* =:𝑊%𝑋R%,*+)|*

&'

%(-

 
 
(14) 

 
Then, the predicted state error covariance can be determined from the previous two equations by: 
 

𝑃!"#|! =#𝑊%(𝑥'%,!"#|! − 𝑥'!"#|!)(𝑥'%,!"#|! − 𝑥'!"#|!)'
()

%*+

 
 
(15) 
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 After being successfully propagated through the system’s nonlinear model, the sigma points must then undergo 
propagation through the nonlinear measurement model (16) in order to arrive at a predicted measurement (17) as follows: 
 

 𝑍T%,*+)|* = ℎ(𝑋R%,*+)|* , 𝑢*) (16) 
 

 
 
 

Now it is possible to calculate the innovation (measurement) covariance (18) and the cross-covariance between the states 
and measurements (19) as follows: 
 

𝑃,,,!"#|! =#𝑊%(𝑍+%,!"#|! − �̂�!"#|!)(𝑍+%,!"#|! − �̂�!"#|!)'
()

%*+

 
 
(18) 

 
 
 
 
The Kalman gain can now be calculated from the innovation and cross-covariance previously as follows in (20): 
 

 𝐾*+) = 𝑃./,*+)|*𝑃//,*+)|*0)  (20) 
 
 Finally, the updated a posteriori state estimate and state error covariance can be calculated by (21) and (22): 
 

 𝑥G*+)|*+) = 𝑥G*+)|* +𝐾*+)(𝑧*+) − �̂�*+)|*) (21) 
 

 𝑃*+)|*+) = 𝑃*+)|* −𝐾*+)𝑃//,*+)|*𝐾*+)!  (22) 
 

 The complexity of the UKF at first glance may seem to be a computational burden, however this is offset by the fact 
that it does not require linearization of the nonlinear function through Jacobian matrices [26]. For increasingly nonlinear 
systems, the UKF is considered a very accurate estimator [42, 43]. 
 

III. THE SLIDING INNOVATION FILTER 
The SIF is a method by Gadsden et al. which is based on variable structure techniques and sliding mode observers. The 

benefit of the SIF over the UKF is its simplicity and ability to maintain robustness in the presence of uncertainties and 
disturbances [29]. Like the KF and UKF, the SIF is a predictor-estimator estimation method and utilizes a correcting term 
known as the SIF gain, similar to the Kalman gain [29]. 

 

A. Linear Systems and Measurements Case 
The structure of the SIF’s prediction stage is very similar to the KF and involves the calculation of a priori state estimates 

𝑥G*+)|*, state error covariance 𝑃*+)|* and innovation �̃�*+)|* shown respectively as follows [29]: 
 

 𝑥G*+)|* = 𝐴𝑥G* + 𝐵𝑢* (23) 
 
 

 

 𝑃*+)|* = 𝐴𝑃*|*𝐴! + 𝑄*		 (24) 
 

 
 �̃�*+)+* = 𝑧*+) − 𝐶𝑥G*+)|* (25) 

 
In (23) through to (25) the system matrix, input gain matrix and measurement matrix are represented by 𝐴, 𝐵 and 𝐶 
respectively. The system’s input is represented as 𝑢* and the system and measurement covariance matrices are 𝑄 and 𝑅 

 
�̂�*+)|* =:𝑊%𝑍T%,*+)|*

&'

%(-

 
 
(17) 
 

𝑃-,,!"#|! =#𝑊%(𝑋/%,!"#|! − 𝑥'!"#|!)(𝑍+%,!"#|! − �̂�!"#|!)
()

%*+

 
 
(19) 
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respectively, with the assumption that the system and measurement noises are white, meaning zero mean and Gaussian 
[29].  
 
 For the update stage, the SIF gain 𝐾*+) is calculated along with the a posteriori state estimates 𝑥G*+)|*+), and updated 
state error covariance 𝑃*+)|*+) respectively as follows: 

 
 𝐾*+) = 𝐶+𝑠𝑎𝑡`̀ `̀ (a�̃�*+)|*a/𝛿) (26) 

 
 𝑥G*+)|*+) = 𝑥G*+)|* +𝐾*+)�̃�*+)|* (27) 
   

 
 
 
 
From the previous equations, in (26) the term 𝐶+ indicates to the pseudoinverse of the measurement matrix, whilst 𝑠𝑎𝑡`̀ `̀  
refers to the saturation value (value between -1 and +1) of the diagonal of that term, a�̃�*+)|*a is innovation’s absolute value 
and 𝛿 signifies the width of the sliding boundary layer. In equation (28), 𝐼 signifies the identity matrix with dimensions 
𝑛 × 𝑛 where 𝑛 refers to the number of states [29]. 
 
 The KF and SIF strategies differ in terms of their gain structure and is considered the key difference between the two 
filters. Optimality is expected by the KF since the gain is derived as a function of the state error covariance, however the 
SIF gain relies on the measurement matrix, innovation term and uniquely, a sliding boundary layer term [29]. 

B. Nonlinear System and Measurements Case 
The SIF is like the KF in the sense that it can be extended to nonlinear systems and measurements by determining their 

respective Jacobian matrices to find their linearized form [29]. This proposed method is referred to as the extended sliding 
innovation filter (ESIF). The Jacobian matrices are found by evaluating the partial derivatives of the nonlinear system and 
measurements functions, 𝑓(𝑥G*|* , 𝑢*) and ℎ(𝑥G*+)|*) as follows: 

 
 𝐹*+) =

𝜕𝑓
𝜕𝑓g.2!|!,3!

 
 
(29) 

 

 
 
 
The prediction stage involves determining the a priori state estimates like the linear case and can be summarized as 

follows: 
 

 
 
 
 
 
 
 
 
 
In (31), 𝑓 denotes the nonlinear system function, 𝐹* is the linearized version after the corresponding Jacobian matrix has 
been evaluated at time 𝑘 [29]. Similarly, ℎ denotes the nonlinear measurement function whilst 𝐻* is the linearized version. 
 
 The update stage consists of three more equations which can be summarized as follows: 
 

𝑃*+)|*+) = (𝐼 − 𝐾*+)𝐶)𝑃*+)|*(𝐼 − 𝐾*+)𝐶)! … 
…+𝐾*+)𝑅*+)𝐾*+)!  

 
(28) 
 

 
𝐻*+) =

𝜕ℎ
𝜕𝑓g.2!#$|!

 
 
(30) 
 

 𝑥G*+)|* = 	𝑓(𝑥G*|* , 𝑢*) (31) 
 

 𝑃*+)|* =	𝐹*+)𝑃*|*𝐹*+)! + 𝑄*+) (32) 
 

 �̃�*+)|* = 𝑧*+) − ℎ(𝑥G*+)|*) (33) 
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 𝐾*+) = 𝐻*+)+ 𝑠𝑎𝑡`̀ `̀ (a�̃�*+)|*a/𝛿) (34) 
 

 
 
 
 
 
The term 𝐻*+)+  in (34) is the pseudoinverse of the linearized Jacobian of the measurement matrix at time 𝑘 + 1, and in (36) 
the term 𝐻*+) is the linearized Jacobian of the measurement matrix at time 𝑘 + 1 [29]. 
 
 To summarize, we can see that partial derivatives of the system and measurement matrix are evaluated to determine the 
linearized Jacobian in (29) and (30). From there, an initial prediction for the states is calculated in (31), as well as a 
prediction for the state error covariance and innovation in (32) and (33). From the innovation determined, it is possible to 
calculate the SIF gain from (34) which is used to update the state estimates and state error covariance as shown in (35) and 
(36) respectively. 

IV. PROPOSED METHOD 
Existing literature has demonstrated that the UKF is an accurate and efficient optimizer for feedforward neural networks, 

and unlike training with gradient descent, does not require the calculation of derivatives [45]. Not requiring any 
linearization, the UKF is considered more suitable for systems with unknown linearities or when computing derivatives 
proves cumbersome [45]. 

The novel SIF estimation strategy is considered more robust than the UKF in the presence of modeling uncertainties or 
disturbances [29]. In this work, the SIF has been implemented into a single hidden layer feedforward neural network to 
observe the performance of this estimation method in comparison to the UKF and GD as an optimizer for training neural 
networks. The SIF will train the network’s weights, treating them as a state vector with the main goal of minimizing the 
cost function stated in equation (3). 

A. Experimental Setting 
In this section, the experimental evaluation of the three different optimizers is discussed and the procedures involved. 

To present a detailed comparison, the optimizers implemented into the NN predicted non-linear time series data. The 
simulation was coded in Python. 

 
The Mackey-Glass non-linear time delay differential equation was used to generate the dataset for the NN with 1000 

samples. For the purposes of this experiment, the differential equation produces a one dimensional periodic and chaotic 
data series. The parameter for chaos induces mild chaos at 17 and moderate chaos at 30. The chaos parameter is a measure 
of the disorder of the produced data but is based on the principle that simple deterministic laws can exhibit complex 
external behaviour [46]. This is the behaviour we are trying to predict with SIF-trained NN. 

 
 The NN was constructed with a single hidden layer consisting of 13 neurons. The initial weights were determined using 
the open-source neural network Python library, Keras. As an optimizer, the SIF and UKF were coded and implemented, 
whereas the SGD was executed by using a Python deep learning library. The structure of the UKF was inspired by Wan et 
al. with the initial parameters set as 𝑃- = 0.1𝐼	,	𝑄 = 0.001𝐼,  𝑅 = 	0.001 where 𝐼 is the identity matrix of dimensions 
𝑛 × 𝑛 where 𝑛 is the number of states [47]. The formulation of the SIF was obtained by Gadsden et al. and reconstructed 
as a NN optimizer. The covariances were initialized the same way as the UKF was in its respective network (𝑃-, 𝑄, 𝑅). 
Other parameters include 𝜂 = 0.01 and 𝛿, which was generated via a pseudo-random number generator which selected 
values between 0.0009 and 0.9, both of which were determined through manual tuning of the network. 
 
However, we note that instability during training was quite high, to reduce stability we integrate stage selection for both 
non-linear models, where a batch of weight predictions are made every step during the training procedure and the set of 
weights that leads to the lowest loss is selected for the next step.  

 𝑥G*+)|*+) = 𝑥G*+)|* +𝐾*+)�̃�*+)|* (35) 
   
𝑃*+)|*+) = (𝐼 − 𝐾*+)𝐻*+))𝑃*+)|*(𝐼 − 𝐾*+)𝐻*+))!	 

…+𝐾*+)𝑅*+)𝐾*+)!  
 
(36) 
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V. RESULTS AND DISCUSSION 
The proposed model was evaluated based on selected metrics, the first of which is the mean squared error (MSE), which 

is the average squared variance between the actual and estimated value. The proposed SIF-trained model yielded an 
average MSE of 0.0095, with a minimum of 0.006 after 10 trials. An example of the model output is plotted against true 
validation data in Fig. 2. In addition to examining the MSE, the computational cost was analyzed through execution time. 
The total training time taken for convergence was an average of 1.55 minutes.  

 
For comparison purposes, the UKF and SGD implementations were tested using the same validation set. The UKF 

implementation’s estimates are illustrated in Fig. 3. This network resulted in an average MSE of 0.009 and an average 
training time of 4.93 minutes over 10 trials. The SGD implementation achieved an average MSE of 0.008, with a minimum 
of 0.002 over 10 trials with an average training time of 8.08 seconds. The SGD trained neural network’s output can be 
seen in Fig. 4. 
 

 

 
Fig. 2. True series and estimates of the Mackey-Glass chaos function from a SIF-trained neural network. 

 

 
Fig. 3 True series and estimates of the Mackey-Glass chaos function from a UKF-trained neural network. 
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Fig. 4. True series and estimates of the Mackey-Glass chaos function from a SGD-trained neural network. 

 

 
 
The examination of the results indicates an overall excellent performance on behalf of the model. The proposed model 

was able to achieve accurate predictive capabilities while maintaining practical execution time. However, the UKF on 
average slightly outperformed the proposed model in terms of accuracy. Despite a somewhat lower accuracy, the proposed 
model generated a lower computational cost than the UKF implementation. Furthermore, the results of the SGD indicate 
a higher average accuracy of the model with a lower computational cost. The results show that there is a vivid trade-off 
between minimizing computational cost and increasing model accuracy with the non-linear estimation models. The SGD 
implementation had an overall better performance than both non-linear estimation models. While the SIF did not behave 
completely as expected, the results were promising and indicate that the SIF can be reliably utilized for such purposes.  

 

VI. CONCLUSION 
A novel method for training neural networks using an estimation strategy known as the sliding innovation filter (SIF) 

was proposed in this paper. The SIF was proven to be superior to the unscented Kalman filter (UKF) in terms of 
estimation robustness and performs better in the presence of modelling uncertainties, disturbances or error. Neural 
networks have been predominantly trained by gradient descent (GD) algorithms, and there have been successful efforts 
which utilize the UKF for training as well. Based on these facts, the SIF was implemented as an optimizer to train the 
neural network’s parameters such as the weights and biases. The neural network was trained on the Mackey-Glass 
Chaotic time series in order to determine the model’s performance in predicting the output. Results showed that the SIF 
yielded an estimate that was slightly less accurate than the UKF as a neural network optimizer. However, the SIF-trained 
network was able to converge much faster than the UKF-trained network. The SIF did not display improvement over 
SGD for training networks, however the results from this research prove that it has promising potential for applications 
other than just an estimation strategy. 

 

TABLE I 
COMPARISON OF RESULTS 

Training model MSE Average Computation 
Time 

SIF 0.0095 1.55 min 
UKF 0.009 4.93 min 
SGD 0.008 8.08 s 
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