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ABSTRACT  

In modern industrial settings, the quality of maintenance efforts directly influence equipment’s operational uptime and 

efficiency. Condition monitoring is a common process employed for predicting the health of a technical asset, whereby a 

predictive maintenance strategy can be adopted to minimize machine downtime and potential losses. Throughout the field, 

machine learning (ML) methods have become noteworthy for predicting failures before they occur, thereby preventing 

significant financial costs and providing a safer workplace environment. These benefits from predictive maintenance 

techniques, are particularly useful in the context of military equipment. Such equipment is often significantly expensive, 

and untimely machine failure could result in significant human endangerment. In this paper, a prognostic model 

(PROGNOS) is proposed to predict military equipment’s remaining useful life (RUL) based on their monitoring signals. 

The main considerations of PROGNOS are expectation maximization tuned Kalman Filter (EM-KF) for signal filtering, a 

recently introduced feature extraction algorithm (PCA-mRMR-VIF), and predictive LSTM model with an adaptive sliding 

window. The viability and performance of the proposed model were tested on a highly complex competition dataset: the 

NASA aircraft gas turbine engine degradation dataset, wherein readings from multiple sensor channels were recorded for 

degrading machines. According to testing results, we can confidently say that the proposed PROGNOS model was viable 

and robust overall, proving its general usefulness on all military equipment that emit signals. 
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1. INTRODUCTION  

Production plants are expected to run 24 hours a day to meet market demand. Unexpected equipment breakdowns may 

result in tremendous economic stresses through significant process downtimes. Most companies require these interruptions 

to be anticipated in advance to take the necessary precautions before stoppages occur unexpectedly. A non-intrusive 

procedure for tracking and detecting potential faults in systems is obligatory for all industrial assets. The record shows that 

machines may fail for diverse reasons depending on the frequency of maintenance. The manufacturing industry has 

reported a considerable increase in the frequency of accidents due to poor and dangerous maintenance practices [1]. Every 

year, industrial expenses in the U.S. reach up to $200 billion on maintaining plant equipment and facilities, while poor 

maintenance causes losses of up to $60 billion [2]. 

Predictive maintenance (PdM) or condition-based monitoring is an advanced diagnostic technique to reveal the 

operating machinery faults in their incipient phase before any breakdowns occur, and the proper maintenance can be 

identified by monitoring the equipment’s diagnostic data. In order to quantify a machinery’s health state, remaining useful 

life (RUL) value is estimated by exclusively monitoring the machinery’s emitted signals.  

Machine Learning (ML) is a branch of artificial intelligence specialized in building algorithms that learn from data 

and continuously improve its performance over time without requiring an human intervention [3]. ML models have 

provided many advantages for many fields, including stoppage reduction, maintenance cost reduction, spare-part life 

increases, operator safety, increased production, repair verification, an increase in overall fit, and many more [4]. To 

construct a map between the acquired input signals and a fault diagnosis as an output, ML methods typically require four 

main stages, as illustrated in figure 1 [5], [6]. Data Acquisition is the first stage of diagnosing any machinery. This first 

step converts, amplifies, corrects the measurement acquired from multiple sensors, and finally stores them in a computer. 

Sensors are designed to convert the physical environmental inputs into electrical signals. Physical characteristics of the 

industrial asset are acquired utilizing sensors installed on the equipment. Followingly, data processing is utilized to achieve 
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higher test accuracy and faster training time, data processing is a vital procedure for prognosis purposes, where it is 

responsible for carrying out operations on data to translate them into useful shape [7]. The accuracy of the decision 

algorithm is highly dependent on the quality of the dataset. Feature extraction and selection methods are standard 

approaches to achieve the optimum dataset from the raw signals. Feature extraction is responsible for highlighting 

degradation indicators, handling missing values, and correcting irregularities in the acquired data. Feature selection reduces 

the extracted features by removing the input vectors' redundant attributes. Thus, the learning algorithm can provide a 

diagnostic result as an outcome without being exposed to any deceptive or false data. RUL estimation is the last process, 

where a ML model predicts the machinery’s well-being by monitoring its emitted signals.  

 

 

Figure 1. An example of ML-driven condition monitoring procedure from raw data to model’s output. 

Condition monitoring principles and techniques have been widely adopted in the arms industry. With fast and 

continuous improvements in military equipment technology, the tools that monitor and maintain this equipment are also 

expected to improve and evolve. Machine learning and data-driven techniques have thus become attractive options to 

automatize the process of condition monitoring. An example from the literature to the combination of machine learning 

and condition monitoring is a study that applied these principles to detect physical impairments in Unmanned Aerial 

Vehicle (UAV) rotor blades [8].The convenience of data-driven techniques is that they do not require a mathematical 

model of a system as opposed to many of the existing methods. In [8], finding out whether a rotor has degradation is simply 

a matter of observing the onboard sensor (IMU) measurements. To enrich the feature space, once signals are received, 

they are analyzed using Fast Fourier Transform (FFT), Wavelet Packet Decomposition (WPD) and by measuring signal 

power. The processed signals are then inputted to a Support Vector Machine (SVM) classifier to predict whether a fault 

has occurred. Another study [9] has implemented a Convolutional Neural Network (CNN) to monitor the states of 

supersonic combustor by taking in raw pressure data. The model was successful in classifying the combustion process into 

four modes. Another [10] paper has analyzed the Exhaust Gas Temperature data of an aircraft, to identify whether an 

anomaly has occurred, using a Relevance Vector Machine (RVM).  

 

2. PROGNOS: THE PROPOSED MODEL 

2.1 Overview of the proposed model 

In this technical paper, we propose PROGNOS: a fully automatic ML-driven model that estimates the RUL of any 

machinery that emits capturable signals. Due to our search results, PROGNOS is the only model that is fully automatic 

and suitable to all signal emitting military equipment. In order to test the feasibility and viability of the proposed model, 

we utilized a well-known complex dataset: NASA aircraft gas turbine engine degradation dataset [11]. We chose this 

turbofan degradation dataset as it is a predominantly applied scenario within the prognostic community. It is a competition 

dataset, and no prior information was provided about the specific engines or the acquired signals. Hence, the lack of 

information creates an ideal scenario for validating the generalizability of the model. In this way, we realized PROGNOS’s 

feasibility and viability by analyzing its performance on this sophisticated and accepted dataset.  

The proposed model consists of two primary steps: feature engineering (feature decomposition and selection) and a 

machine learning model (RUL predictor), as shown in Figure 2. Filtering aims to remove unwanted components from the 

contaminated signal. Feature selection is a process of eliminating redundant input vectors to reduce the computational 

complexity and improve the model's performance. Feature extraction’s objective is decomposing underlying 

characteristics of the given signal that indicate performance degradation of the technical asset. Therefore, this series of 

processing methods allow learning algorithms to pick up performance degradation indications, which ultimately increases 
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the model’s success rate. As the last layer of our proposed model, an LSTM model is trained to predict the RUL value of 

the given military equipment. 

The process flow of the proposed model is illustrated in figure 2. The filtering process is carried out using a Kalman 

filter tuned with an expectation maximization algorithm. The filtered signals are populated using time and frequency 

domain analysis tools. These two approaches, used in tandem, make up the feature decomposition portion of the process. 

Following this, we utilize a Principle component analysis (PCA), maximum relevance minimum redundancy 

(mRMR), and variance inflation factor (VIF), to properly select the most relevant features for predicting the RUL. These 

methods are carefully harmonized to optimize our choice of features among the decomposed features. Lastly, a machine 

learning model uses the selected features as its input, and is trained to predict the RUL of the given military equipment. 

 

 

Figure 2. The process flow diagram of PROGNOS. 

2.2 Theory of PROGNOS 

In a complex military equipment, a filtering process is required when maintaining a large group of sensors that may be 

affected by unmeasured disturbances, where signal contamination can mislead a monitoring system. In 1960, R. E. Kalman 

proposed a recursive solution to discrete-data linear filtering problem, known as Kalman filter [12]. This model can serve 

as a denoising method or a model-based information extraction method in the condition monitoring industry. Kalman filter 

(KF) addresses the general problem of predicting the true state 𝑥 ∈  𝑅𝑛 of a discrete time series. KF is a set of mathematical 

equations that estimates 𝑃(𝑥𝑘|𝑧0:𝑘), as shown in (1): 

 

𝑥𝑘+1  =  𝐴𝑘𝑥𝑘  +  𝐵𝑢𝑘 + 𝑤𝑘 (1) 

 

At time step k, with a measurement matrix of  𝑧 ∈  𝑅𝑚 can be computed using (2): 

 

𝑧𝑘  =  𝐻𝑘𝑥𝑘  + 𝑣𝑘 (2) 

Here, 𝑥𝑘+1 denotes the KF’s estimation, A indicates the state transition matrix, B is the transition offset, H is the observation 

model, 𝑣𝑘 and 𝑤𝑘 are the process and observation noises (respectively), where they were assumed as linear Gaussian 

model, as shown in (3) and (4): 

 

𝑝(𝑤𝑘) =  𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑄𝑘) (3) 

Where 𝑄 and 𝑅  are transition and observation covariances. There is also a backward variant of KF, known as Kalman 

smoother (KS). The smoother refines estimates of previous states by observing later observations, in which it was designed 

to estimate 𝑃(𝑥𝑘|𝑧0:𝐾−1) [13]. In order to formulate a KF and integrate it into a dynamic system, the state space 

(mathematical model) of the system must be known. However, the parameters of a linear dynamical system can be 

approximated using the Expectation-Maximization (EM) algorithm. The EM algorithm has been used in the prediction of 

Gaussian mixture model parameters. Hence, the EM algorithm iteratively selects the KF parameters without user 

𝑝(𝑣𝑘) =  𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑅𝑘 ) (4) 
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intervention. However, we must stress that the initial selection of the parameters significantly influences the final 

parameters, since this optimization procedure is considered a non-convex problem. After selecting Kalman parameters, 

the filtering method becomes ready to filter out the noisy components from the given signal.   

Raw signals are often in a complex shape, requiring a series of functions to pick up performance degradation features. 

Feature extraction refers to an idea of decomposing valuable information from data by breaking them down into simpler 

components. A general objective of any extraction method is to assist the machine learning model in perceiving the 

correlations between the different attributes. Thus, this decomposition methodology allowed us to transform the raw data 

into health indicators for the learning algorithm. We utilized time and frequency domain analysis tools to decompose each 

sensor into multiple extracted features. In our proposed model, eight time-domain signal processing methods and three 

frequency domain tools were selected for extraction purposes, as presented in table 1. In this way, one sensor signal is 

decomposed into 11 sub signals. In other words, the raw dataset consisting of sensor signals are augmented to a large 

feature space.  

Table 1. Statistical time-domain analysis [14]-[16]. 

 

 

 

 

 

 

 

 

 

 

 

 

Methods in this section were designed to distinguish relevant features from redundant ones, in which the objective is 

to positively affect the performance of the estimating model. Feature selection methods can be broken down into three 

approaches: wrapper, filter, and embedded methods. In our proposed model, only two techniques were employed to 

perform the selection process: filter and wrapper methods. The filter methods perform the selection step based on local 

performance indicators (independent from the predictor) such as correlation or mutual information criteria. Contrarily, if 

the features are evaluated based on the learning algorithm’s prediction performance, this feature identification process is 

known as a wrapper method. In our proposed model, the Principal component analysis (PCA) method was employed as a 

filter feature selection method, and the Maximum relevance minimum redundancy (mRMR), and variance inflation factor 

(VIF) was assigned to carefully pick the most appropriate features based on the decomposed features.  

Principal component analysis (PCA) has been widely applied in the field of computer science. The algorithm was 

proposed in 1901 by Pearson [17] and further developed by Hotelling in the late 1930s [18]. This dimensionality-reduction 

method projects high-dimensional data into a low-dimensional subspace component by maximizing the variance. It is an 

essential first step for many data processing tasks. As we know that, PCA has been utilized for dimensionality reduction, 

yet the algorithm performs well in feature elimination as well [19], since they share the same principle: extracting 

informative components. Hence, we will commence with PCA-based feature extraction. Assume that given dataset 𝑋 ∈
 𝑅1×𝑁 with N samples, and each column in 𝑋 is scaled to zero and unit variance. The covariance matrix 𝑆 of the given data 

(5): 

𝑆 =  
 𝑋𝑋𝑇

𝑁
 

(5) 

 

Let 𝑉 ∈  𝑅1×𝑁 as the eigenvectors of the covariance matrix, where the eigenvectors are sorted in descending form 

according to their associated eigenvalues. In this way, we can calculate principal components of the given data, where they 

explain most of the variance of the signal. it is known that we can calculate the feature extraction result, with respect to 𝑉, 

of the given dataset 𝑋 , is 𝑋 ∈  𝑅𝑀 × 𝑁 [20]: 

𝑧 = 𝑥𝑇𝑣 = ∑ 𝑥𝑖𝑣𝑖

𝑁

𝑖=1
 

(6) 

 

Feature 

No 

Time-domain analysis tools Feature 

No 

Frequency-domain analysis tools 

1 Mean 9 Fast Fourier Transform (peak value) 

2 Variance 10 Spectral Skewness 

3 Skewness 11 Spectral Kurtosis 

4 Kurtosis   

5 Standard Deviation   

6 Autocorrelation   

7,8 Instantaneous phase and amplitude 

envelop of Hilbert Transform 
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where 𝑣 =  [𝑣𝑖  . . . 𝑣𝑁]𝑇, 𝑋 =  [𝑥𝑖  . . . 𝑥𝑁]𝑇, and N is the dimensionality of sample vectors. Since it is known that as the 

absolute value of 𝑥𝑖 becomes smaller, the contribution to the output becomes less important. So, computing only the first 

principal component gives us major information on the dataset, and it can be mathematically derived with the following 

equation (7) [21]: 

 

𝑌1 = 𝑣11𝑥1  + 𝑣12𝑥1+. . . 𝑣1𝑁𝑥𝑁 (7) 

 

Here 𝑣 can be considered as the weights and known as loading vector. In order to perform a feature selection using the 

PCA method, we sort the loading vectors of the first principal based on their magnitude and select the highest class among 

them [21]. In this way, we achieved a filter method that automatically detects the attributes that explain most of the variance 

by utilizing the PCA transform strategy. 

Maximum relevance minimum redundancy (mRMR) is a feature selection method aiming to find the most relevant 

features, while keeping the redundancy at minimum. Due to that reason, the assigned score to each data vector is the 

harmonization of the relevance and redundancy scores. We utilized the following quotient (relevance divided by 

redundancy) rule-based formulation (8) to assign score to each attribute in the dataset [22]: 

 

𝑓𝑚𝑅𝑀𝑅(𝑥𝑗) =
𝑀𝐼(𝑥𝑗 , 𝑦𝑖)

𝐶𝑜𝑟𝑟(𝑥𝑖,𝑦𝑖)
 

 

(8) 

The maximum relevance score (𝑀𝐼) is chosen as mutual information of candidate features and RUL value, where the 

minimum redundancy score is the Pearson correlation (𝐶𝑜𝑟𝑟) between selected features and the candidate features. In each 

iteration, the mRMR algorithm selects a feature from the feature space respect to the scoring function (8). Therefore, the 

number of features that we want to select is the same as the iteration number of the mRMR algorithm. 

Variance Inflation Factor (VIF) is a measure of multicollinearity in a multiple regression model. In other words, it 

computes how much the variance of an estimated regression coefficient is affected due to collinearity [23]. The following 

equation (9) formulates the VIF: 

𝑉𝐼𝐹𝑗  =  
 1

1 − 𝑅𝑗
2 

 

(9) 

Where, j is referred to jth predictor and 𝑅𝑗
2 is the multiple correlation coefficient, which describes the proportion of jth 

predictor between the rest of the features (predictors). If  𝑉𝐼𝐹𝑗  >  5, then it means that the predictor j has correlation with 

the remaining predictors.  

Machine learning is an AI-based learning algorithm, which processes data to recognize the hidden patterns by 

imitating human perceiving methods. Long-Short Term Memory (LSTM) is an alternative variation of recurrent neural 

networks (RNN). In order to deal with the gradient problem of RNNs, specially crafted memory cells are introduced to the 

RNN structure, and the model’s name was proposed as Long Short-Term Memory (LSTM), which later became one of 

the most popular RNN. There are various LSTM memory cell architectures: LSTM without a Forget Gate, LSTM with a 

Forget Gate, LSTM with a Peephole Connection [24]. However, the most typical memory type is the LSTM memory cell 

with a Forget Gate, which was introduced by Ger Schimudhuber Cummins in 2000. The cell can be broken down into 

three main structures: Forget gate, Input gate, and Output gate. Unlike RNN, the information is being overwritten by the 

current state. Indeed, the gates provide the functionality of writing, reading, and resetting memory cells. The internal 

structure of an LSTM cell with a forget gate is expressed as follows [24]: 

 

𝑓𝑡 = ∅1(𝑊𝑓  ℎ𝑡−1  + 𝑊𝑓𝑥 𝑥𝑡 + 𝑏𝑓) (10) 

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑓ℎ𝑡−1 + 𝑊�̃�𝑥  𝑥𝑡 + 𝑏�̃�) (11) 

𝑖𝑡 = ∅2(𝑊𝑖ℎ ℎ𝑡−1  +  𝑊𝑖𝑥 𝑥𝑡 + 𝑏𝑖) (12) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1  + 𝑖𝑡  . 𝑐�̃� (13) 

𝑜𝑡 = ∅3(𝑊𝑜ℎ ℎ𝑡−1  + 𝑊𝑜𝑥  𝑥𝑡 + 𝑏𝑜) (14) 

ℎ𝑡 =  𝑜𝑡  . 𝑡𝑎𝑛ℎ(𝑐𝑡) (15) 
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Where 𝑓𝑡 represent the forget gate, which decides whether to erase the cell state (0) or keep the information (1). The new 

information is being decided by the input gate 𝑖𝑡. The candidate memory cell (𝑐�̃�) describes the current input. Later, the 

memory cell (𝑐𝑡) is computed using the input gate and the forget gate. In the final section, the output gate decides the final 

output by considering the previous information  ℎ𝑡−1 and the current input  𝑥𝑡. As a response to that, the hidden state ℎ𝑡 

can be computed as the last part of the LSTM cell structure. Similar to ANN dynamics, the LSTM method uses 

backpropagation to optimize the weights of the hyperparameters. Fundamentally, backpropagation is a method of 

propagating the total loss by evaluating the expression for the derivative of the cost function as a product of derivatives 

between the adjacent gates and units [25]. Therefore, minimizing the cost function will ultimately decrease the model 

error, and Gradient descent is one of the dominant optimizers to train deep networks today. This optimization method is a 

first-order iterative optimization strategy for detecting a local minimum of the given differentiable function [26]. 

Therefore, the cost function is minimized by taking opposite steps against the direction of the gradient. RMSPROP is an 

extension of Gradient descent, which uses adaptive sized gradients by utilizing an exponential average of its recent 

magnitude, and this optimizing strategy is becoming to be adopted by the industry [27].  

 

3. EXPERIMENT 

3.1 Dataset Overview 

In the following experimental study, PROGNOS was compared with conventional machine learning regression methods. 

The training and validation set is NASA’s challenge dataset, where it contains diagnostics and prognostics of equipment 

faults from the first conference of PHM’08 [11]. NASA modeled a damage propagation simulation for a fleet of similar 

aircraft gas turbine engines, to test prognostic algorithms. The synthetic dataset generation was carried out using the C-

MAPSS system simulator, and it consists of multi-variate contaminated signals (26 features) that indicate performance 

degradation. Each engine starts with a different degree of initial wear and manufacturing variation and develops a fault at 

some point during its life cycle. The authors have provided two datasets for training and testing purposes. The training set 

consists of the complete life cycle of 100 turbofan engines, in which they are run until failure, while the test set is composed 

of partial life of turbofan engines.  

 

 

Figure 3. Visual representation of the raw training set (except the RUL value). 

3.2 Feature engineering 

Before starting the feature engineering process, the sensor signals are standardized, meaning that the unit variance is kept 

as one and the mean is set to zero for each data vector. The KF model was created using predetermined initial values, 

either a matrix of zeros or a matrix of ones. Table 2 presents the initial value for some of the used KF parameters. After 

initializing the Kalman parameters in this denoising process, the optimal parameters were iteratively estimated using the 
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EM algorithm, which was developed utilizing Python’s pykalman library. Kalman Filter and Smoother methods predicted 

the true values of each selected sensor, where EM optimized the following parameters of KF: transition covariance, 

observation covariance, initial state mean, and initial state covariance. 

 

Figure 4. Sample measurements of sensor 11, with EM-KF’s, and KF’s corresponding estimation. 

Table 2 shows the denoising results for the measurement of Sensor 11, the corresponding estimation of the KF with its 

initial parameters, and the EM optimized KF. As it can be seen, even though the noise was reduced without tuning the 

parameters of the KF algorithm, the noisy components were still present in the filtered signal. To address this issue, the 

KF’s parameters were estimated in accordance with the given signal’s behaviors. In other words, a further convergence to 

the true value was achieved by optimizing the KF parameters based on the EM algorithm. As a response to that, the 

algorithm became more reliable and robust against noisy components. The EM algorithm was run for 30 iterations to 

converge on an optimal value for each parameter, where they are presented in table 2. Consequently, the EM tuned KF 

successfully filtered out the spikes of the given data and reduced the baseline fluctuations in the signal without changing 

overall characteristics.  

Table 2. Kalman filter parameter values, before and after EM optimization. 

Kalman Parameter KF with initial values EM tuned KF 

Transition covariance 1 1.22 × 10−3 

Observation covariance 1 1.01 × 10−2 

Initial state mean 0 47.32 

Initial state covariance 0 1.07 × 10−4 

 
The filtered signals were decomposed using both time and frequency domain extraction techniques to highlight vital 

features that indicate degradation in the engine’s remaining life. In the dataset, sensors did not have any associated identity 

and thus the suitable extraction method could not be determined easily. Yet, optimal combination among a population of 

extracted features led the model to desirable results. Firstly, popular feature extraction methods in literature were selected 

to decompose the given signals. Among extracted features for all signals, the ones that maximized the performance were 

considered as the selected features. In order to apply that, 11 frequency and time domain extraction methods were applied 

to each feature. As a result, the dimension of the dataset was transformed from 𝑋 ∈  𝑅𝑀 × 24 to 𝑋 ∈  𝑅𝑀 × 264, where 𝑋 is 

the dataset, M represents the data points, and 24 refers to the number of dimensions (features). Table 3 below lists each 

feature extraction method that was applied during the extraction process. For illustrative purposes, results of the extraction 

methods were individually visualized for sensor 11 measurements, as shown in figure 5. Some decomposed features (i.e., 

spectral skewness or spectral kurtosis) were redundant for this sensor measurement, where they did not contain any 

prognostic value, seeing as the RUL value varies. On the other hand, a few features (i.e., variance) react as the remaining 

cycles decrease. The next stage’s objective is to identify the features that explain the characteristic of the engine’s life 

cycle. 
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Figure 5. Sensor 11 values for six different engines run. 

 

 

Figure 6. Visual representation of extracted features from the sensor 11’s measurements for six engines run and the bottom down 

figure illustrates the corresponding RUL value of six engines run. 

In this stage, we selected optimal features by utilizing sequentially three different feature selection methods: PCA, 

mRMR, and VIF. As the first selection process, PCA assigned a score to each decomposed feature based on how much 

variation it explains in the dataset. A total of 88 features, making up one-third of the data set, was eliminated based on 

their low variance contribution to the overall dataset. Later, mRMR was employed to select the features that contained the 

maximum relevance with respect to the RUL, while keeping the similarity between selected features at a minimum. This 

technique is called minimum redundancy. The maximum relevance score was then chosen as mutual information of 

candidate features and RUL value, where the minimum redundancy score is the Pearson correlation between selected 

features and the candidate features. Then the mRMR algorithm was run to select the most optimal 40 features. One of the 

weaknesses of the mRMR is that the algorithm can only compare the similarities between the last selected and the candidate 

features. However, the similarity between the features that have been previously selected, and the current candidates are 

not considered. Due to that reason, a VIF algorithm was employed to detect further multicollinearity between selected 

features, and it eliminated the ones that contains collinearity. Among the selected 40 features, the VIF algorithm only 
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further eliminated further 25 features in the dataset. After this analysis, there were 15 relevant features remaining. These 

features are shown in table 3 below. 

Table 3. Final attributes (optimal features) of the dataset. 

Feature No Signal Name Feature Extraction Methods 

1 Sensor 4 Instantaneous phase 

2,3 Sensor 6 Instantaneous phase, Kurtosis 

4 Sensor 9 Instantaneous phase 

5, 6 Sensor 11 Instantaneous phase, Kurtosis 

7 Sensor 12 Mean 

8, 9 Sensor 13 Skewness, amplitude envelope 

10, 11 Sensor 14 Instantaneous phase, Autocorrelation (second 

value) 

12, 13 Sensor 15 Instantaneous phase, Kurtosis 

14 Sensor 17 Kurtosis 

15 Sensor 20 FFT (maximum value) 

 

3.3 RUL estimation 

The PROGNOS model was trained using the 15 extracted optimal features, which contained 20631 data points. Later, the 

proposed model was tested with a test set that NASA had prepared for the competition in PHM’08 conference [11]. It is 

worthy to mention that the test set raises several complications, since the RUL predictor wouldn’t know how long the jet 

engine had been used previously, and the jet engines may not fail, meaning their RUL is never known. On the other hand, 

the engines that were used to generate the training set were run until they fail.  

In order to predict the health state of each turbofan engine, an LSTM model with an adaptive sliding window was 

used. The LSTM model consisted of an LSTM layer, a dense layer and an output layer. The first layer consisted of 10 

cascaded memory cells with a 30% of dropout rate, where the hidden states were passed to the dense layer. The dropout 

rate for the dense layer was 10%.  Between the LSTM layer and the dense layer, a batch normalization process was used 

to standardize the LSTM layer’s output before passing them to the dense layer. Lastly, a single neuron with a Linear 

function is utilized to output the RUL value. Following the model’s estimation, the hidden state of the second layer’s last 

memory cell was passed to the output linear activation layer. The RMSPROP algorithm minimized the training loss of the 

predictive algorithm with regard to the given training set. Finally, the output layer provided the RUL life estimation of the 

LSTM structure. The model was constructed using Python’s open-source software library Keras. In order evaluate the 

model performance against the true values, we utilized the following regression metrics: 𝑅2 (16), 𝑅𝑀𝑆𝐸 (17), and 𝑀𝐴𝐸 

(18). 

      𝑅2 = 1 − 
∑ (�̂�𝑖 − 𝑦𝑖)2𝑁

𝑖=1

∑ (�̅�𝑖 − 𝑦𝑖)2𝑁
𝑖=1

 

 

 

(16) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

 

(17) 

         𝑀𝐴𝐸 =  
1

𝑁
∑ |�̂�𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 

 

(18) 

 

Here �̂�, and 𝑦, respectively are the value predicted by the model and the true value from the test set. �̅� represents the 

variance in 𝑦 output values. Lastly, 𝑁 is the number of time step (cycles). 

After training the LSTM layer with extracted 15 features and mentioned configurations. The proposed model 

estimated the health state of given aircraft engines. Figure 7 illustrates PROGNOS’ prediction on overall test set. Due to 

the regression metrics, PROGNOS estimated the well-being of 100 engines with 22.93 𝑀𝐴𝐸, 30.44 𝑅𝑀𝑆𝐸, and 0.63 𝑅2. 
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Figure 7. PROGNOS’s RUL prediction on the test set. 

In order to further evaluate the results of the model, we analyzed the model’s performance on different cases: an aircraft 

engine with mode (most frequent engine running duration), and on extreme runs (the longest and shortest engines run). 

Six engines run were chosen for each case: mode and the extreme cases. The PROGNOS model’s prediction for each case 

is illustrated in figures 8 & 9 and the evaluation metrics are displayed in Table 4. 

In conclusion, PROGNOS was able to predict the RUL value of a jet engine by monitoring its sensor signals with 

impressive accuracy. Due to the mode cases, our proposed model performed well against the generalized dataset, and as a 

result, proves that it can be extended to predict the RUL of any military machine that produces capturable signals. However, 

if the cycle duration of an engine is too short or long (extreme cases), PROGNOS required some time to seek the RUL 

value of the engine. Though, at the end of the cycle, PROGNOS converged to the true RUL value. 

 

 

Figure 8. PROGNOS’s RUL prediction on extreme (longest and shortest) engines run. 
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Figure 9. PROGNOS performance on mode (the most frequent) engines run. 

 

Table 4. Performance Summary of PROGNOS model's prediction. 

Performance 

Metrics 

Performance Summary of PROGNOS 

 Extreme Run Mode Run Overall Test Set 

MAE 46.79 13.56 22.93 

RMSE 59.13 19.29 30.44 

𝑅2 0.19 0.83 0.64 

 

4. SUMMARY 

In this technical paper, we proposed a fully automatic RUL estimator (PROGNOS) for military equipment. The main 

considerations of PROGNOS were feature extraction of the given sensor measurements, data-driven feature selection 

based on the extracted feature subset, and a deep learning model to estimate the RUL value of the system in study. The 

viability and performance of the proposed model were tested on a highly complex competition dataset: the NASA aircraft 

gas turbine engine degradation dataset. Without requiring any prior information, PROGNOS’ feature engineering method 

successfully transformed noisy signals into meaningful data vectors. LSTM and dense layers intelligently recognized the 

pattern between the extracted features and engines’ RUL value. In this way, PROGNOS model estimated the well-being 

of the aircraft engine in a fully autonomous way. According to the obtained test results, overall, the model yielded excellent 

performance in most of the cases. However, we noticed that the model was sensitive to the outliers (short or long runs). In 

such cases, the prediction error progressively got smaller as new data were introduced. Therefore, we can summarize that 

the proposed PROGNOS model was viable and robust overall, proving its general usefulness on all military equipment 

that emit signals.  
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