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ABSTRACT  

Highly distributed connected systems, such as the Internet of Things (IoT), have made their way across numerous fields 
of application. IoT systems present a method for the connection for various heterogeneous devices across the internet, 
facilitating the efficient distribution, collection and processing of system-related data. However, while system inter-
connectivity has aided communication and augmented the effectiveness of integrated technology, it has also increased 
system vulnerability. To this end, researchers have proposed various security protocols and frameworks for IoT 
ecosystems. Yet while many suggested approaches augment system security, centralization remains an area of concern 
within IoT systems. Therefore, we propose the use of a decentralization scheme for IoT ecosystems based on Blockchain 
technology. The proposed method is inspired by Helium, a public wireless long-range network powered by blockchain. 
Each network node is characterized by its device properties, which are comprised of local and network-level features. 
Communication in the network requires the testimony of other companion nodes, ensuring that anomalous behaviour is 
not accepted and thereby preventing malicious attacks of various sorts.  
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1. INTRODUCTION  
Blockchain is a rapidly advancing state of the art technology that, at its core, is a method for the decentralization of 
contemporary systems. Most notably applied to cryptocurrencies, Blockchain can eliminate the need for any 
centralization within various systems, including smart systems. Decentralization can improve numerous aspects of a 
system, including security and efficiency [1].  
 
 

 
Figure 1: a) Centralized Network b) Decentralized Network 

 
Blockchain is a distributed ledger that comprises records, referred to as blocks. These blocks, which track system 
transactions, are distributed across numerous devices in the network. Each block within the network contains a 
cryptographic hash of the block prior to it in the blockchain. The network is constructed in a peer-to-peer manner, 
supporting the decentralization of the network and equal allocation of privileges amongst network nodes [2]. This is in 
contrast with network models like the client-server model, where network clients are required to request services and 
resources from a centralized server. 
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The distribution of the chain across numerous network devices, rather than a central authority, prevents the retroactive 
manipulation of blocks without the recalculation of the hash for all subsequent blocks in the chain, and this must be 
completed prior to the addition of any new blocks to the chain [3].   
 
The integration of blockchain with the Internet of Things (IoT) enables a greater overall security structure. IoT systems 
are, by nature, heavily distributed. However, reliance on a central cloud facilitates system vulnerabilities [4]. Therefore, 
the integration of blockchain and IoT has been explored by numerous researchers. Figure 1 depicts the rapid increase in 
publications concerning IoT and blockchain, sampled from Google Scholar and IEEE between the years 2013 and 2021.  
 

 
Figure 2: Blockchain and IoT Publications 

The core question to be asked of the implementation of blockchain within IoT applications is, what problems does 
blockchain aim to solve and how does it aim to do so? Fundamentally, the implementation of blockchain in IoT 
applications will target the decentralization of the overall system network.  
 

Problem Statement 

Widespread interconnectivity in IoT ecosystems is a point of concern for network security. Malicious actors can take 
advantage of a single highly trusted and widely connected network node to jeopardize the integrity, availability and 
confidentially of an entire system. Contemporary implementations of IoT ecosystems are based on centralized 
architectures. While this approach reduces design complexity, the potential for single points of failure is significant and 
the consequences are detrimental to the overall system function. In addition, IoT devices are heavily resource-constrained, 
therein constricting the utilization of intensive security protocols.  

Proposed Solution 

In this paper, we propose the employment of deep learning backed blockchain for the purposes of securing an IoT 
ecosystem. The fundamental objective of the proposed architecture is to ensure the secure and fast transmission of data 
within an IoT ecosystem. To this end, we posit a single-layered blockchain architecture comprising a set of interconnected 
network nodes that aim to validate companion nodes' behaviour through a novel consensus algorithm, Proof of Integrity. 
The architecture is inspired by Helium, a public wireless long-range network powered by blockchain [5]. 

2. PROPOSED METHOD  
The proposed approach is built on top of a highly interconnected environment of network nodes, which represent standard 
resource-constrained IoT devices. Although the fundamental kernel of communication between these devices is heavily 
contingent on the application space, the transmission of data, by a node in the network, can only be facilitated through the 
validation of a node’s characteristics, referred to in this paper as its device characteristics. These characteristics are 
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essentially the node’s fingerprint. They are subject to change across applications but must be composed of network relative 
and individual features, device characteristics are discussed more in detail below.  

We postulate that device characteristics can reveal significant information about node intentions. A lot of research has 
been conducted on the detection of malicious behaviour using various instances of device characteristics [6]–[10] . For 
example, Azmoodeh et al. employed numerous detection techniques to detect malicious behaviour by analyzing device 
power consumption [11]. Milosevic et al. utilize RAM and CPU usage to detect malicious behaviour [12].  

Each node that wishes to transfer data throughout the network will need to do such through the process of mining. The 
novel proof of integrity consensus algorithm ensures that devices appending data to network blockchain are operating in 
accordance with their precedently established device characteristics. As previously mentioned, each individual node has a 
set of device characteristics, some network relative and others, individual. Therefore, with the aim of using collective 
network connectivity and computational power, the consensus algorithm will use the testimony of a set of fellow network 
nodes to validate the data being appended to the chain.  

Each node represented in the network is a device of a potential resource-constrained nature. Devices will be connected via 
a set of arbitrary IoT communication protocols. Network nodes will have individual and network relative properties. Power 
consumption, CPU usage, RAM utilization are examples of a node’s individual properties. A node’s network relative 
properties are features of the nodes which can be verified independent of that node’s testimony. Companion node 
connectivity, node location, and communication frequency are all instances of a node’s network relative properties.  

 
Figure 3: Node Characteristics 

It is important to keep in mind that the set of device characteristics selected will be contingent on the application space. 
Employment of the network within a potentially hostile environment, where device location needs to be kept private, will 
require specific tailoring of a node’s characteristics, avoiding perhaps sensitive information such as node location.  

Node responsibility is crucial to the overall functionality and security of the architecture. Each node in the network must 
take on a responsibility space composed of four variant duties, namely challenger, challengee, witness and validator. The 
challengee and challenger roles are the only roles that can be self-assigned. The witness and validator roles are randomly 
assigned when a block insertion request is broadcasted to the network by the challengee. This prevents the challengee from 
verifying itself or knowing which nodes will be involved in the verification process before making the block insertion 
request.  

The challengee is the device which is attempting to transmit data to one or more nodes in the network. The challengee 
node will make a request to transfer data to a companion node in the network. That companion node now becomes the 
challenger and performs two main tasks. The first of which is to ensure that the challengee is operating within regular node 
characteristics using a smart contract with integrated anomaly detection. The second task is to create a broadcast request 
to other nodes in the network, inviting them to become witnesses and validators to the addition of the new block. However, 
it is crucial to note, that without the addition of a stochastic element, the witnesses and validators can be routinely predicted, 
leading to a severely comprised network. Therefore, the process for selecting witness and validator nodes is completed 
with stochastic consensus.  
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Figure 4: Broadcast Request to Candidates 

The procedure begins when the candidate pool receives a broadcast request from the challenger node, asking to partake in 
the mining process. Each individual node, within the candidate pool, will reply to the challenger with a privately generated 
pseudorandom number. The pseudorandom generation algorithm chosen for this task is the Mersenne Twister [13]. 
Although not cryptographically secure, the Mersenne Twister provides the necessary means of randomness. Note that the 
Mersenne Twister can be replaced with variant methods of cryptographically safe random number generators, however, 
more complex pseudorandom generators are computationally expensive and can therefore slow down the end-to-end 
transmission of data [14].  

The challenger will wait for j nodes to reply, where j is the maximum size of the candidate pool that is baked into the 
network protocol. Once the candidate pool has been established, the challenger is left with a random numerical sequence, 
produced by the collective efforts of all the devices in the candidate pool. 

𝑥!→j	 = #𝑥!, 𝑥$, … 𝑥j	&	 (1) 

Note that the randomness of the model increases with j, or the maximum size of the candidate pool. However, increasing 
j influences the overall energy consumed by the network. The larger the candidate pool, the larger the number of nodes 
required to make necessary computations, and therefore the more energy dispensed by the network. Tuning j to ensure an 
adequate quantity of randomness, while maintaining computational complexity, is crucial to network employment.  
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Figure 5: Stochastic Consensus 

The concept of the combination of multiple sources of weak randomness generated by the calculation of pseudorandom 
numbers by individual nodes is inspired by research conducted in 1999 by Santha and Vazirani on the combination of bit 
streams with weak randomness to generate a complex quasi-random bit stream [15], [16]. When communication entropy 
is further introduced as a means of sorting the sequence, the randomness of the process is augmented. The summation of 
the sequence, named the Stochastic Consensus Element (SCE), is utilized to randomly assign witness or validator 
responsibility to the respective nodes in the candidate pool.  

𝑆𝐶𝐸 =	.𝑥%

%&!

j	

	 (2) 

The SCE will be embedded within the final block mined to the chain, ensuring that validators can check to see that the 
selection of the respective witnesses and validators was conducted honestly, without manipulation.  

The number of witness or validator nodes is calculated with the utilization of the formulas listed below.  

𝑛' = 𝐶𝑒𝑖𝑙4(𝑛 − 2) × 𝜀	 ×	𝜃'9	 (3) 

𝑛( = 𝐶𝑒𝑖𝑙4(𝑛 − 2) × 𝜀	 ×	𝜃(9 	= 	𝐶𝑒𝑖𝑙4(𝑛 − 2) × 𝜀	 ×	(1 − 𝜃')9	 (4) 

 where 𝑛', and 𝑛( is the number of witness nodes and validator nodes respectively. 𝜀 is the network utilization 
factor. 𝜃' and 𝜃( is witness and validator split factor.  

Once the designated candidate nodes have been allocated as either witnesses or validators, they can begin fulfilling their 
respective responsibilities. The duty of a witness node is to provide sufficient information about the challenged node’s 
network relative properties. These properties will provide insight on the historical and concurrent communication behavior 
of the node in question. Conducting this is akin to having nodes vouch on behalf of the challenged node. The more witness 
nodes we have involved in the consensus process, the more testimonies we have, and therefore the more likely the correct 
verdict is reached.  
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Figure 6: Overview of Proposed Process 

 

As described prior, network relative properties will assist in building a diverse node profile. Let us take a scenario where 
the challenged node has been hijacked by a malicious agent. The agent is looking to perform a high communication 
frequency-based attack, with the goal being to target system availability. The first layer of defence is the anomalous 
behaviour detection-embedded smart contract. The recipient node of the data transaction will need to verify the node’s 
individual properties, however, note that this is only a preliminary method of verification. The malicious agent can easily 
manipulate the outgoing property values and conceal anomalous behaviour. This is where the network relative properties 
are vital to the security of the network. 

Network relative properties ensure that behavioural information about the node is not influenced by a malicious agent. The 
information, rather, is taken from the testimony of witnesses, stochastically selected from the network. The random 
selection of these witnesses is crucial to maintaining the integrity of the network. Returning to our example, and assuming 
the node has bypassed the anomaly detecting smart contract, the recipient node will broadcast a request for fellow network 
nodes to join the candidate pool. The key factor is the introduction of the SCE into the candidate pool. Again, the larger 
the candidate pool, the greater the diversity of entropy in the network, and therefore the more superior the stochasticity. 
The malicious node will not know which nodes will be selected as witnesses or validators, nor will he know which subset 
of nodes will be included within the greater scope of the candidate pool. This dramatically increases the computational 
workload a malicious agent must perform in order to select which nodes to hijack. 

In addition, if the malicious agent was to succeed in the meticulous calculation and prediction of which nodes will be 
assigned witness responsibility, then he does so with an increased computational workload, which is indicated in the node’s 
individual properties. Therefore, when the hijacked node attempts to communicate on the network, the recipient node will 
be able to identify the anomalous increase in the computational workload of the hijacked node. The hijacked node will not 
be able to transmit data until the computational workload returns to the regular range of function and therefore, in 
retrospect, the computational effort will be rendered useless because a new distribution of candidate nodes will be 
generated for the novel mining iteration.  

Nodes append data to the chain in a fundamental data structure known as the block. The block will contain a set of 
necessary pieces of information about the novel data being appended to the chain, as well as information on the mining 
process which can be utilized to verify it in the future.  

As aforementioned, validators will oversee the process of adding a block to the chain. The validator will begin by 
validating the SCE based on information conveyed by both the challenger and the candidate node. The ordering of the 
sequence of stochastic elements, #𝑥!, 𝑥$, … 𝑥j	&, must match the dispatch time conveyed by the respective candidate and 
the arrival time conveyed by the challenger. If the verification process of the SCE fails, the block is disregarded.  
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Figure 7: AutoEncoder 

If the SCE is valid, the validator proceeds to append the respective block to the chain, containing the SCE, transaction 
details, and node characteristics, both individual and network relative, of all the devices involved in the mining process. 
The validator completes the process by broadcasting the new chain to all the network nodes.  

The detection of anomalous behaviour in the network is conducted with the utilization of an AutoEncoder. The goal of the 
AutoEncoder is to encode input data into a low dimensional latent representation and reconstruct the data into its original  

dimensionality. An autoencoder is chosen for this task due to its ability to accurately recognize anomalous data of various 
input formats [17]:  

𝜙:	𝑋 → 𝑍	 (5) 

𝜓:	𝑍 → 𝑋	 (6) 

𝜙,𝜓 = arg	min
),+

‖𝑋 − (𝜓 ∘ 𝜙)𝑋‖$ 	 (7) 

where X, 𝜙, Z, 𝜓 is the input, encoder, latent representation, and decoder, respectively. 

Each node in the network will need to process the node characteristics provided by companion nodes in the network and 
sampled from the blockchain. The anomaly detection algorithm must be capable of accurately processing the device 
characteristics such that anomalous individual behaviour, like CPU over usage, and network relative properties, like 
abnormal communication frequency, are detected and flagged.  

In addition, when a device is flagged for anomalous behaviour, its communication frequency becomes limited. The limiting 
factor is implemented with exponential backoff [18].  Formulated as:  

𝑓 =
1
𝑏, ,

(8) 

where 𝑏 is a base factor predefined in every network node and c is the number of times the suspected node has been flagged 
for anomalous behaviour. Note that this only occurs on the local level, rather than throughout the entire network. This 
prevents falsified testimonies by malicious actors.  

CONCLUSION 
In brief, this paper defines an IoT blockchain architecture inspired by the Helium blockchain. Network nodes are 
characterized by their device properties, which are composed of local and network-level features. Blocks can only be 
added to the network via a novel consensus protocol, Proof of Integrity. Network security relies on the testimony of 
various companion nodes, which are stochastically selected. Node characteristics are analyzed with an anomaly 
detection algorithm. To this end, an AutoEncoder is employed for the detection of anomalous behaviour across a variety 
of different input forms. Anomalous devices are flagged, and their communication is subsequently limited using 
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exponential backoff to prevent high frequency-based or recurrent attacks. The project codebase is available at 
https://github.com/nalsadi/Deep_Blockchain_IoT.  
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