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ABSTRACT 

The sliding innovation filter is a new type of predictor-corrector estimation method. The strategy is used to estimate 
relevant states of interests and has been found to be robust to modeling uncertainties and disturbances. In this paper, a 
second-order formulation of the sliding innovation filter is presented to improve its estimation performance in terms of 
accuracy while maintaining robustness. The strategy is applied to an aerospace system that has been designed for 
experimentation. The results are compared with the well-known Kalman filter, and future work is considered. 
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1. BRIEF INTRODUCTION 

Estimation theory plays an important role in a variety of fields, ranging from target tracking to controlling robots on other 
planets [1]. Estimation is the act of extracting knowledge of the states of a system from noisy measurements and unknown 
environments [2]. For example, the movement of an aircraft can be captured and predicted by the aircraft’s position, 
velocity, and turn rate [3, 4]. With these so-called states of interest, we can predict the future position of the aircraft using 
a radar and some mathematical models that represent the aircraft motion. 

 The most well-known estimation strategy is the Kalman filter [1]. It offers an optimal solution, in terms of 
estimation error, for linear and known systems under the presence of white noise. White noise is stochastically defined as 
a measurement signal with zero mean and covariance that is normally distributed (also known as Gaussian). The KF has 
been studied extensively in literature [1, 5]. Furthermore, a number of variants have been derived to extend the KF to 
nonlinear systems and measurements; which allows for more useful application as most systems found in nature are indeed 
nonlinear [2]. The KF is derived according to a few strict assumptions: the system and measurement are linear and known, 
and the system and measurement noise are white. If these assumptions are not met, the KF may become unstable or yield 
unreliable estimates. 

A number of methods have been developed to improve the stability and robustness of the KF and its variants, as 
well as combine the KF with control theory [1, 2, 6, 7]. One such method is the 𝐻ஶ filter, which utilizes boundaries based 
on the worst-case uncertainties to regulate the filtering gain which ensures the state estimates are bounded to within a 
region of the true state trajectory [8, 9]. Most recently, a variable structure-based estimation strategy known as the sliding 
innovation filter (SIF) was introduced [10]. The SIF is based on sliding mode and variable structure methods first 
introduced in the 1970s, and later utilized for filtering methods [11, 12, 13, 14, 15]. Like the KF, the SIF is a predictor-
corrector method for linear systems and measurements, however its corrective gain allows for robust estimation of 
unknown systems and under the presence of external disturbances [2]. The SIF is considered sub-optimal, however is 
robust as compared to the restrictive assumptions of the KF. The SIF has been extended to nonlinear systems and 
measurements (i.e., ESIF) through the use of first-order Taylor series approximations, as per the extended Kalman filter 
(EKF). The results presented in demonstrate the effectiveness of the SIF and ESIF strategies for unknown systems and 
disturbances. 

In this paper, we propose a second-order sliding innovation filter (SO-SIF or SIF2). The SIF2 is formulated base 
on the use of additional innovation or measurement error terms from the previous time step. The proposed SIF2 is applied 
on an aerospace system and compared with the standard SIF, as well as the well-known KF. In Section 2, the SIF equations 
are summarized. In Section 3, the proposed SIF2 estimation process is summarized. The aerospace system and results are 
provided in Section 4. Concluding remarks and future work are then discussed in Section 5. 
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2. THE SLIDING INNOVATION FILTER 

Similar to the KF, the prediction stage includes calculating the predicted or a priori (‘before the fact’) state estimates 
𝑥ොାଵ|, the predicted state error covariance 𝑃ାଵ|, and the predicted innovation �̃�ାଵ| as per the following three equations, 
respectively: 

𝑥ොାଵ| ൌ 𝐴𝑥ො|  𝐵𝑢 ሺ2.1ሻ 

𝑃ାଵ| ൌ 𝐴𝑃|𝐴்  𝑄 ሺ2.2ሻ 

�̃�ାଵ| ൌ 𝑧ାଵ െ 𝐶𝑥ොାଵ| ሺ2.3ሻ 

The update stage includes calculating the SIF gain 𝐾ାଵ, the updated or a posteriori (‘after the fact’) state 
estimates 𝑥ොାଵ|ାଵ, and the updated state error covariance 𝑃ାଵ|ାଵ as per the following three equations, respectively: 

𝐾ାଵ ൌ 𝐶ା𝑠𝑎𝑡തതതത൫ห�̃�ାଵ|ห 𝛿⁄ ൯ ሺ2.4ሻ 

𝑥ොାଵ|ାଵ ൌ 𝑥ොାଵ|  𝐾ାଵ�̃�ାଵ| ሺ2.5ሻ 

𝑃ାଵ|ାଵ ൌ ሺ𝐼 െ 𝐾ାଵ𝐶ሻ𝑃ାଵ|ሺ𝐼 െ 𝐾ାଵ𝐶ሻ் …

… 𝐾ାଵ𝑅ାଵ𝐾ାଵ
் ሺ2.6ሻ

 

Note that 𝐶ା refers to the pseudoinverse of the measurement matrix, 𝑠𝑎𝑡തതതത refers to the diagonal of the saturation term, 𝑠𝑎𝑡 
refers to the saturation of a value (yields a result between -1 and +1), ห�̃�ାଵ|ห refers to the absolute value of the innovation, 
𝛿 refers to the sliding boundary layer width, and 𝐼 refers to the identity matrix (of dimension 𝑛-by-𝑛 where 𝑛 is the number 
of states). Equations (2.1) through (2.6) represent the SIF estimation process for linear systems and measurements. 

As described in [10], the main difference between the KF and SIF strategies is in the structure of the gain. For 
the KF, the gain is derived as a function of the state error covariance, which offers optimality [1, 2]. However, for the SIF, 
the gain is based on the measurement matrix, the innovation, and a sliding boundary layer term. Although the state error 
covariance is not used to calculate the SIF gain, it still provides useful information as it represents the amount of estimation 
error in the filtering process. Figure 1 provides an overview of the SIF estimation concept. As described in [10], an initial 
estimate is pushed towards the sliding boundary layer which is defined based on the amount of uncertainties in the 
estimation process. Once inside the sliding boundary layer, the estimates are forced to switch about the true state trajectory 
by the SIF gain. 

 

Figure 1. The sliding innovation filter (SIF) concept illustrating the effects of the switching gain and the sliding 
boundary layer used to maintain robustness and stability of estimates [10]. 

The state estimates are updated with their corresponding innovation and sliding boundary layer term. The SIF 
gain effectively acts as a switching term, which forces the measurement errors to be bounded towards the true state 
trajectory. The sliding boundary layer 𝛿 is defined as a function of the modeling uncertainty and noise present in the 
estimation process. The width can be tuned to obtain the desired estimation result. A method to set the width is also 
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explained in [10]. Another starting point for tuning is to use the values of the measurement noise covariance. For example, 
𝛿 ൌ 10𝑑𝑖𝑎𝑔ሺ𝑅ሻ. The values can then be tuned by trial-and-error, grid search methods, or optimization techniques to reduce 
the estimation error. For the cases when there are fewer measurements than states ሺ𝑚 ൏ 𝑛ሻ, artificial measurements can 
be created based on existing measurements to create a full measurement matrix. The structure could also be modified as 
per a Luenberger observer or other strategies as per [16, 7]. This process would be required to estimate parameters of the 
system matrix using the SIF. 

3. THE SECOND-ORDER SLIDING INNOVATION FILTER 

In an effort to improve the accuracy of the SIF, a second-order SIF (SIF2) is proposed in this paper. The SIF2 estimation 
process is nearly identical to the SIF, except for the gain defined by (3.5). The SIF2 gain is derived based on [17] and the 
requirement to also calculate the updated innovation as per (3.8). The gain defined by (3.5) is derived using a Lyapunov 
function defined by: 

𝑀ାଵ ൌ �̃�ାଵ|ାଵ ∘ �̃�ାଵ|ାଵ  ∆�̃�ାଵ|ାଵ ∘ ∆�̃�ାଵ|ାଵ ሺ3.1ሻ 

where ∆�̃�ାଵ|ାଵ ൌ �̃�ାଵ|ାଵ െ �̃�| and ∘ is the Schur product (element-by-element multiplication). Based on Lyapunov 
theory, the estimation process may be considered stable if ∆𝑀ାଵ ൏ 0. Using these definitions and SIF equations, the new 
gain (3.5) is defined. The SIF2 prediction stage includes calculating the predicted state estimates 𝑥ොାଵ|, the predicted state 
error covariance 𝑃ାଵ|, and the predicted innovation �̃�ାଵ| as per the following three equations, respectively: 

𝑥ොାଵ| ൌ 𝐴𝑥ො|  𝐵𝑢 ሺ3.2ሻ 

𝑃ାଵ| ൌ 𝐴𝑃|𝐴்  𝑄 ሺ3.3ሻ 

�̃�ାଵ| ൌ 𝑧ାଵ െ 𝐶𝑥ොାଵ| ሺ3.4ሻ 

The SIF2 update stage includes calculating the SIF2 gain 𝐾ାଵ, the updated state estimates 𝑥ොାଵ|ାଵ, the updated 
state error covariance 𝑃ାଵ|ାଵ, and the updated innovation �̃�ାଵ|ାଵ, as per the following equations, respectively: 

𝐾ାଵ ൌ 𝐶ା𝑠𝑎𝑡തതതത൫ห�̃�ାଵ| 𝛿⁄ െ �̃�| ሺ2𝛿ሻ⁄ ห൯ ሺ3.5ሻ 

𝑥ොାଵ|ାଵ ൌ 𝑥ොାଵ|  𝐾ାଵ�̃�ାଵ| ሺ3.6ሻ 

𝑃ାଵ|ାଵ ൌ ሺ𝐼 െ 𝐾ାଵ𝐶ሻ𝑃ାଵ|ሺ𝐼 െ 𝐾ାଵ𝐶ሻ் …

… 𝐾ାଵ𝑅ାଵ𝐾ାଵ
் ሺ3.7ሻ

 

�̃�ାଵ|ାଵ ൌ 𝑧ାଵ െ 𝐶𝑥ොାଵ|ାଵ ሺ3.8ሻ 

Equations (3.2) through (3.8) represent the SIF2 estimation process for linear systems and measurements. Note 
that the updated innovation (3.8) is used in the next iteration as per (3.5). 

4. COMPUTER EXPERIMENT AND RESULTS 

In this section, the well-known KF, SIF, and proposed SIF2 are applied on a linear system with noise. As per [10], the 
studied system is a type of aerospace flight surface actuator, referred to as the electrohydrostatic actuator (EHA). It has 
been well-studied and presented in literature [18, 19, 20]. A simplified linear EHA model was formulated in state space 
where the states of interest refer to position, velocity, and acceleration [2, 21]. The model parameters were found through 
experimentation of an EHA [21, 22]. The linear form of the system and measurements are described using the following 
state space equations [21]: 

𝑥ାଵ ൌ 
1 𝑇 0
0 1 𝑇

െ557 െ28.6 0.94
൩ 𝑥  

0
0

557
൩ 𝑢  𝑤 ሺ4.1ሻ 

𝑧ାଵ ൌ 𝐶𝑥ାଵ  𝑣ାଵ ሺ4.2ሻ 

where the sample rate 𝑇 is defined as 1 𝑚𝑠, 𝑘 is the time step, 𝐶 refers to the measurement matrix which in this case is an 
identity matrix of dimension 𝑚 ൈ𝑚 or 3 ൈ 3, and 𝑢 is the controller input for the system (a square wave of amplitude  

Proc. of SPIE Vol. 11755  117550T-3



 
 

 

 

1.5 rad/s and frequency 2𝜋) that drives the desired trajectory. The system and measurement noises (𝑤 and 𝑣) are normally 
distributed with zero mean and covariance’s 𝑄 and 𝑅 defined by (4.3) and (4.4), respectively. 

𝑄 ൌ 𝑑𝑖𝑎𝑔ሺሾ10ିସ 10ିଶ 1ሿሻ ሺ4.3ሻ 

𝑅 ൌ 𝑑𝑖𝑎𝑔ሺሾ10ିଷ 10ିଵ 10ሿሻ ሺ4.4ሻ 

The initial state values, measurements, and estimates were set to zero. The initial state error covariance values 
were set to 𝑃| ൌ 10𝑄. The sliding boundary layer width was manually tuned to yield the smallest estimation error, and 
was found for this simulation to be 𝛿 ൌ ሾ0.05 1 0.5ሿ. The simulation was coded in MATLAB. 

The results of applying the KF, SIF, and SIF2 strategies on the linear EHA are shown in Figure 2. As expected, 
since the system is linear and well-known, the KF yields better results in terms of root mean square error (RMSE) under 
normal operating conditions. However, the results appear nearly identical on the plot. Note that RMSE is defined by (4.5) 
where 𝑛 is the number of time steps. The results are summarized in Table 1. 

𝑅𝑀𝑆𝐸 ൌ ඨ
∑ ሺ𝑥 െ 𝑥ොሻଶ
ୀଵ

𝑛
ሺ4.5ሻ 

 

Figure 2. The results of applying the KF, SIF, and SIF2 estimation strategies to the simulated EHA under normal 
operating conditions are shown here. Note the lines appear to be nearly overlapping because the results are very similar 
at this scale. 

 

Table 1. RMSE results for the normal EHA scenario. 

State KF SIF SIF2 
Position (𝑚) 0.0117 0.0301 0.0287 

Velocity (𝑚/𝑠) 0.1541 0.2385 0.2349 
Acceleration (𝑚/𝑠ଶ) 2.9091 3.2033 3.2024 

 

Consider the case when the system has a fault injected half-way through the simulation (at 𝑡 ൌ 1 sec ). In this 
case, the linear system state equation used by the filters is changed [10]: 

𝑥ାଵ ൌ 
1 𝑇 0
0 1 𝑇

െ240 െ28 0.94
൩ 𝑥  

0
0

557
൩ 𝑢  𝑤 ሺ4.6ሻ 
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The results of the modeling uncertainty and its effects on the filters are shown in Figures 3 and 4. The model 
mismatch at 1 second causes the KF to deviate from the true state trajectory, yielding poor estimates of the true position. 
The SIF and SIF2 were still able to perform relatively well, and was bounded to the true state trajectory due to the switching 
effects of the gains. 

 

Figure 3. The results of applying the KF, SIF, and SIF2 estimation strategies to the simulated EHA under faulty 
operating conditions are shown here. The KF fails to yield a good estimate at the injection of a fault mid-way through 
the simulation. 

 

Figure 4. The position errors of the three filtering strategies for the simulated EHA under faulty operating conditions 
are shown here. Note the KF’s significant position error at the onset of the fault (mid-way through the simulation). 

 The RMSE results for the faulty case are shown in Table 2. The SIF and SIF2 perform slightly worse than the normal 
case. However, the KF is unable to recover from the modeling uncertainty and yields poor performance. This was expected 
as the KF is derived based on the assumption that the system is known. In this case, the SIF and SIF2 yielded nearly the same 
result (around less than 1% difference).  
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Table 2. RMSE results for the faulty EHA scenario. 

State KF SIF SIF2 
Position (𝑚) 0.4623 0.0369 0.0362 

Velocity (𝑚/𝑠) 5.2127 0.3142 0.3088 
Acceleration (𝑚/𝑠ଶ) 26.786 3.9328 3.9316 

5. CONCLUSION 

In this brief paper, a second-order formulation of the sliding innovation filter (SO-SIF or SIF2) was presented to improve 
the SIF estimation performance in terms of accuracy. The strategy was applied to an aerospace system that was simulated 
in MATLAB. The results were compared with the well-known Kalman filter (KF) and the standard SIF. Under normal 
operating conditions, the KF yielded the best results in terms of estimation accuracy. This was expected since the KF is 
the optimal filter for linear, known systems with white noise. The SIF2 provided only marginally better results when 
compared with the SIF. Under faulty conditions, the KF failed to perform well, which was expected as the system used by 
the estimator was no longer ‘known’ with complete accuracy (i.e., one of the KF assumptions for optimality failed). The 
SIF and SIF2 still performed well as they are robust to modeling uncertainties. The SIF2 only yielded slightly better results 
than the SIF. Based on this simulation, it was determined that the second-order formulation of the SIF (SIF2) did not offer 
substantially better results to warrant a more complicated gain or the requirement to save the updated innovation error for 
each iteration. The standard SIF yields good estimation results and maintains robustness, and by comparison, is a simpler 
estimation process. In this case, the SIF is recommended over the SIF2. However, future work will look at modifications 
to the SIF2 to see if higher-order formulations warrant a more complicated estimation process. Additionally, other 
literature in signal processing will be explored and reported upon, as well as compared with the SIF. 
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