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Abstract—In this paper, two tube-based model predictive 
control algorithms were developed using sliding mode control 
to regulate the attitude of a simulated CubeSat system. 
Incorporating sliding mode techniques increased the robustness 
of tube-based model predictive control by minimizing the 
uncertainty of the system in the presence of a disturbance. The 
proposed controllers’ performances were evaluated against a 
traditional tube-based approach and measured in terms of root 
mean squared values on state errors and control efforts. Results 
indicate the effectiveness of the developed controllers over 
traditional tube-based methods for attitude control of small 
satellite systems, successfully extending this approach and 
opening an avenue for future development. 

Model predictive control; small satellites; uncertainty dynamics; 
mathematical modelling 

I.  INTRODUCTION 

Model predictive control (MPC) is a very successful control 
technique in which control effort is formulated in an open loop 
with respect to input and state constraints [1]. MPC has been 
praised for its remarkable control of complex, multivariable 
systems and its minimal conceptual complexity, leading to 
widespread application in the process industry [2]. Though 
powerful, MPC is dependent on model accuracy, and thus it 
breaks down in the presence of uncertainty, disturbances, and 
estimation or model error [3]. Because all real systems are 
plagued by disturbances, robust MPC (RMPC) methods have 
been developed to address system uncertainty [4]. A popular 
RMPC method is the tube-based MPC, which models system 
uncertainty as a ‘tube’ in which all state trajectories must reside 
[5]. This is enforced by tightening the state and input constraints 
such that they are satisfied for all possible realizations of the 
given disturbances [6]. 

A drawback to tube-based MPC is that its tightened 
constraints are designed on the worst possible effect of the 
disturbance, making its design conservative [7]. One possible 
solution is to link it to sliding mode control (SMC), a nonlinear 
controller which is inherently robust to uncertainties. This would 
allow the SMC to reject the disturbances present in the system 
in order to design a simpler MPC, an approach which has shown 
to be beneficial to the stability of linear MPC [7, 8, 9]. Reference 

[10] incorporated SMC by designing a controller on an 
uncertainty model, represented as the difference between the 
nominal and real systems. This was found to minimize 
overshoot, settling time, and steady state oscillations more than 
the methods outlined in [8] while maintaining system stability. 

Minimizing performance specifications such as overshoot 
and steady state error is beneficial to attitude control, which 
requires fine, accurate pointing. NASA has identified attitude 
optimization with constraint accommodation as an area of focus 
[11]. In addition, control for small spacecraft, like smallsats or 
CubeSats, is a developing research area due to hardware 
limitations, actuation constraints, and susceptibility to 
disturbances [12, 13]. Current MPC applications on satellite 
systems have considered momentum management, satellite 
docking, and attitude maneuvering with respect to large angles 
and constrained attitude [14, 15, 16, 17, 18]. However, research 
using tube-based MPC has been limited to orbital maneuvering 
[19, 20, 21]. Indeed, of the handful of tube-based MPC 
applications, only [22] has been applied to not only attitude 
control but also to a small satellite. Though comprehensive, the 
methods used in [22] did not consider use of an SMC in the 
design, leaving room for investigation. Another work developed 
an explicit nonlinear model predictive control (eNMPC) based 
on an interacting multiple model (IMM) to tolerate actuator 
faults for a nonlinear spacecraft system [23]. 

This study seeks to expand the approach in [10] to develop 
schemes combining tube-based MPC and SMCs for CubeSat 
attitude control. Three control techniques will be implemented: 
tube-MPC, tube-MPC with SMC (MPC-SMC), and tube-MPC 
with boundary layer SMC (MPC-BLSMC). The schemes 
combining tube-MPC with sliding mode will use a hierarchical 
control scheme where the SMC samples at a faster rate than the 
MPC. Controller performance will be evaluated using root mean 
squared values on control effort and root mean squared error 
values on attitude. The goal of the controllers is regulation to the 
identity quaternion for a model CubeSat in the presence of a 
disturbance injected during the simulation. 

The paper is organized as follows. The mathematical model 
of a satellite system is provided in Section II, followed by a 
summary of the controller strategies in Section III. The 
simulation setup and results are provided and described in 
Section IV, and the paper is then concluded 



   

II. MATHEMATICAL MODEL OF SATELLITE SYSTEM 

A. Satellite Kinematics and Dynamics 

The attitude of a satellite can be represented by the quaternion, 
𝒒 ൌ ሾ𝑞ଵ 𝑞ଶ 𝑞ଷ 𝑞ସሿ், which has vector part 𝒒ଵ:ଷ and scalar 
part 𝑞ସ. This formation is used to avoid singularities that would 
be present using Euler angle notation. A rotation from the 
inertial frame to the body frame of a satellite can be described 
by a quaternion parameterized attitude matrix: 

𝐴ሺ𝒒ሻ ൌ ቀ𝑞ସଶ െ ห|𝒒ଵ:ଷ|ห
ଶ
ቁ 𝐼ଷ ൅ 2𝒒ଵ:ଷ𝒒ଵ:ଷ

் െ 2𝑞ସሾ𝒒ଵ:ଷ ൈሿ ሺ1ሻ 

where a skew-symmetric matrix ሾy×ሿ is described as 

ሾ𝒚 ൈሿ ൌ ൥
0 –𝑦ଷ 𝑦ଶ
𝑦ଷ 0 –𝑦ଵ

–𝑦ଶ 𝑦ଵ 0
൩ . ሺ2ሻ 

 
The kinematic and dynamic equations of a rigid body 

spacecraft with external disturbances can be defined as: 

𝒒ሶ ൌ
1
2
𝛀ሺ𝝎𝒃ሻ𝒒 ሺ3ሻ 

𝝎𝒃ሶ ൌ 𝑰𝒃
ି𝟏ሾ𝝉𝒆𝒙𝒕 ൅ 𝑻𝒄 െ ሾ𝝎𝒃 ൈሿሺ𝑰𝒃𝝎𝒃ሻሿ ሺ4ሻ 

 
where ωbൌሾωx ωy ωzሿ  is the angular velocity of the 
satellite body in the body frame, Ib  is the moment of inertia of 
the satellite body represented a 3×3 matrix, 𝝉𝒆𝒙𝒕 is an external 
disturbance, Tc is the control torque input, and Ω(y) equals 

𝛀ሺ𝒚ሻ ൌ ൤
െሾ𝒚 ൈሿ 𝒚
െ𝒚் 0

൨ . ሺ5ሻ 

To employ tube-based MPC, (3) and (4) must be expressed 
in linear state space form as:  

𝒙ሶ ൌ 𝑨𝒙 ൅ 𝑩𝒖 ൅ 𝑩𝒘 ሺ6ሻ 
where the states are defined x=ሾq ωbሿT . The system is 
linearized around the equilibrium points of the identity 
quaternion, Iq=ሾ0 0 0 1ሿT, and zero body angular velocity, 
ωb=ሾ0 0 0ሿT. This produces: 

𝑨 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.5
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

ሺ7ሻ 

 

𝑩 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 0
0 0 0
𝐼௕,௫௫
ିଵ 0 0
0 𝐼௕,௬௬

ିଵ 0

0 0 𝐼௕,௭௭
ିଵ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ሺ8ሻ 

 
𝒖 ൌ 𝑻𝒄 ൌ ሾ𝑇௖,௫  𝑇௖,௬ 𝑇௖,௭ሿ் ሺ9ሻ 

 
𝒘 ൌ 𝝉𝒆𝒙𝒕 ൌ ሾ𝜏௘௫௧,௫  𝜏௘௫௧,௬ 𝜏௘௫௧,௭ሿ் ሺ10ሻ 

 

As noted in [24], the linearized system is uncontrollable due 
to the scalar quaternion, q4. To make the system controllable, 
this state is eliminated, reducing the state vector to 
x̃=ሾq1:3 ωbሿT  and allowing q4  to be determined by the 
quaternion constraint ‖q‖=1. Note that x෤  is solely used for 
controller design purposes. Finally, to employ the control 
designs, (6) must be discretized with a sampling time, T , 
resulting in: 

𝒙௞ାଵ ൌ ሺ𝑨𝑇 ൅ 𝑰଻ൈ଻ሻ𝒙௞ ൅ 𝑩𝒖௞ ൅ 𝑩𝒘௞ ሺ11ሻ 
where xk∈X∈Rn, uk∈U∈Rm,  wk∈W∈Rm , and X,  U,  W  are 
compact sets containing their own origins and interiors 
representing constraints on the states, control inputs, and 
disturbances respectively. 

B. Tracking Error 

The tracking error for the system can be defined as the 
difference between the actual and desired values: 

𝒒𝒆 ൌ 𝒒⊗ 𝒒𝒅
ିଵ ሺ12ሻ 

𝝎𝒆 ൌ  𝝎𝒃 െ 𝛿𝐴𝝎𝒅 ሺ13ሻ 
where q is the actual quaternion, qd is the desired quaternion,   
ωb is the actual angular velocity of the body, ωd is the desired 
angular velocity of the body, and 𝛿A=AሺqሻAd

T൫qd൯  is the 
quaternion parameterized attitude error matrix that resolves the 
angular velocity error in body frame coordinates. The operator 
q⊗ represents: 

𝒒⊗ൌ ቈ
𝑞ସ𝑰𝟑 െ ൣ𝒒ଵ;ଷ ൈ൧ 𝒒ଵ:ଷ

െ𝒒ଵ:ଷ
் 𝑞ସ

቉ ሺ14ሻ 

A tracking controller’s goal is to follow a desired reference 
trajectory such that qe,1:3 → 0  and ωe → 0 . Regulation is a 

special form of tracking where the goal is to drive the 
quaternion to Iq and drive the body angular velocities to zero 
[25]. 

III. CONTROLLER STRATEGIES 

A.  Tube-based Model Predictive Control 

A tube-based MPC can be formulated on the system of (11) by 
creating a nominal system model: 

𝒙ഥ௞ାଵ ൌ 𝑨𝒙ഥ௞ ൅ 𝑩𝒖ഥ௞ ሺ15ሻ 
where xതk  is the nominal state and uതk  is the nominal control 
input. The control input is defined as uതk=KLQRxതk, where KLQR 
is the LQR gain determined such that the closed loop system 
AKLQR=A+BKLQR  is stable. A robust invariant set, S0 , 
represents a bounded neighborhood of the system trajectories 
perturbed by all disturbance sequences [5] and is formulated as  

𝑨𝑲𝑳𝑸𝑹𝑿⊕𝑾 ⊆ 𝑺𝟎 ሺ16ሻ 
where ⊕ is Minkowski set addition. As put forth in [5], if the 
controller uk=uതk+KLQRሺxk-xതkሻ  is applied, then the nominal 
system satisfies the constraints 

𝒙ഥ௞ ∈ 𝑿⊖ 𝑺𝟎 ሺ17ሻ 
𝒖ഥ௞ ∈ 𝑼⊖𝑲𝑳𝑸𝑹𝑺𝟎 ሺ18ሻ 

where ⊖ is Minkowski set subtraction, and the state of the real 
system tracks the nominal system. An alternative version of this 
formulation was proposed in [26], defining the controller as 
uk=uതk+KLQRሺxk-xത0ሻ, where xത0 is the initial state of the nominal 



   

system that is redefined as a parameter of the MPC optimization 
problem. The optimization problem is 

𝑚𝑖𝑛
𝒖ഥሺ⋅ሻ,𝒙ഥబ

 ෍𝑙൫𝒙ഥ௝ ,𝒖ഥ௝൯

ேିଵ

௝ୀ଴

൅ 𝑉௙ሺ𝒙ഥேሻ 

subject to  𝒙ഥ௞ାଵ ൌ 𝑨𝒙ഥ௞ ൅ 𝑩𝒖ഥ௞, 
𝒙ഥ௞ ∈ 𝑿⊖ 𝑺𝟎, 

𝒖ഥ௞ ∈ 𝑼⊖𝑲𝑳𝑸𝑹𝑺𝟎, ሺ19ሻ 
𝒙𝟎 ∈ 𝒙ഥ𝟎 ⊕ 𝑺𝟎, 
𝒙ഥ𝑵 ∈ 𝑿𝒇 ⊖ 𝑺𝟎 

where N is the prediction horizon, Xf is the terminal constraint 
set, lሺ⋅ሻ=‖xതk-xref‖Q

2 +‖uതk‖R
2  is the stage cost between the 

desired trajectory and the predicted states, and Vfሺ⋅ሻ= ‖xതN-
xref‖P

2  is the terminal cost function. The operation ǁ⋅‖W
2  

represents the Euclidean norm of a vector weighted by a matrix 
W . The matrices Q∈Rn×n, R∈Rm×m, P∈Rn×n  are positive 
definite weighting matrices. 

B. Uncertainty Model Compensation 

As seen in [8] and [7], a two-level control design can be 
established for the control input of an MPC  

𝒖 ൌ 𝒖ഥ ൅ 𝒖ௌெ஼ ሺ20ሻ
where uത is a higher-level controller based on MPC and uSMC is 
a lower-level controller based on a sliding mode design. From 
[10], uSMC can be designed to stabilize the system uncertainty, 
z , expressed as the difference between the real and nominal 
systems: 

𝒛 ൌ 𝒙 െ 𝒙ഥ ሺ21ሻ
The dynamics of this model are assumed second 
order:

𝒛ሷ ൌ ℎሺ𝒛ሻ ൅ 𝒖ௌெ஼  ሺ22ሻ 

where hሺzሻ is the unknown, nonlinear dynamics of the system, 
z is the output of the system, and uSMC is the control input. The 
dynamics are upper bounded by 𝐻 as: 

|ℎ| ൑ 𝐻 ሺ23ሻ 
The tracking error of these dynamics is defined as: 

𝒛𝒆 ൌ 𝒛 െ 𝒛𝒅 ሺ24ሻ 
where ze is the tracking error and zd is the desired uncertainty. 

The goal of this controller is to drive the output, z, to zero. 
With regards to satellite dynamics, the desired values of z and 
its derivatives can be written as 𝒛𝒅 ൌ 𝑰𝒒  and  zሶd=zሷd=0. The 
error dynamics of the spacecraft system can be exploited to 
define the uncertainty states as: 

𝒛 ൌ 𝒒𝒆,𝟏:𝟑 ൌ 𝒙𝟏:𝟒  ⊗𝒙ഥ𝟏:𝟒
ି𝟏 ሺ25ሻ 

𝒛ሶ ൌ  𝝎𝒆 ൌ 𝒙𝟓:𝟕 െ 𝒙ഥ𝟓:𝟕 ሺ26ሻ 
A sliding mode controller can be designed with the sliding 
surface: 

𝑺 ൌ ൬
𝑑
𝑑𝑡
൅ 𝜆൰ 𝒛𝒆 ൌ 𝒛ሶ 𝒆 ൅ 𝝀𝒛𝒆 ሺ27ሻ 

where λ is a positive 3×3 diagonal matrix. Differentiating (27) 
with respect to time results in: 

𝑺ሶ ൌ 𝒛ሷ 𝒆 ൅ 𝝀𝒛ሶ 𝒆 ሺ28ሻ 
To solve for the estimated control torque, uොSMC, (26) is plugged 
into (28), which is then set to zero, producing: 

𝒖ෝௌெ஼ ൌ  െℎ෠ሺ𝒛ሻ ൅ 𝒛ሷ 𝒅 െ 𝜆𝒛ሶ 𝒆 ሺ29ሻ 

The total input, uSMC, is found by adding a discontinuous term 
across the sliding surface: 

𝒖ௌெ஼ ൌ 𝒖ෝௌெ஼ െ 𝑲𝑠𝑖𝑔𝑛ሺ𝑺ሻ ሺ30ሻ 
where K is a positive 3×3 diagonal matrix. The discontinuous 
term is designed to eliminate the function hሺzሻ as it is unknown, 
therefore ensuring Sሶ=0. In this paper, two sliding mode designs 
are considered for the uncertainty model: traditional sliding 
mode control (SMC) and boundary layer sliding mode control 
(BLSMC). SMC design is represented by (30), but BLSMC 
expands on (30) by altering the discontinuous term: 

𝒖஻௅ௌெ஼ ൌ 𝒖ෝௌெ஼ െ 𝑲ഥ𝑠𝑎𝑡 ൬
𝑺
𝜙
൰ ሺ31ሻ 

where Kഥ=K(z)- ϕሶ , ϕ is a positive 3×1 vector representing the 
boundary layer thickness, K(z) is the gain for the real system, 
and the satሺ⋅ሻ function is defined as: 

𝑠𝑎𝑡 ൬
𝑺
𝜙
൰ ൌ

𝑺
𝜙
𝑖𝑓 ฬ

𝑺
𝜙
ฬ ൑ 1

𝑠𝑎𝑡 ൬
𝑺
𝜙
൰ ൌ 𝑠𝑖𝑔𝑛ሺ𝑺ሻ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ሺ32ሻ

 

The value for ϕሶ  is determined by: 
𝝓ሶ ൅ 𝝀𝝓 ൌ 𝑲ሺ𝒛𝒅ሻ ሺ33ሻ 

where Kሺzdሻ is the gain for the uncertain system. The standard 
proofs of stability for both sliding mode controllers may be 
found using Lyapunov theory. The proofs have been omitted 
from this conference paper due to space constraints, but will be 
included in a journal publication. 

IV. SIMULATIONS AND RESULTS 

In this paper we simulated an example from [25], which 
performed a regulation attitude maneuver. The simulation is 
implemented in MATLAB® using CasADi [27]. System 
parameters and initial conditions are provided in Tab. 1. The 
state and input constraints are selected as 

|𝒙෥| ൑ ሾ1 1 1 5 5 5ሿ் ሺ34ሻ 
|𝒖| ൑ ሾ0.408 0.408 0.408ሿ்𝑁𝑚 ሺ35ሻ 

Values for the inertia matrix and the input constraints were 
based on those found in [28] for a 3U Cubesat. The MPC and 
SMC operate as a hierarchical control scheme, resulting in 
different sampling rates. The sampling time of the MPC is set 
to T=1s with a prediction horizon of N=14 and the sampling 
time of the SMC controllers is set to T=0.1s. The simulation 
time is set to t=20min . An external torque 
τext=ሾ0.05 sinሺ0.05tሻ 0.03 0.05 cosሺ0.05tሻሿT  is applied at 
t=6.5min to evaluate the control methods in the presence of 
disturbances. 

Controller performance was evaluated using the root mean 
square (RMS) error for the states (xRMSE) and the RMS value 
for the control effort (uRMS). Tabs. 2 and 3 present these values 
for each strategy while Figs. 1 and 2 display the attitude 
maneuvers and Fig 3 displays the resulting control efforts, 
respectively. As seen from the quaternion response and body 
angular velocities, MPC with either sliding mode control design 
settles faster and is more robust to the disturbance than the 
MPC. Both MPC-SMC and MPC-BLSMC have smaller 
magnitudes of error and recover near instantaneously to the 
disturbance across all states. In contrast, MPC takes ~1.5min to 



   

stabilize attitude and ~1min to stabilize angular velocity. 
Numerically, MPC-SMC and MPC-BLSMC are found to 
perform nearly identically, given their xRMSE values, while both 
outperform pure MPC. 

TABLE I.  SYSTEM PARAMETERS 

Parameter Value 
Ib 

൥
0.0056 0 0

0 0.026 0
0 0 0.0026

൩kgm2 

q0 ሾ0.2 0.3 0.4 0.8ሿT 

ωb,0 ሾ0.01 0.01 0.01ሿTrad/s 

MPC Gains and Weights 

Parameter Value 

KLQR ൥
-0.004 0 0 -0.008 0 0

0 -0.2 0 0 -0.04 0
0 0 -0.002 0 0 -0.004

 ൩ 

Q 

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

R ൥
10 0 0
0 10 0
0 0 10

൩ 

P 

⎣
⎢
⎢
⎢
⎢
⎡
3.56 0 0 1.28 0 0

0 3.56 0 0 1.28 0
0 0 3.56 0 0 1.28

1.28 0 0 1.64 0 0
0 1.28 0 0 1.65 0
0 0 1.28 0 0 1.64⎦

⎥
⎥
⎥
⎥
⎤

 

SMC Gains 

Parameter Value 

λ, 
቎
4×10-5 0 0

0 2×10-3 0
0 0 2×10-5

቏ 

 

K ቎
8×10-6 0 0

0 4×10-5 0
0 0 4×10-6

቏ 

BLSMC Gains 

Parameter Value 

λ, 
 

቎
4×10-3 0 0

0 2×10-1 0
0 0 2×10-3

቏ 

K(z)=Kሺzdሻ, ൥
8×10-1 0 0

0 4 0
0 0 4×10-1

൩ 

ϕ ሾ1×10-5 1×10-5 1×10-5ሿ் 

TABLE II.  XRMSE VALUES 

 
Attitude Error 
(Quaternion) 

Angular Velocity 
Error (rad/s) 

Controller q1 q2 q3 q4 ωx ωy ωz 

Tube MPC 0.061 0.056 0.074 0.99 0.053 0.022 0.030 

MPC-SMC 0.013 0.016 0.021 1.0 0.016 0.008 0.011 

MPC-BLSMC 0.016 0.017 0.022 1.0 0.015 0.007 0.010 

 

TABLE III.  URMS VALUES 

 Torque (Nm) 
Controller Tx Ty Tz 

Tube MPC 4.32×10-4 4.51×10-4 6.64×10-5 

MPC-SMC 2.01×10-4 2.35×10-4 4.03×10-5 

MPC-BLSMC 1.64×10-4 1.67×10-4 3.13×10-5 

TABLE IV.  ZRMSE VALUES 

 Attitude Error (Quaternion) 
Controller q1 q2 q3 q4 

MPC-SMC 0.0057 0.0042 0.0057 1.0 

MPC-BLSMC 0.0054 0.004 0.0054 1.0 

 
Examining Fig. 3 highlights the benefit of MPC-BLSMC 

over MPC-SMC. Each figure has a zoomed in view of the 
control torque during its recovery from the disturbance. While 
both MPC-SMC and MPC-BLSMC immediately recovered 
from the disturbance, MPC-SMC has a distinct amount of 
chatter that is not found in the MPC-BLSMC. This is consistent 
across all axes and is most significant in the Y-Axis (Fig. 3b). 
MPC-BLSMC outperforms both controllers in terms of uRMS 
values as well, being significantly smaller than MPC torques 
and slightly smaller than MPC-SMC torques. An additional set 
of RMSE values, zRMSE,  are presented in Tab. 4, which displays 
the error values for the uncertainty states used in the sliding 
mode controllers. As shown, both controllers drive the 
uncertainty towards Iq for the quaternion states, indicating their 
ability to minimize the difference between the nominal and 
disturbance-perturbed systems. 
 

 
(a) 



   

 
(b) 

Figure 1.  Quaternion Response on CubeSat  

 
 

Figure 2.  Body Angular Velocity Response of CubeSat 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3.  Control Input Signals for CubeSat along (a) X-Axis (b) Y-Axis (c) 
Z-Axis 

V. CONCLUSION 

This paper developed two tube-MPC controllers for the 
attitude control of a simulated CubeSat using the sliding mode 
control techniques of SMC and BLSMC. Designing on the 
uncertainty between the real and nominal systems minimized 
the system error in the presence of a disturbance, thereby 
increasing robustness. While the sliding mode controllers 
seemed to perform identically, MPC-BLSMC experience 
significantly less chatter in its control efforts, which is 
important for practical applications. Though a simplified 
example, the main contributions of this paper are: developing 
the advantageous tube-MPC/SMC design and validating its 
superiority against traditional tube-MPC for attitude control of 
a CubeSat system. These results lay the foundation for future 
investigation such as: simulation on a tracking problem, 
incorporation of real-world spacecraft disturbances over longer 
durations, and application to an experimental CubeSat. 
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