
   

Proceedings of the Canadian Society for Mechanical Engineering International Congress 2021 

CSME Congress 2021 

June 27-30, 2021, Charlottetown, PE, Canada 

 

 

Fault Detection of a Mechatronic System using Interacting Operating Modes

S. Andrew Gadsden1,*, Stephen A. Wilkerson2, Mohammad Al-Shabi3 
1College of Engineering and Physical Sciences, University of Guelph, Guelph, Canada 

2Department of Mechanical Engineering, York College of Pennsylvania, York, USA 
3Department of Mechanical and Nuclear Engineering, University of Sharjah, Sharjah, UAE 

*gadsden@uoguelph.ca 
 
 

Abstract—Successful fault detection and diagnosis is important 
for reliable operation of engineering systems. A number of 
strategies exist, utilizing both signal-based and model-based 
methods. The interacting multiple model (IMM) strategy is one 
of the most well-established methods to distinguish between 
different operating modes. The IMM utilizes estimation filters 
that run in parallel based on different models that describe or 
capture the system dynamics or behaviour. In this paper, a 
number of different estimation strategies have been combined 
with the IMM for fault detection and diagnosis of a mechatronic 
system. This paper studies the most popular methods, and 
compares the fault detection results of an electrohydrostatic 
actuator (EHA) that was built for experimentation. 

Keywords-Fault detection; interacting multiple model; control; 
mechatronics; estimation theory 

I.  INTRODUCTION 

Fault detection and diagnosis strategies are used to ensure the 
reliable and safe operation of different engineering systems. 
They are part of the controls systems engineering field, and 
includes: system health and condition monitoring, identifying 
when faults occur, and diagnosing the type of fault. A fault is 
defined as an abnormal condition that may lead system deviation 
from its normal operating conditions. Some of the most popular 
research in this area includes: books [1, 2, 3, 4, 5], research 
theses [6, 7, 8], and other survey papers [9, 10, 11, 12, 13, 14, 
15, 16, 17, 18]. A number of different types of FDI strategies 
exist, and are usually classified as model-based or signal-based. 
The most well-known signal-based strategy is based on artificial 
neural network (ANN) techniques. The most well-studied 
model-based strategy is the interacting multiple model (IMM) 
method. In order to properly implement these strategies, 
knowledge on the system states and parameters is required. State 
estimation-based methods are considered to be an important 
branch of fault diagnosis, and have attracted a significant amount 
of attention in recent years. 

The most popular estimation method for linear systems and 
measurements remains the Kalman filter (KF) [19, 20]. It yields 
a statistical optimal solution to the estimation problem (with 
linear systems and measurements), under strict assumptions. For 
the nonlinear cases, a number of KF-based strategies have been 

created, and include: the extended (EKF), unscented (UKF), and 
cubature Kalman filter (CKF) [8]. Note that the CKF is a special 
case of the UKF [8]. These strategies attempt to approximate the 
nonlinearities through linearization, the use of sigma-points, or 
particles like the particle filter (PF) [21]. Another strategy 
derived based on variable structure techniques is the smooth 
variable structure filter (SVSF), which was presented in an effort 
to overcome instability issues found in the KF-based methods 
[22]. Most recently, an estimation strategy called the sliding 
innovation filter (SIF) was introduced in [23]. Although similar 
structure to the SVSF, the SIF presents a simpler gain and yields 
a more accurate estimate. 

This study compares the IMM fault detection and diagnosis 
strategy, combined with the EKF, UKF, CKF, PF, and SVSF 
estimation methods. An electrohydrostatic actuator (EHA) that 
was built for experimentation is used to test out and compare the 
different IMM strategies. The paper is organized as follows. An 
overview of the IMM strategy is provided in Section 2. Section 
3 lists the main equations for the estimation methods. Section 4 
describes the experimental setup and the corresponding results. 
The main findings and conclusions are then summarized in 
Section 5. 

II. INTERACTING MULTIPLE MODEL STRATEGY 

This section provides a general overview of the IMM 
strategy. A comprehensive explanation of the IMM estimator 
with its application to multiple model target tracking was 
presented by Bar-Shalom et al. in [24]. Furthermore, a 
significant amount of research has been presented which 
combined the IMM with filtering strategies such as the EKF 
[25], PF [26, 27], SVSF [28], and the Dempster-Shafer data 
association technique [29]. The IMM’s main feature includes the 
ability to estimate the state of a system which can be modeled 
using a finite number of mathematical models, and can ‘switch’ 
from one mode to another based on its likelihood function 
(probability) [30]. The IMM method consists of three main 
steps, as defined in [31]: interaction, filtering, and combination. 

The first step in the IMM process is referred as the 
interaction step, and it involves calculation of mixing 
probabilities 𝜇௜|௝,௞|௞. These values are based on the probability 
of the system switching from mode 𝑖 to the other mode 𝑗, or 
staying in the same mode 𝑖, at the next time step. The mixing 



   

probabilities or likelihoods are calculated using the following 
equations [24]: 

𝜇௜|௝,௞|௞ ൌ
1
𝑐௝̅
𝑝௜௝𝜇௜,௞ ሺ2.1ሻ 

𝑐௝̅ ൌ෍𝑝௜௝

௥

௜ୀଵ

𝜇௜,௞ ሺ2.2ሻ 

A list of the nomenclature is provided in the Appendix. The 
previous mode-matched states 𝑥ො௜,௞|௞ and state error covariance’s 
𝑃௜,௞|௞  are also used to calculate the mixed initial conditions. 
These conditions are used as inputs for the filter matched to 𝑀௝ 
(which includes 𝐴௝ and 𝐵௝). The mixed initial conditions (state 
estimates and error covariance’s) are found as follows [24]: 

𝑥ො଴௝,௞|௞ ൌ෍𝑥ො௜,௞|௞𝜇௜|௝,௞|௞

௥

௜ୀଵ

ሺ2.3ሻ 

𝑃଴௝,௞|௞ ൌ෍𝜇௜|௝,௞|௞

௥

௜ୀଵ

ሼ…

𝑃௜,௞|௞ ൅ ൫𝑥ො௜,௞|௞ െ 𝑥ො଴௝,௞|௞൯൫𝑥ො௜,௞|௞ െ 𝑥ො଴௝,௞|௞൯
்
ሽ ሺ2.4ሻ

 

This step is interchangeable based on the estimation method 
that was used with the IMM strategy. For completeness, the KF 
steps will be described here. The state estimates 𝑥ො଴௝,௞|௞ (2.3) and 
corresponding covariance 𝑃଴௝,௞|௞ (2.4) for each model 𝑗 are used 
to predict the estimate 𝑥ො௝,௞ାଵ|௞ (2.5) and calculate the predicted 
error covariance 𝑃௝,௞ାଵ|௞ (2.6). 

𝑥ො௝,௞ାଵ|௞ ൌ 𝐴௝𝑥ො଴௝,௞|௞ ൅ 𝐵௝𝑢௞ ሺ2.5ሻ 

𝑃௝,௞ାଵ|௞ ൌ 𝐴௝𝑃௞|௞
଴௝ 𝐴௝

் ൅ 𝑄௞ ሺ2.6ሻ 

The mode-matched innovation covariance 𝑆௝,௞ାଵ|௞ (2.7) and 
predicted measurement error (or innovation) 𝑒௝,௭,௞ାଵ|௞ (2.8) are 
calculated respectively as follows: 

𝑆௝,௞ାଵ|௞ ൌ 𝐶௝𝑃௝,௞ାଵ|௞𝐶௝
் ൅ 𝑅௞ାଵ ሺ2.7ሻ 

𝑒௝,௭,௞ାଵ|௞ ൌ 𝑧௞ାଵ െ 𝐶௝𝑥ො௝,௞ାଵ|௞ ሺ2.8ሻ 

Following this, the mode-matched gain 𝐾௝,௞ାଵ (e.g., KF) is 
calculated as per (2.9), and then used to update the estimates 
𝑥ො௝,௞ାଵ|௞ାଵ as per (2.10). The state error covariance 𝑃௝,௞ାଵ|௞ାଵ is 
updated using (2.11) and the measurement error 𝑒௝,௭,௞ାଵ|௞ାଵ is 
updated as per (2.12). 

𝐾௝,௞ାଵ ൌ 𝑃௝,௞ାଵ|௞𝐶௝
்𝑆௝,௞ାଵ|௞

ିଵ ሺ2.9ሻ 

𝑥ො௝,௞ାଵ|௞ାଵ ൌ 𝑥ො௝,௞ାଵ|௞ ൅ 𝐾௝,௞ାଵ𝑒௝,௭,௞ାଵ|௞ ሺ2.10ሻ 

𝑃௝,௞ାଵ|௞ାଵ ൌ ൫𝐼 െ 𝐾௝,௞ାଵ𝐶௝൯𝑃௝,௞ାଵ|௞ ሺ2.11ሻ 

𝑒௝,௭,௞ାଵ|௞ାଵ ൌ 𝑧௞ାଵ െ 𝐶௝𝑥ො௝,௞ାଵ|௞ାଵ ሺ2.12ሻ 

A mode-matched likelihood function 𝛬௝,௞ାଵ  may be 
calculated next, as follows [24, 32]: 

𝛬௝,௞ାଵ ൌ 𝒩൫𝑧௞ାଵ; 𝑧̂௝,௞ାଵ|௞, 𝑆௝,௞ାଵ൯ ሺ2.13ሻ 

𝛬௝,௞ାଵ ൌ
1

ටห2𝜋𝑆௝,௞ାଵห஺௕௦

𝑒𝑥𝑝ቌ
െ

1
2 𝑒௝,௭,௞ାଵ|௞

் 𝑒௝,௭,௞ାଵ|௞

𝑆௝,௞ାଵ
ቍ ሺ2.14ሻ 

The mode-matched likelihood values 𝛬௝,௞ାଵ  are used to 
update the mode probability 𝜇௝,௞ by [24]: 

𝜇௝,௞ ൌ
1
𝑐
𝛬௝,௞ାଵ෍𝑝௜௝

௥

௜ୀଵ

𝜇௜,௞ ሺ2.15ሻ 

𝑐 ൌ෍𝛬௝,௞ାଵ෍𝑝௜௝

௥

௜ୀଵ

𝜇௜,௞

௥

௝ୀଵ

ሺ2.16ሻ 

In this final step, the IMM state estimates 𝑥ො௞ାଵ|௞ାଵ (2.17) 
and corresponding error covariance 𝑃௞ାଵ|௞ାଵ  (2.18) are 
calculated. 

𝑥ො௞ାଵ|௞ାଵ ൌ෍𝜇௝,௞ାଵ𝑥ො௝,௞ାଵ|௞ାଵ

௥

௝ୀଵ

ሺ2.17ሻ 

𝑃௞ାଵ|௞ାଵ ൌ෍𝜇௝,௞ାଵሼ𝑃௝,௞ାଵ|௞ାଵ ൅

௥

௝ୀଵ

… ൫𝑥ො௝,௞ାଵ|௞ାଵ െ 𝑥ො௞ାଵ|௞ାଵ൯൫𝑥ො௝,௞ାଵ|௞ାଵ െ 𝑥ො௞ାଵ|௞ାଵ൯
்
ሽ ሺ2.18ሻ

 

Note that this step is used for the overall IMM output, and is 
not used recursively in the process [24]. 

III. ESTIMATION STRATEGIES 

The main equations for the EKF, UKF, CKF, PF, and SVSF 
estimation methods are summarized in this section. The 
extended Kalman filter (EKF) was introduced to implement the 
KF in a nonlinear framework. The filter is essentially the same 
as (2.5) through (2.12), except that the linear matrices 𝐴, 𝐵, and 
𝐶 are linearized using the nonlinear system and measurement 
functions 𝑓  and ℎ . For example, the linearized matrices are 
calculated using the following Jacobians [33]: 

𝐴௝ ൌ
𝜕𝑓௝
𝜕𝑥
ฬ
௫ොೖ|ೖ,௨ೖ

ሺ3.1.1ሻ 

𝐶௝ ൌ
𝜕ℎ௝
𝜕𝑥

ฬ
௫ොೖశభ|ೖ

ሺ3.1.2ሻ 

The linearization process can lead to uncertainties that cause 
the EKF to yield numerically unstable results [34]. However, for 
most mildly nonlinear systems, the EKF provides reliable state 
estimates and higher-order estimates are not needed [33]. 

The unscented Kalman filter (UKF) utilizes a nonlinear 
sampling technique known as the unscented transform [35, 36]. 
Equations (3.2.1) through (3.2.16) represent the UKF estimation 
process, and are implemented recursively [36]. The first step 
involves calculating what are known as ‘sigma points’. In the 
UKF framework 2𝑛 ൅ 1  sigma points may be used to 
approximate the nonlinearities, where 𝑛 refers to the number of 
states [36]. The initial sigma points (which include both the 
sample and weight) are calculated using the following two 
equations, respectively: 



   

𝑋଴,௞|௞ ൌ 𝑥ො௞|௞ ሺ3.2.1ሻ 

𝑊଴ ൌ
𝜅

𝑛 ൅ 𝜅
ሺ3.2.2ሻ 

The next 𝑛 set of sigma points are calculated using (3.2.3) 
and (3.2.4). 

𝑋௜,௞|௞ ൌ 𝑥ො௞|௞ ൅ ൬ටሺ𝑛 ൅ 𝜅ሻ𝑃௞|௞൰
௜

ሺ3.2.3ሻ 

𝑊௜ ൌ
1

2ሺ𝑛 ൅ 𝜅ሻ
ሺ3.2.4ሻ 

The remaining 𝑛  set of sigma points are calculated using 
(3.2.5) and (3.2.6). 

𝑋௜ା௡,௞|௞ ൌ 𝑥ො௞|௞ െ ൬ටሺ𝑛 ൅ 𝜅ሻ𝑃௞|௞൰
௜

ሺ3.2.5ሻ 

𝑊௜ା௡ ൌ
1

2ሺ𝑛 ൅ 𝜅ሻ
ሺ3.2.6ሻ 

The parameter 𝜅 in the above is a design value (typically a 
positive value less than 1), the second term in (3.2.5) is the 𝑖௧௛ 

row or column of ටሺ𝑛 ൅ 𝜅ሻ𝑃௞|௞ which is a matrix, and 𝑊௜ refers 

to the weight associated with the 𝑖௧௛  sample point [37]. The 
sigma points calculated in (3.2.1) through (3.2.6) are propagated 
through the nonlinear system or measurement models, and are 
used to predicted state estimate (3.2.8) or predicted measurement 
(3.2.11). 

𝑋෠௜,௞ାଵ|௞ ൌ 𝑓൫𝑋௜,௞|௞,𝑢௞൯ ሺ3.2.7ሻ 

𝑥ො௞ାଵ|௞ ൌ෍𝑊௜𝑋෠௜,௞ାଵ|௞

ଶ௡

௜ୀ଴

ሺ3.2.8ሻ 

From (3.2.7) and (33.2.8), the predicted state error 
covariance is calculated as per the following: 

𝑃௞ାଵ|௞ ൌ෍𝑊௜൫𝑋෠௜,௞ାଵ|௞ െ 𝑥ො௞ାଵ|௞൯൫𝑋෠௜,௞ାଵ|௞ െ 𝑥ො௞ାଵ|௞൯
்

ଶ௡

௜ୀ଴

ሺ3.2.9ሻ 

Furthermore, the sigma points are used in the nonlinear 
measurement function (3.2.10) and then used to predict the 
measurement as per (3.2.11). 

𝑍መ௜,௞ାଵ|௞ ൌ ℎ൫𝑋෠௜,௞ାଵ|௞,𝑢௞൯ ሺ3.2.10ሻ 

𝑧̂௞ାଵ|௞ ൌ෍𝑊௜𝑍መ௜,௞ାଵ|௞

ଶ௡

௜ୀ଴

ሺ3.2.11ሻ 

Using (3.2.10) and (3.2.11), the innovation covariance is 
calculated: 

𝑃௭௭,௞ାଵ|௞ ൌ෍𝑊௜൫𝑍መ௜,௞ାଵ|௞ െ 𝑧̂௞ାଵ|௞൯൫𝑍መ௜,௞ାଵ|௞ െ 𝑧̂௞ାଵ|௞൯
்

ଶ௡

௜ୀ଴

ሺ3.2.12ሻ 

The cross-covariance (defined as the cross-covariance 
between the state and measurement) is calculated as per the 
following: 

𝑃௫௭,௞ାଵ|௞ ൌ෍𝑊௜൫𝑋෠௜,௞ାଵ|௞ െ 𝑥ො௞ାଵ|௞൯൫𝑍መ௜,௞ାଵ|௞ െ 𝑧̂௞ାଵ|௞൯
்

ଶ௡

௜ୀ଴

ሺ3.2.13ሻ 

From (3.2.12) and (3.2.13), the gain 𝐾௞ାଵ is calculated as per 
(3.2.14). 

𝐾௞ାଵ ൌ 𝑃௫௭,௞ାଵ|௞𝑃௭௭,௞ାଵ|௞
ିଵ ሺ3.2.14ሻ 

The updated state estimates are calculated as per (3.2.15), 
and the error covariance is updated using (3.2.16). 

𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵ൫𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞൯ ሺ3.2.15ሻ 

𝑃௞ାଵ|௞ାଵ ൌ 𝑃௞ାଵ|௞ െ 𝐾௞ାଵ𝑃௭௭,௞ାଵ|௞𝐾௞ାଵ
் ሺ3.2.16ሻ 

Note that for mildly nonlinear systems and measurements, 
the EKF and UKF yield the same solutions. However, the UKF 
is more advantageous when the nonlinearities are more 
pronounced. 

The cubature Kalman filter (CKF) is similar to the UKF 
strategy, and has been found to be a special case of the UKF. The 
CKF utilizes a third-degree cubature rule to compute Gaussian-
weighted integrals in an effort to solve the estimation problem 
[38]. The cubature rule attempts to approximate a weighted 
integral as follows [38]: 

න 𝑓ሺ𝑥ሻ𝒩 ቀ𝑥; 𝜇,෍ ቁ𝑑𝑥
ℝ೙ೣ

ൎ
1

2𝑛
𝑓 ቆ𝜇 ൅ ට෍ 𝜉௜ቇ ሺ3.3.1ሻ 

In order to maintain numerical stability, a square-root factor 
of the covariance ∑ is defined to satisfy the relationship ∑ ൌ

ඥ∑ඥ∑
்
. In this case, a set of 2𝑛 cubature points are defined as 

follows [38]: 

𝜉௜ ൌ ቊ √𝑛𝑒௜ , 𝑖 ൌ 1,2, … ,𝑛
െ√𝑛𝑒௜ି௡, 𝑖 ൌ 𝑛 ൅ 1,𝑛 ൅ 2, … ,2𝑛

 

where 𝑒௜ ∈ ℝ௡  refers to the 𝑖௧௛  elementary column vector. 
Initial cubature points 𝑋 are calculated using the previous time 
step’s updated state estimate 𝑥ො௞|௞ , the previous update error 
covariance 𝑃௞|௞, and the cubature-point set 𝜉௜ as per (3.3.2) [38]. 
Similar to the UKF process, these points are fed into the 
nonlinear system function (3.3.3). 

𝑋௜,௞|௞ ൌ ට𝑃௞|௞𝜉௜ ൅ 𝑥ො௞|௞ 𝑖 ൌ 1,2, … ,2𝑛 ሺ3.3.2ሻ 

𝑋௜,௞ାଵ|௞
∗ ൌ 𝑓൫𝑋௜,௞|௞,𝑢௞൯ 𝑖 ൌ 1,2, … ,2𝑛 ሺ3.3.3ሻ 

The predicted state estimates 𝑥ො௞ାଵ|௞  and predicted error 
covariance 𝑃௞ାଵ|௞  are found using (3.3.3), respectively as 
follows: 

𝑥ො௞ାଵ|௞ ൌ
1

2𝑛
෍𝑋௜,௞ାଵ|௞

∗

ଶ௡

௜ୀଵ

ሺ3.3.4ሻ 

𝑃௞ାଵ|௞ ൌ
1

2𝑛
෍𝑋௜,௞ାଵ|௞

∗ 𝑋௜,௞ାଵ|௞
∗்

ଶ௡

௜ୀଵ

െ 𝑥ො௞ାଵ|௞𝑥ො௞ାଵ|௞
் ൅ 𝑄௞ାଵሺ3.3.5ሻ 

As per [38], the predicted cubature points 𝑋௜,௞ାଵ|௞  are 
calculated using (3.3.4) and (3.3.5): 



   

𝑋௜,௞ାଵ|௞ ൌ ට𝑃௞ାଵ|௞𝜉௜ ൅ 𝑥ො௞ାଵ|௞ 𝑖 ൌ 1,2, … ,2𝑛 ሺ3.3.6ሻ 

Similar to the UKF process, the predicted cubature points 
𝑋௜,௞ାଵ|௞ are fed into the nonlinear measurements function to find 
𝑍௜,௞ାଵ|௞ as per (3.3.7). Furthermore, the predicted measurements 
𝑧̂௞ାଵ|௞ are calculated as per (3.3.8) [38]. 

𝑍௜,௞ାଵ|௞ ൌ ℎ൫𝑋௜,௞ାଵ|௞,𝑢௞ାଵ൯ 𝑖 ൌ 1,2, … ,2𝑛 ሺ3.3.7ሻ 

𝑧̂௞ାଵ|௞ ൌ
1

2𝑛
෍𝑍௜,௞ାଵ|௞

ଶ௡

௜ୀଵ

ሺ3.3.8ሻ 

The innovation covariance 𝑃௭௭,௞ାଵ|௞  and cross-covariance 
𝑃௫௭,௞ାଵ|௞ matrices are calculated respectively using (3.3.9) and 
(3.3.10) [38]. 

𝑃௭௭,௞ାଵ|௞ ൌ
1

2𝑛
෍𝑍௜,௞ାଵ|௞𝑍௜,௞ାଵ|௞

்

ଶ௡

௜ୀଵ

െ 𝑧̂௞ାଵ|௞𝑧̂௞ାଵ|௞
் ൅ 𝑅௞ାଵሺ3.3.9ሻ 

𝑃௫௭,௞ାଵ|௞ ൌ
1

2𝑛
෍𝑋௜,௞ାଵ|௞𝑍௜,௞ାଵ|௞

்

ଶ௡

௜ୀଵ

െ 𝑥ො௞ାଵ|௞𝑧̂௞ାଵ|௞
் ሺ3.3.10ሻ 

Finally, the corresponding CKF gain is calculated in 
(3.3.11), The CKF gain is used to update the states estimates in 
(3.3.12) and error covariance in (3.3.13). 

𝐾௞ାଵ ൌ 𝑃௫௭,௞ାଵ|௞𝑃௭௭,௞ାଵ|௞
ିଵ ሺ3.3.11ሻ 

𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵ൫𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞൯ ሺ3.3.12ሻ 

𝑃௞ାଵ|௞ାଵ ൌ 𝑃௞ାଵ|௞ ൅ 𝐾௞ାଵ𝑃௭௭,௞ାଵ|௞𝐾௞ାଵ
் ሺ3.3.13ሻ 

The CKF estimation consists of (3.3.1) through (3.3.13), and 
is computed recursively [38]. 

As previously discussed, the smooth variable structure filter 
(SVSF) is an estimated strategy based on sliding mode concepts 
[22]. The SVSF uses a switching gain which causes the estimates 
to converge within a region of the true states (also known as the 
existence subspace). The SVSF has been well studied, and 
shown to be robust and stable to uncertainties and noise, 
provided an upper-bound has been defined on the level of noise 
and unmodeled dynamics [30]. The predicted estimates 
𝑥ො௞ାଵ|௞ and error covariances 𝑃௞ାଵ|௞ are calculated as per (3.5.1) 
and (3.5.2). 

𝑥ො௞ାଵ|௞ ൌ 𝑓൫𝑥ො௞|௞,𝑢௞൯ ሺ3.5.1ሻ 

𝑃௞ାଵ|௞ ൌ 𝐴𝑃௞|௞𝐴் ൅ 𝑄௞ାଵ ሺ3.5.2ሻ 

Note that for the covariance calculations in (3.5.2) and 
(3.5.7), the nonlinear system and measurement functions are 
linearized using Jacobian matrices, similar to the EKF [8]. The 
predicted measurements 𝑧̂௞ାଵ|௞  and corresponding 
measurement errors (innovation) 𝑒௭,௞ାଵ|௞ are calculated next: 

𝑧̂௞ାଵ|௞ ൌ ℎ൫𝑥ො௞ାଵ|௞,𝑢௞ାଵ൯ ሺ3.5.3ሻ 

𝑒௭,௞ାଵ|௞ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ ሺ3.5.4ሻ 

As per (3.5.5), the SVSF gain is based on the predicted and 
previously updated measurement errors 𝑒௭,௞ାଵ|௞  and 𝑒௭,௞|௞ , 

boundary layer widths 𝜓, convergence rate 𝛾, and the linearized 
(or linear) measurement matrix 𝐶 [8]. 

𝐾௞ାଵ ൌ 𝐶ା𝑑𝑖𝑎𝑔 ቂቀቚ𝑒௭ೖశభ|ೖ
ቚ ൅ 𝛾 ቚ𝑒௭ೖ|ೖ

ቚቁ ∘ 𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ
ቁቃ… 

…𝑑𝑖𝑎𝑔 ቀ𝑒௭ೖశభ|ೖ
ቁ
ିଵ

ሺ3.5.5ሻ 

The state estimates 𝑥ො௞ାଵ|௞ାଵ  and error covariance matrix 
𝑃௞ାଵ|௞ାଵ  are updated using the SVSF gain, respectively as 
follows: 

𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵ𝑒௭,௞ାଵ|௞ ሺ3.5.6ሻ 

𝑃௞ାଵ|௞ାଵ ൌ ሺ𝐼 െ 𝐾௞ାଵ𝐶ሻ𝑃௞ାଵ|௞ሺ𝐼 െ 𝐾௞ାଵ𝐶ሻ் ൅ ⋯  

…𝐾௞ାଵ𝑅௞ାଵ𝐾௞ାଵ
் ሺ3.5.7ሻ 

The estimated measurement 𝑧̂௞ାଵ|௞ାଵ  and corresponding 
measurement errors 𝑒௭,௞ାଵ|௞ାଵ are updated, and are used in the 
next time step, as per the following: 

𝑧̂௞ାଵ|௞ାଵ ൌ ℎ൫𝑥ො௞ାଵ|௞ାଵ൯ ሺ3.5.8ሻ 

𝑒௭,௞ାଵ|௞ାଵ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ାଵ ሺ3.5.9ሻ 

The existence subspace is defined by the estimated level of 
uncertainties (modeling and noise) in the estimation process. 
Within the existence subspace, the SVSF gain causes the 
estimate to move and switch about the true system trajectory 
[39]. This high-switching is known as chattering, and brings an 
inherent amount of robustness to the SVSF strategy [8]. 

IV. EXPERIMENTAL SETUP AND RESULTS 

The electrohydrostatic actuator (EHA) is a type of aerospace 
actuator used for control of flight surfaces [40]. The EHA can be 
modelled using four states: the actuator position 𝑥ଵ ൌ 𝑥 , 
velocity 𝑥ଶ ൌ 𝑥ሶ , acceleration 𝑥ଷ ൌ 𝑥, and differential pressure 
across the actuator 𝑥ସ ൌ 𝑃ଵ െ 𝑃ଶ . The physical modeling 
approach was used to obtain the nonlinear state-space equations 
in discrete-time described by [40, 41]: 

𝑥ଵ,௞ାଵ ൌ 𝑥ଵ,௞ ൅ 𝑇𝑥ଶ,௞ ሺ4.1ሻ 

𝑥ଶ,௞ାଵ ൌ 𝑥ଶ,௞ ൅ 𝑇𝑥ଷ,௞ ሺ4.2ሻ 

𝑥ଷ,௞ାଵ ൌ 1 െ ൤𝑇
𝑎ଶ𝑉଴ ൅ 𝑀𝛽௘𝐿

𝑀𝑉଴
൨ 𝑥ଷ,௞ െ 𝑇

൫𝐴ா
ଶ ൅ 𝑎ଶ𝐿൯𝛽௘
𝑀𝑉଴

𝑥ଶ,௞ …

…െ 𝑇
2𝑎ଵ𝑉଴𝑥ଶ,௞𝑥ଷ,௞ ൅ 𝛽௘𝐿൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝑀𝑉଴

𝑠𝑔𝑛൫𝑥ଶ,௞൯

…൅ 𝑇
𝐴ா𝛽௘
𝑀𝑉଴

 𝑢         ሺ4.3ሻ

 

𝑥ସ,௞ାଵ ൌ
𝑎ଶ
𝐴ா

𝑥ଶ,௞ ൅
൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝐴ா

𝑠𝑔𝑛൫𝑥ଶ,௞൯ ൅
𝑀
𝐴ா

𝑥ଷ,௞ ሺ4.4ሻ 

The system input is defined as follows: 

𝑢 ൌ 𝐷௣𝜔௣ െ 𝑠𝑔𝑛ሺ𝑃ଵ െ 𝑃ଶሻ𝑄௅଴ ሺ4.5ሻ 

where 𝜔௣ is the pump speed. The definitions and numeric values 
of the parameters in the state space equations are found in [40]. 



   

The EKF, UKF, CKF, PF, and SVSF estimation strategies 
(as described earlier) were combined with the IMM method and 
applied on an EHA for the purposes of fault detection and 
diagnosis. The results are shown in this section. The following 
three figures illustrate the normal mode, leakage fault, and 
friction fault probability calculations. Furthermore, Tables 1 
through 5 summarize the probability results for each method. 
These are referred to as confusion matrices, and provide an 
indication of how accurate the models were in detecting the 
correct operating mode. 

 

Figure 1.  Calculated normal mode probabilities for the EHA. 

 

Figure 2.  Calculated leakage fault probabilities for the EHA. 

All of the strategies successfully detected the correct 
operating mode (a diagonal probability of 50% or greater); 
however, with varying results. The IMM-CKF strategy correctly 
identified the EHA operating normally with the highest 
probability level (96.82%). The IMM-PF detected the leakage 
fault with the highest level (97.77%), and the IMM-SVSF 
correctly identified the friction fault with the highest confidence 
level (94.10%). It is interesting to note that another important 
factor to study includes cross-detection errors or 
misclassifications. For example, during normal operation, the 
IMM-EKF strategy detected a leakage fault with 40.51% 
probability. This is a high cross-detection error, as the IMM-
EKF method detected normal operation with only 59.31% 

probability. If these values were even closer, it would be difficult 
to properly diagnosis the fault with a high level of confidence. 

 

Figure 3.  Calculated friction fault probabilities for the EHA. 

Another interesting factor to study includes the overall 
correct detection probability. This can be studied by referring to 
the confusion matrices and Fig. 4. The summation of the 
diagonal elements in the matrices yields the total mode 
probability. Ideally, the perfect detection strategy would 
correctly identify the operating modes and thus the total mode 
probability would be 3 or 300%. Overall, the IMM-SVSF 
provided the best results based on maximizing the correct mode 
detection and minimizing the misclassifications. The IMM-
SVSF had a total mode probability of 283.86%, followed by the 
IMM-CKF strategy which had 247.83%. This is an improvement 
of 36.02% (or about 12% per mode) over the second-best 
strategy. 

 

Figure 4.  Overall correct detection probability for the compared IMM 
strategies. 

Compared with other popular IMM methods, it appears that 
the IMM-SVSF provides the best strategy for detecting and 
diagnosing faults. This may be due to the unique SVSF gain 
calculation, which yields a robust estimation process [8]. A 
byproduct of the SVSF gain, as previously discussed, is the 
chattering phenomenon. This chattering is visible when studying 
the probability values of the IMM-SVSF strategy in Figs. 1-3. 



   

CONCLUSIONS 

Successful fault detection and diagnosis is important for the 
reliable operation and control of mechatronic engineering 
systems. This paper studied and compared a number of different 
model-based strategies, applied on an EHA which was built for 
experimentation. The results indicated that although all of the 
strategies were able to successful identify and detect the 
operating conditions, the IMM-SVSF yielded the most reliable 
results. The IMM-SVSF successfully identified each condition 
with over a 90% probability, and minimized unwanted 
misclassifications. Future research work will study other types 
of condition monitoring strategies, such as those based on 
artificial intelligence.  
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