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Abstract—The Kalman filter (KF) is the most well-known 
estimation strategy which yields the optimal solution in terms 
of error to the linear quadratic estimation problem for linear, 
known systems in the presence of Gaussian noise. While the KF 
is effective under the stated conditions, it lacks robustness to 
disturbances which are prevalent in real-world applications. 
Since its inception 60 years ago, there have been numerous 
variants of the KF developed to accommodate nonlinear 
systems, non-Gaussian noise, and modeling uncertainties. The 
smooth variable structure filter (SVSF) is as an alternative to 
the KF with improved robustness, especially in the case of 
external disturbances. It is based on sliding mode techniques 
that offer robustness at the cost of optimality. The static 
multiple models estimator incorporates several possible 
operating modes and generates an estimation that is weighted 
based on the likelihood of each mode. This paper introduces an 
adaptive formulation of the SVSF based on static multiple 
models, and applies the developed strategy on an 
electrohydrostatic actuator. 

Keywords-State and parameter estimation; Kalman filter; 
smooth variable structure filter; robustness; static multiple models 

I.  INTRODUCTION 

State estimation involves the extraction of important values 
known as states from noisy measurements [1]. States change 
over time and are typically governed by equations that describe 
system dynamics [2]. Estimators are a type of filter that also 
include smoothers and predictors. The purpose of estimation is 
to minimize the error (difference between the actual and 
estimated state values) while simultaneously reducing the effects 
of noise and being robust to disturbances [2]. Disturbances and 
noise are typically present in measurements, and may be caused 
by the sensor quality as well as environmental factors. System 
uncertainties may be caused by an inaccurate model and/or 
variations and nonlinearities in the physical system parameters. 
Reliable estimates of state parameters are necessary for safely 
and accurately controlling electro-mechanical systems in real-
time. When system dynamics are changed abruptly in the 
presence of faults, adaptive estimation strategies can be used to 
mitigate inaccurate estimation. 

Kalman expanded on the research of his predecessors and 
introduced a new solution to linear filtering and tracking 
problems [3]. He derived a filter that utilized linear models and 
measurements to yield a mathematically optimal estimate based 
on strict assumptions. This filter later became known as the 
Kalman filter (KF). Since the KF is not robust to disturbances or 
modeling uncertainties, variations of the KF have been 
formulated to account for them [3]. 

Another branch of state and parameter estimation methods 
that developed in parallel to the KF and its variants is known as 
sliding mode observers (SMOs), which are based on variable 
structure techniques [4, 5, 6]. Variable structure techniques 
consider systems that contain discontinuities in the system that 
describe their dynamic states. Discontinuity hyperplanes are 
used to divide the state space into different regions; within these 
regions, the equations used to describe the system are continuous 
[7, 8]. The name ‘variable structure’ is chosen since system 
dynamics may be mathematically described by a finite number 
of equations. 

Variable structure theory provided the foundation for 
variable structure control. In VSC, the control input is 
formulated as a discontinuous state function, such that 
discontinuity hyperplanes are introduced [7, 8]. The most well-
known type of VSC is known as the sliding mode controller 
(SMC) [5, 9]. SMC makes use of a discontinuous switching 
plane along a desired state trajectory, which is called a sliding 
surface. The primary objective for the SMC is to minimize state 
errors by sliding the states along the surface. A switching gain is 
used to push the states towards the defined sliding surface. Once 
the state values are on the surface, known as a sliding mode, the 
state slides along the defined surface [9]. Although the switching 
effects bring robustness and stability to the control process, it 
also introduces high-frequency switching known as chattering 
[10]. Quite often a boundary layer is introduced in an effort to 
smooth out and saturate the control signal [9]. Prior to the 1980s, 
VSC and SMC methods were only considered in the continuous-
time domain [11]. In 1985, a discrete-time formulation of SMC 
was presented [12]. A stability condition was provided shortly 
afterwards and is now typically used in the design of discrete 
controllers [13, 14]. 



   

In the 1980s, SMOs were developed based on sliding mode 
and variable structure theory [11, 15]. Sliding mode observers 
minimize the error with the help of a switching function similar 
to VSC and SMC [16]. Observer gains are calculated based on 
the error (matching the system and observer outputs), and 
moving the error surface to zero [16]. Most SMOs apply a 
discontinuous signal to the estimates in order to keep them 
bounded to an area of the surface [11]. The motion consists of 
three phases: reachability, injection, and sliding [11, 17]. The 
reachability phase consists of forcing the estimates to the sliding 
surface from some initial conditions, in a finite period of time 
[11]. Once within a defined area of the surface (called an 
existence subspace), both the injection and sliding phases are 
present. The sliding phase forces the estimated errors to slide 
along a hyperplane towards the origin [11]. The injection phase 
consists of preventing the estimate from leaving the existence 
subspace; keeping it bounded within an area of the sliding 
surface [11]. According to [11, 15, 18], the action of the injection 
phase enables the observer to be robust enough to overcome 
uncertainties, modeling errors, and nonlinearities present in the 
system. A number of SMOs have been developed based on these 
principles. The most notable observers include those introduced 
by Slotine et al. [8, 19], Walcott et al. [20, 21], Edwards et al. 
[18], and later by both Tan and Edwards [22]. SMOs have been 
applied to estimation problems, and fault detection and isolation 
[11]. 

A new type of filter called the smooth variable structure filter 
(SVSF) was presented in 2007 based on sliding mode and 
variable structure techniques [2, 11, 23]. The SVSF is 
formulated as a predictor-corrector estimator similar to the KF, 
but utilizes a gain structure based on sliding mode techniques. 
The gain calculated by the SVSF is based on the measurement 
errors (known as innovation) and a switching term [23]. Similar 
to SMOs, the switching gain structure improves stability and 
robustness of the estimation process by bounding the state 
estimates close to the true trajectory [24, 25]. The SVSF 
presented in [23] did not contain a state error covariance 
derivation which is an important feature for estimation strategies 
(it is another performance indicator). A state error covariance 
function was introduced and expanded in [24, 26, 27] which 
vastly improved the number of useful applications for the SVSF 
[28, 29, 30]. Other improvements to the SVSF include: fault 
detection using chattering, higher-order implementations, and 
tracking multiple targets [11, 31, 32, 33, 34]. The SVSF has 
demonstrated robust performance on a number of different 
estimation problems [3]. Most recently, a new type of filter 
called the sliding innovation filter (SIF) was introduced in [35]. 
The SIF is based on similar concepts to the SVSF, but offers a 
simpler formulation with improved results. 

In this paper, a new adaptive formulation of the SVSF is 
considered. The static multiple models estimator (SMM) 
incorporates several possible operating modes and generates an 
estimate that is weighted based on the likelihood of each mode. 
This strategy is attractive for fault detection and diagnosis 
problems in mechatronics and other engineering applications. 
This paper combines the SMM method with the SVSF to create 
an adaptive formulation of the SVSF. The performance is 
evaluated and compared with the standard SVSF on an 

electrohydrostatic actuator (EHA) that was created for 
experimental analysis. 

This paper is organized as follows. Section 2 summarizes the 
SVSF estimation process. Section 3 introduces the SMM 
estimator and proposed SMM-SVSF or adaptive SVSF 
algorithm. Section 4 describes the experimental setup as well as 
the equations of motion governing the EHA. Section 5 discusses 
the application of the standard SVSF and adaptive SVSF to the 
EHA system, followed by concluding remarks. 

II. SMOOTH VARIABLE STRUCTURE FILTER 

The smooth variable structure filter (SVSF) is a predictor-
corrector estimation strategy that offers some robustness and 
stability to disturbances and uncertainties. When an upper bound 
is defined based on the level of noise and unmodeled dynamics, 
the SVSF yields a robust estimate to noise, disturbances, and 
uncertainties [36, 37]. Similar to the KF, the SVSF is model-
based and may be applied to both linear or nonlinear systems and 
measurements [2, 11]. The standard SVSF estimation concept is 
illustrated in Fig. 1. 

 

Figure 1.  Standard SVS estimation concept with existence subspace 
boundary layer [2]. 

As described, the SVSF strategy is structured similarly to the 
well-known KF, but presents a novel method of gain calculation. 
As per (2.1) and (2.2), the predicted state (or parameter) 
estimates 𝑥ො௞ାଵ|௞  and state error covariance matrix 𝑃௞ାଵ|௞  are 
first calculated, respectively. The corresponding predicted 
measurements 𝑧̂௞ାଵ|௞  and measurement errors 𝑒௭,௞ାଵ|௞  are 
calculated as per (2.3) and (2.4), respectively, using the 
predicted state estimates 𝑥ො௞ାଵ|௞ found in (2.1). 

𝑥ො௞ାଵ|௞ ൌ 𝐴𝑥ො௞|௞ ൅ 𝐵𝑢௞ ሺ2.1ሻ 

𝑃௞ାଵ|௞ ൌ 𝐴𝑃௞|௞𝐴் ൅ 𝑄௞ ሺ2.2ሻ 

𝑧̂௞ାଵ|௞ ൌ 𝐶𝑥ො௞ାଵ|௞ ሺ2.3ሻ 

𝑒௭,௞ାଵ|௞ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ ሺ2.4ሻ 

The gain used by the SVSF is calculated using: 1) the 
predicted and previously updated measurement errors 𝑒௭,௞ାଵ|௞ 
and 𝑒௭,௞|௞, respectively; 2) the boundary layer widths 𝜓 used to 



   

smooth the estimates; 3) and the ‘SVSF’ convergence rate 𝛾. 
The gain 𝐾௞ାଵ is defined by [2]: 

𝐾௞ାଵ ൌ 𝐶௞
ା𝑑𝑖𝑎𝑔 ቂቀቚ𝑒௭ೖశభ|ೖ

ቚ ൅ 𝛾 ቚ𝑒௭ೖ|ೖ
ቚቁ ∘ 𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ

ቁቃ

…𝑑𝑖𝑎𝑔 ቀ𝑒௭ೖశభ|ೖ
ቁ
ିଵ

ሺ2.5ሻ
 

where ∘ refers to element-by-element multiplication, and the 
superscript ൅  refers to the pseudoinverse. The saturation 
function of (2.5) is defined by: 

𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ
ቁ ൌ

⎩
⎨

⎧
1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൒ 1

𝑒௭೔,௞ାଵ|௞

𝜓௜
, െ1 ൏

𝑒௭೔,௞ାଵ|௞

𝜓௜
൏ 1

െ1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൑ െ1

ሺ2.6ሻ 

where 𝜓തିଵ  is a diagonal matrix based on the smoothing 
boundary layer 𝜓 for each corresponding measurement, where 
𝑚 is the number of measurements [2]: 

𝜓തିଵ ൌ

⎣
⎢
⎢
⎢
⎡

1
𝜓ଵ

0 0

0 ⋱ 0

0 0  
1
𝜓௠⎦

⎥
⎥
⎥
⎤

ሺ2.7ሻ 

The state estimates 𝑥ො௞ାଵ|௞  and error covariance matrix 
𝑃௞ାଵ|௞ are respectively updated as per (2.8) and (2.9). Finally, 
the updated measurement error 𝑒௭,௞ାଵ|௞ାଵ is found as per (2.10) 
and is used in the next iteration. 

𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵ𝑒௭,௞ାଵ|௞ ሺ2.8ሻ 

𝑃௞ାଵ|௞ାଵ ൌ ሺ𝐼 െ 𝐾௞ାଵ𝐶ሻ𝑃௞ାଵ|௞ሺ𝐼 െ 𝐾௞ାଵ𝐶ሻ் ൅

…𝐾௞ାଵ𝑅௞ାଵ𝐾௞ାଵ
் ሺ2.9ሻ

 

𝑒௭,௞ାଵ|௞ାଵ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ାଵ ሺ2.10ሻ 

The existence subspace denoted by the dotted black line 
shown in Figure 1 refers to the level of uncertainty found in the 
estimation process, and is typically based on the amount of noise 
or modeling uncertainties [2]. The existence space 𝛽 is based on 
the system and measurement modeling errors, and varies with 
time [26, 33]. While the width is not precisely known, designer 
knowledge may be used to define the upper bound. When the 
smoothing boundary is defined larger than the existence 
subspace, the estimated states are smoothed. Likewise, if the 
smoothing term is set too small, chattering (high-frequency 
switching) may occur due to underestimating the uncertainties. 

III. NOVEL ADAPTIVE FORMULATION OF THE SVSF 

The static multiple model (SMM) assumes that the system 
behaves according to a finite number of 𝑟 models 𝑀ଵ, 𝑀ଶ, … , 
𝑀௥. The SMM uses weights 𝜇௞

௝  at time 𝑘 for each model 𝑀௝ in 
order to combine the corresponding model state estimates [38]. 
The weights are initially uniformly distributed and subsequent 
weights are calculated by: 

𝜇௞
௝ ൌ

𝑝ሺ𝑧௞ห𝑀௝ሻ𝜇௞ିଵ
௝

∑ 𝑝ሺ𝑧௞ห𝑀௜ሻ𝜇௞ିଵ
௜௥

௜ୀଵ

ሺ3.1ሻ 

A likelihood value of measurement 𝑧௞  based on 𝑀௝  is 
defined as follows: 

𝑝ሺ𝑧௞ห𝑀௝ሻ ൌ  
1

ට2𝜋𝜎௝
ଶ
𝑒𝑥𝑝

െ൫𝑧௞ െ 𝑧̂௞|௞ିଵ൯
ଶ

2𝜎௝
ଶ ሺ3.2ሻ 

𝜎௝
ଶ ൌ 𝐶௞

௝𝑃௞|௞ିଵ
௝ 𝐶௞

௝் ൅ ሺ𝜎௭ଶሻ௝ ሺ3.3ሻ 

where 𝜎௝
ଶ refers to the variance of model M୨  based on the 

predicted measurement zො୩|୩-ଵ for model 𝑀௝ [38]. The adaptive 
estimates are calculated using the weighted sum produced by the 
system models, as per (3.4). 

𝑥ො௞|௞ ൌ෍𝜇௞
௝

௥

௝ୀଵ

𝑥ො௞|௞
௝ ሺ3.4ሻ 

The adaptive covariance is calculated in a similar fashion, as 
shown in (3.5). 

𝑃௞|௞ ൌ෍μ௞
௝

௥

௝ୀଵ

൤𝑃௞|௞
௝ ൅ ቀ𝑥ො௞|௞

௝ െ 𝑥ො௞|௞ቁቀ𝑥ො௞|௞
௝ െ 𝑥ො௞|௞ቁ

்
൨ ሺ3.5ሻ 

The proposed SMM-SVSF (or adaptive SVSF) algorithm 
uses the model weights from the static multiple models estimator 
to generate a weighted prediction. The weighted state 
predictions are used to calculate the SVSF gain which in turn is 
used to generate an updated state estimate and state error 
covariance. Since the algorithm uses a weighted combination of 
system modes, the weights could be used to describe the mixing 
of different system modes. Figure 2 depicts the algorithm flow 
chart and Table 1 shows the corresponding pseudocode. 

 

Figure 2.  The proposed SMM-SVSF (or adaptive SVSF) algorithm 
flowchart. 

 



   

TABLE I.  PSEUDOCODE FOR THE SMM-SVSF ALGORITHM 

1: For models (𝑀௝), 𝑗 ൌ 1 to 𝑟 
    𝑥ො௞ାଵ|௞,_௝←ሺ𝐴௝ ,𝑢ሻ 

2: For models (𝑀௝), 𝑗 ൌ 1 to 𝑟 
    𝜎 ← ሺ𝑄,𝑅,𝑃௞|௞ሻ  
    𝑝 ← ሺ𝑥ො௞ାଵ|௞,௝ , 𝑧,𝜎ሻ 

3: 𝜇௞ାଵ ← ሺ𝑥ො௞ାଵ|௞,௝ , 𝜇௞ሻ 
4a: 𝑥ො௞ାଵ|௞ ← ሺ𝑥ො௞ାଵ|௞,௝ ,𝜇௞ାଵሻ 
4b: For operating modes 𝑗 ൌ 1 to 𝑟 

    𝑃௞ାଵ|௞,௝ ← ሺ𝐴௝ , 𝑥ො௞ାଵ|௞ሻ  
5: 𝑃௞ାଵ|௞ ← ሺ𝑃௞ାଵ|௞,௝ ,𝜇௞ାଵሻ  
6: 𝐾௞ାଵ ← (𝐶, 𝛾, saturation)  
7a: 𝑥ො௞ାଵ|௞ାଵ ← ሺ𝑥ො௞ାଵ|௞,, 𝑧,𝐶,𝐾௞ାଵሻ 
7b: 𝑃௞ାଵ|௞ାଵ ← ሺ𝑃௞ାଵ|௞ ,𝐶,𝐾௞ାଵ,𝑅ሻ  

 

After the SVSF boundary layer vector and convergence rate 
have been set and model weights have been initialized, a 
predicted state estimate for each system model is made. The 
standard deviation is calculated using three different covariance 
matrices based on: the state error, the system noise, and the 
measurement. Next, the updated estimates, standard deviations, 
and sensor measurements are used to calculate the model 
probabilities. These probabilities are then used to update the 
model weights which are used to generate a weighted predicted 
state estimate and error covariance. This information is fed 
through the SVSF update stage as described in Section 2 using 
(2.8) through (2.10). 

IV. SIMULATION SETUP AND RESULTS 

The electrohydrostatic actuator (EHA) is a type of aerospace 
actuator used for control of flight surfaces [2]. The EHA can be 
modelled using four states: the actuator position 𝑥ଵ ൌ 𝑥 , 
velocity 𝑥ଶ ൌ 𝑥ሶ , acceleration 𝑥ଷ ൌ 𝑥, and differential pressure 
across the actuator 𝑥ସ ൌ 𝑃ଵ െ 𝑃ଶ . The physical modeling 
approach was used to obtain the nonlinear state-space equations 
in discrete-time described by [2, 43]: 

𝑥ଵ,௞ାଵ ൌ 𝑥ଵ,௞ ൅ 𝑇𝑥ଶ,௞ ሺ4.1ሻ 

𝑥ଶ,௞ାଵ ൌ 𝑥ଶ,௞ ൅ 𝑇𝑥ଷ,௞ ሺ4.2ሻ 

𝑥ଷ,௞ାଵ ൌ 1 െ ൤𝑇
𝑎ଶ𝑉଴ ൅ 𝑀𝛽௘𝐿

𝑀𝑉଴
൨ 𝑥ଷ,௞ െ 𝑇

൫𝐴ா
ଶ ൅ 𝑎ଶ𝐿൯𝛽௘
𝑀𝑉଴

𝑥ଶ,௞ …

…െ 𝑇
2𝑎ଵ𝑉଴𝑥ଶ,௞𝑥ଷ,௞ ൅ 𝛽௘𝐿൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝑀𝑉଴

𝑠𝑔𝑛൫𝑥ଶ,௞൯

…൅ 𝑇
𝐴ா𝛽௘
𝑀𝑉଴

 𝑢         ሺ4.3ሻ

 

𝑥ସ,௞ାଵ ൌ
𝑎ଶ
𝐴ா

𝑥ଶ,௞ ൅
൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝐴ா

𝑠𝑔𝑛൫𝑥ଶ,௞൯ ൅
𝑀
𝐴ா

𝑥ଷ,௞ ሺ4.4ሻ 

The system input is defined as follows: 

𝑢 ൌ 𝐷௣𝜔௣ െ 𝑠𝑔𝑛ሺ𝑃ଵ െ 𝑃ଶሻ𝑄௅଴ ሺ4.5ሻ 

where 𝜔௣ is the pump speed. The definitions and numeric values 
of the parameters in the state space equations are found in [2]. 

The friction was modeled using a quadratic function based 
on the actuator velocity. The friction coefficients were obtained 
by preforming experiments ranging from 15.6 to 109 radians per 
second with each data set containing four trials for repeatability 
[39]. The state estimates were initialized to zero and the 
covariance matrices for system and measurement noises were 
defined respectively as 𝑄 ൌ 10ିଽ𝐼ସ௫ସ and 𝑅 ൌ 10ି଺𝐼ସ௫ସ, where 
𝐼 is an identity matrix. Furthermore, the state error covariance 
matrix 𝑃 was initialized as 10𝑄. 

Leakage faults were introduced to investigate the effects of 
parametric uncertainties in the system. The purpose of this study 
was to demonstrate the efficacy of the proposed SVSF-SMM 
strategy (presented in Section 3) compared with the standard 
SVSF defined earlier in Section 2. The SVSF-SMM algorithm 
demonstrates robustness in the presence of multiple operating 
modes. Multiple system modes are introduced to the system in 
the form of leakage faults. In order to obtain the coefficients of 
the leakage values, the EHA was operated with a constant pump 
speed of 94.25 radians per second under a series of differential 
pressures. The differential pressure was modified using a 
throttling valve in the hydraulic system. To ensure repeatability, 
five sets of measurements were made. A linear regression was 
performed on each data set, and the slope and intercept were 
used to define 𝐿 and 𝑄௅଴, respectively. The leakage coefficients 
and flow rate offsets used for this study are found in [40]. A 
minor leakage is introduced to the system at 𝑡 ൌ  3 𝑠𝑒𝑐 and a 
major leakage is introduced at 𝑡 ൌ  6 𝑠𝑒𝑐 . The effect on the 
input flow rate can be seen in Figure 3. 

 

Figure 3.  Input flow rate due to internal leakage faults. 

The following compares the SVSF and SMM-SVSF in the 
presence of leakage faults. For the position estimates, the SMM-
SVSF performs slightly better than the classical SVSF when the 
major leakage fault is introduced. The greatest improvement can 
be seen in the velocity and acceleration estimates. The SVSF 
filter shows a significant deviation from the true velocity when 
the minor leakage fault is introduced at 3 seconds, as shown in 
Figures 4 and 5. The error is exacerbated when the major leakage 
is introduced at 6 seconds. This error is caused by the modeling 
uncertainty of the acceleration state, particularly due to flow rate 
offset of the input. Overall, the SMM-SVSF greatly outperforms 
the classical SVSF in the presence of modeling uncertainties 
such as leakage faults. This is expected given that the SMM-
SVSF is an adaptive form of the SVSF 



   

 

Figure 4.  Position estimates for EHA with leakage faults. 

 

Figure 5.  Velocity estimates for EHA with leakage faults. 

The SMM-SVSF’s ability to determine system modes can be 
seen in Figure 6 which shows the weights of each system mode 
used to calculate the estimate. Throughout the entire experiment, 
the SMM-SVSF filter calculates at least an 80% probability of 
the correct operating mode at every stage of operation. The 
figure shows clear transitions from normal operation, to minor 
leakage, to major leakage at 3 seconds and 6 seconds 
respectively. The error of the classical SVSF increases during 
the introduction of faults and spikes when the actuator changes 
direction. In addition, the RMSE values in Table II show that the 
SMM-SVSF significantly reduces position, velocity, and 
acceleration estimation error. 

TABLE II.  RMSE RESULTS FOR SVSF AND SMM-SVSF 

Filter 
Position 

(𝑚) 
Velocity 
(𝑚/𝑠) 

Accel. 
(𝑚/𝑠ଶ) 

Diff. Pres. 
(𝑃𝑎) 

SVSF 0.0003101 0.0091966 0.002810 0.001002 

SMM-SVSF 0.0001828 0.0000799 0.000712 0.001002 

 

 

 

Figure 6.  Model probability weights. 

CONCLUSIONS 

This paper introduced the combination of the SVSF and 
SMM estimation strategies to create an adaptive SVSF method. 
A background on estimation theory was provided including a 
discussion on sliding mode techniques, of which the SVSF is 
defined. The SMM-SVSF algorithm was detailed in Section 3 
and applied to an EHA in order to compare the classical SVSF 
to the SMM-SVSF. The SMM-SVSF performs well for this 
particular EHA model due to two main factors: the system 
parameters of the different leakage modes vary significantly 
enough for mode differentiation using the SMM method, and 
the system and measurement noise covariances are well-known. 
In this case, there is minimal overlap between the predicted 
probability distributions of each leakage mode which allows for 
a clear distinction of operating modes. This paper demonstrates 
that the addition of SMM to the SVSF strategy improves overall 
estimation process for a system with multiple operating modes, 
and thereby creates an adaptive SVSF. Potential future work 
will incorporate additional operating modes such as friction 
faults as well as the mixing of several different operating 
modes. 
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