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ABSTRACT

Amidst the extensive global integration of computer systems and augmented connectivity, there have been numerous
difficulties within ensuring confidentiality, integrity and availability across all systems. Malware is an ever-present and
persistent challenge for security systems of all sorts. Numerous malware detection methods have been proposed, with
traditional approaches no longer providing the necessary protection against evolving attack methodologies and strategies.
In recent years, machine learning for malware detection has been investigated with great success. In addition, the analysis
of application operation code, or opcode, due to its unavoidable nature, can reveal necessary information about software
intention. Visualization of opcode data allows for simple data augmentation and texture analysis. The proposed approach
utilizes a simple visual attention module to perform a binary classification task on program data, focusing on visualized
application opcode data. The proposed model is tested with an ARM-based Internet of Things (IoT) application opcode
dataset. In addition, a comparative analysis, using numerous metrics, is conducted on the proposed model’s performance
along with several other algorithms. The results indicate that the proposed method outperformed all other tested techniques
in accuracy, recall, precision, and F-score.
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1. INTRODUCTION

While computer systems have been adopted across numerous fields of application and have facilitated high-frequency
communication and augmented system interconnectivity, the presence of malicious attacks has grown rapidly.
Continuous development in the field of attack detection, specifically malware detection, has improved tremendously
over the last decade [1]. However, attack complexity has also evolved, and traditional detection methods do not provide
the necessary protection [2].

For instance, polymorphic malware, which is a form of malware that can mutate while preserving the fundamental
structure and malicious intention, has become more prominent and the difficulty of detection has increased substantially
[3]. Novel methods of detection have been explored by various researchers, with an exponentially growing body of
literature dedicated to the employment of machine learning in the field of malware detection.

Machine learning as a field has grown tremendously, with an $8 billion market value in 2017 and an estimated market
value of $117 billion by 2027 [4], [5]. The integration of machine learning across numerous domains and facets of daily
life continues, and its incorporation within cybersecurity is no different. Figure 1 showcases the large increase in
academic publications during the years 2013 and 2021 concerning machine learning and malware detection, generated
using Google Scholar and IEEE.

Machine learning techniques have been widely employed across numerous applications in the field of malware
detection. Most commonly, supervised learning techniques are employed to learn from a dataset of registered malware
samples and predict on novel application data [6]. Numerous researchers have employed simple and complex machine
learning techniques to detect malicious behaviour in a variety of environments, with the Internet of Things (IoT) and
Android ecosystems becoming increasingly more popular [5—-10].
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Figure 1: Publications on Machine Learning and Malware Detection (2013-2021)

In this paper, we postulate that with the aid of encoding, normalization, visualization and a visual attention network,
malicious attacks can be efficiently detected. We employ a simple visual attention module, comprised of a squeeze and
excitation network, convolutional neural network and long-short term memory. Visualised program data is sliced into
glimpses and passed into the model, which performs a binary classification task, indicating if the input is representative
of malicious intent. We test the proposed approach on an ARM-based IoT opcode dataset and report the performance
against numerous other algorithms.

The performance of the proposed method is assessed using several metrics, namely accuracy, precision, recall and F-
score:

¢ True Positive (TP): If a malicious sample is predicted as malware.
e True Negative (TN): If a malicious sample is predicted as goodware.
¢ False Positive (FP): If a goodware sample is predicted as malicious.

¢ False Negative (FN): If a malicious sample is predicted as goodware.

Accuracy: Indicates how well the proposed model can accurately predict malware and goodware.

| _ TP +TN N
Couracy = Tp ¥ TN+ FN + FP (

Precision: Precision is the number of malicious samples that are correctly predicted, divided by the total number of
samples that are predicted.

Precision = e 2
recision = TP 2
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Recall: Recall is the number of malicious samples that are correctly predicted, over the total number of malicious
samples in the testing set.

Recall = — ¢ 3
et = TP FN ®)

F-Score (F;): F-Score is the harmonic mean of the precision and recall:

F 2 Precision X Recall B
=2X
L Precision + Recall )

2. METHODOLOGY

The proposed method relies heavily on the employment of visual attention to classify visualized opcode data. The
cumulative proposed method involves three phases, namely the data encoding, visualization and the visual attention
model.

Initially, the model is presented with a set of sequential opcodes from a specific program. The first step in the
architecture is to encode the opcode data into a numerical representation, which can be completed with numerous
techniques. In this paper, a dictionary of available opcodes is built apriori and the index value is utilized to
represent each opcode. The encoding phase is completed when all the opcode sequences have been numerically
represented.

Subsequently, each input sequence is restructured intoa H X W X G representation, where H is the height, W is
the width and G is the number of glimpses. In addition, we utilize normalization to accelerate the convergence
[13].

The visualization process allows for the analysis of various relationships within the input sequence, and the
sequential nature of the data is preserved with the utilization of glimpses rather than whole images. This is

explored in the results section below, where a convolutional neural network is utilized as a baseline model for
comparison without the employment of glimpses.

( Visualization | e
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Figure 2: Opcode Encoding and Visualization

After completing the encoding and visualization phase of the proposed approach, the training phase is initiated.
The fundamental components of the visual attention architecture are a squeeze and excitation network, a
convolutional neural network and long-short term memory.

Squeeze and excitation networks are typically employed to produce an adaptive weighting for channel-wise data.
However, in the proposed approach, the squeeze and excitation network is employed for the adaptive weighting of
the glimpses taken from the original visualized image. This provides a simple glimpse attention mechanism that
can be adaptively modified during the training phase to yield optimal performance.
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Figure 3: Squeeze and Excitation Network

The squeeze and excitation network will utilize a skip connection and a series of computations on the input along a variant
path. The input of the network, which has a dimensionality of H X W X G, will be squeezed into a dimensionality of
1 X 1 X G. This procedure is conducted with the use of a global average pooling operation, formulated as [14]:

LSS ©)

i=1 j=1

zg = Fyq X6) =

Subsequently, two fully connected layers are employed to limit model complexity while augmenting generalization. The
first fully connected layer will be followed by a piecewise linear activation and the second fully connected layer will be
followed by a sigmoid activation.

s = Fu(z,W) = a(g(z,W)) = o(W,6(W,2)), (6)
where 7 is the reduction ratio controlling computational cost and capacity, o and & refers to the sigmoid and rectified

G G
linear unit function, W, € R~ ¢ and W, € RE*+.

The original sequence of glimpses is scaled by multiplying the channel scalar, s; and feature map u;
X= Fscale(uG'SG) =S¢ " Ug, @)
where X = [x,,%, ... ,%;] and u; € RF*W,

Subsequently, each glimpse will be analyzed with a convolutional neural network unit, however, we choose to
implement a sequential visual variation using long-short term memory. This allows for greater modelling of the
relationships between glimpses.

A convolutional neural network is a form of artificial neural network which is typically applied to visual data. The goal
of the network is to learn spatial hierarchies of features [15]. With respect to the task at hand, the employment of the
convolutional neural network will aid will the establishment of opcode relationships, with an emphasis on the spatial
relationships between non-adjoining instructions.
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Figure 4: Model Architecture

Long short-term memory is a recurrent neural network architecture utilized for sequential data analysis. Where a
sequential input is passed into the model and a classification or prediction is generated based on the sequence. The
LSTM can be formulated as [16]:

iy =Wy x + Wyihe_y + W0c_1 + b;) (8)

fo = (W x¢ + Wyphe—y + Wep o cooy + by) (9)
¢ = fyoci_q + 1 otanh(W,.x, + Wy hy_; + b,) (10)
0, =Wy, xp + Wyoh_ 1 + W, 0c, + b,) (11)

h; = o; otanh(c;) (12)

where o denotes the Hadamard product. i, f, 0 and c are the input gate’s activation vector, forget gate’s activation vector,
output gate’s activation vector and memory cell state vector, respectively. W is a weight matrix to be learned during the
training phase.

We employ a combination of both the LSTM and a CNN, known as a ConvLSTM. This allows for the processing of
sequential visual data, which in the task at hand corresponds to the weighted glimpses [17]. This can be formulated as,
where * denotes the convolution operator:

g =Wy x Xy + Wy Hy oy + W0 Cry + by) (13)

fo = (W % X + Wyp * Hyy + Wep 0 Croq + by) (14)
€t = fr° Croy + iy o tanh(Wye * Xy + Wiy * Hyy + b.) (15)
0r = 0(Wyo * Xy + Wy * Hy_y + Wy © Cp + b,) (16)

H; = o, otanh(C,) 17)

The output of the ConvLSTM is connected to a fully connected layer with a sigmoid activation function. Therefore, the
output of the model is a probability value for each of the classes, namely goodware or malware. The loss during the training
process is calculated using the binary cross-entropy of the true class and model output, formulated as:

1 N
Loss = 37 ) ~0u xlogp) + (1= y) xlog(1 = p) (18)

i=1
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3. DATASET

In this paper, we utilize a 32-bit ARM-based IoT application dataset, with 512 samples of malware and goodware
presented in opcode format. The dataset was generated by HaddadPajouh ef al. using the Virus Total Threat Intelligence
platform [18]. The class distribution is 52.3% and 47.7% goodware and malware, respectively.

Dataset Distribution

Malware

Goodware

Figure 5; Class Distribution in Dataset

The dataset has a total of 356 unique opcodes which occur at varying frequencies. The frequency count for the ten most
frequent opcodes in the entire dataset is presented in Figure 6. Figures 7 and 8 show the ten most frequent opcodes in the
respective goodware and malware data batches.
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Figure 6: Ten Most Frequent Opcodes in Dataset
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Figure 7: Ten Most Frequent Opcodes in Malware Batch

512 data points, with no data augmentation.

The training results are depicted in Figure 9: Training Accuracy Over First 30 Epochs where the proposed
method clearly achieves higher training accuracy than the standalone convolutional neural network. However, it is
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4. EXPERIMENT AND DISCUSSION

The proposed method is compared against a simple standalone convolutional neural network which takes the original
whole visualized opcode input, rather than glimpses. Both models are trained with a P100 NVIDIA GPU over 100
epochs with Adam gradient optimization using a learning rate of 0.001. An 80-20 train-test split is utilized on the initial
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Figure 9: Training Accuracy Over First 30 Epochs
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important to note that the proposed method does take significantly longer to execute than the baseline model. The
reported execution time for the proposed method is almost three times longer than the baseline. Figure 9 clearly shows

the dramatic increase in execution time for a single classification on an NVIDIA P100 GPU.
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Table 1: Training and Testing Results

Approach Mean Training Mean Testing
Accuracy Accuracy
Proposed Method 96.665% 94.174%
Convolutional Neural Network 87.33% 86.320%
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Figure 10: Execution Time
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Figure 11: Confusion Matrix

Figure displays a confusion matrix showcasing the results achieved in the testing phase. The results indicate the model
was capable of detecting most malware samples with a small number of false positives and negatives. Note that reducing

false negatives is especially crucial to malware detection.
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Table 2: Performance Metrics

Accuracy Precision Recall F1

94.174% 97.95% 90.56% 94.11%

The results in Table 2 show the aforementioned performance metrics. A high recall is vital to ensuring that malware does
not go undetected. The proposed method was able to achieve high precision, however, the recall was lower than all other
metrics.

In addition to the comparative analysis conducted with the standalone convolutional neural network, we compare the
proposed method against various other machine learning classification algorithms.

Table 3: Comparative Analysis of Variant Classification Techniques

Approach Accuracy
Proposed Method 94.174%
SVM [18] 72.12%
Naive Bayes [18] 87.51%
MLP [18] 59.07%
KNN [18] 94%
Decision Tree [18] 89.36%

The proposed method outperformed all other algorithms in regard to achieving higher accuracy. However, the increase
in accuracy comes with a rise in execution time. While the accuracy certainly justifies the increase in execution time,
implementing the proposed approach in practical malware detection applications, which necessitate quick recognition,
could have issues. Therefore, more work is needed to maintain model accuracy while reducing computational
complexity.

5. CONCLUSION

In this brief paper, a visual attention network is employed for the purpose of visual binary malware detection using program
opcode data. The model architecture is composed of three phases: encoding, visualization, and visual attention. The
utilization of opcode data allows for a barebones approach for detecting program intention. We utilize visualization to
capture fundamental relationships between program opcodes, especially non-adjoining instructions. Furthermore, we
employ visual attention to visualized opcode data to identify key regions of focus in aim of enhancing the identification of
fundamental program structure and, therein increasing detection of potential polymorphic code. The proposed method is
tested against an ARM-based IoT application dataset composed of opcode data. The proposed method is evaluated with
various metrics, including accuracy, recall, precision and F-score. In addition, a comparative assessment is conducted on
the performance of the proposed model and numerous other models in detecting unseen malware samples. The proposed
method outperforms all other compared techniques; however, the execution time increases substantially with implementing
the proposed approach. Fundamentally, malicious programs will need to be detected in real-time. Therefore, future work
will look at modifications that can be made to the proposed model's structure to maintain model accuracy while reducing
execution time.
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