
A MULTIPLE MODEL-BASED  

SLIDING INNOVATION FILTER 
 
 

Mohammad Al Shabia, S. Andrew Gadsdenb, Mamdouh El Haj Assadc and Bassam Khuwailehd 

 

a Department of Mechanical and Nuclear Engineering, University of Sharjah, PO Box 27272, Sharjah, UAE, 

malshabi@sharjah.ac.ae  
b College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1, 

gadsden@uoguelph.ca 
c Department of Sustainable & Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, 

UAE, massad@sharjah.ac.ae  
d Department of Mechanical and Nuclear Engineering, University of Sharjah, PO Box 27272, Sharjah, UAE, 

bkhuwaileh@sharjah.ac.ae 

ABSTRACT 

In this brief work, a novel filtering technique that combines the newly developed sliding innovation filter 

with a multiple model strategy is proposed. Introduced in 2020, the sliding innovation filter is a relatively 

new filter used for state and parameter estimation. Based on variable structure techniques, it shares the same 

principles with sliding mode observers. The filter is robust and stable under system modeling uncertainties. 

The proposed method multiple model-based sliding innovation filter is tested on an electrohydrostatic 

actuator (EHA) and the results are discussed. 
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1. INTRODUCTION  

The Kalman filter (KF) is the most well-known filter that minimizes state and parameter estimation error. 

It is applicable on linear, known systems under the presence of white system and measurement noise. In 

order to make it applicable to nonlinear systems, the KF was extended to several forms including the 

extended, the unscented (UKF), the cubature (CKF), and the central difference KF (CDKF) [1-11]. 

However, these filters assume that the system is well-known. If the system changes it structure, the 

performance of the filter degrades significantly. In order to overcome this, several techniques have been 

introduced, such as using other type of filters or combining the previous filters with a more robust filter 

(e.g., sliding mode observer, the smooth variable structure filter, and the sliding innovation filter (SIF) [12-

19]). Another approach is to use multiple models and fuse them statistically as in interacting multiple model 

(IMM) [20-23]. 
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 This very brief paper is organized as follows. The IMM, SIF, and KF are introduced in Section 2. The 

system under study and the simulation results are summarized in Section 3. The paper is then concluded in 

Section 4.  

2. STRATEGIES IN USE 

This section provides a general overview of the IMM strategy along with the UKF and SIF. Figure 1 shows 

the IMM structure in general. This algorithm is then combined with SIF or UKF. The differences between 

IMM-SIF and IMM-UKF can be summarized with two main points: the calculation of the a priori 

(predicted) states and covariance matrix, and calculation of the gain. These can be summarized by Table 1. 
 

The IMM process depends on the mixing probabilities 𝜇𝑖|𝑗,𝑘|𝑘, which is defined as the probability of the 

system switching from one mode to another mode. 
 

 

 

 

Table 1. IMM-SIF versus IMM-UKF 

 calculations of the a priori states and covariance matrix calculate the gain  

SIF 

𝑥̂𝑗,𝑘+1|𝑘 = 𝑓𝑗(𝑥̂𝑘|𝑘, 𝑢𝑘)  

𝑃𝑗,𝑘+1|𝑘 = 𝐴𝑗𝑃𝑘|𝑘𝐴𝑗
𝑇 + 𝑄𝑘 

𝑆𝑗,𝑘+1|𝑘 = 𝐶𝑗𝑃𝑗,𝑘+1|𝑘𝐶𝑗
𝑇 + 𝑅𝑘+1 

 

𝐾𝑘+1

= 𝐶+𝑑𝑖𝑎𝑔 (𝑠𝑎𝑡(|𝑒1,𝑧,𝑘+1|𝑘|, 𝜓)) 

UKF 

𝑋𝑖,𝑘|𝑘 = 𝑥̂𝑘|𝑘 ± (√(𝑛 + 𝜅)𝑃𝑘|𝑘)
𝑖

 

𝑊𝑖 =
1

2(𝑛)
 

𝑋𝑖,𝑗,𝑘+1|𝑘 = 𝑓𝑗(X𝑖,𝑘|𝑘, 𝑢𝑘) 

𝑥̂𝑗,𝑘+1|𝑘 = ∑ 𝑊𝑖𝑋̂𝑖,𝑗,𝑘+1|𝑘

2𝑛

𝑖=0

 

𝑃𝑘+1|𝑘 = ∑ 𝑊𝑖(𝑋̂𝑖,j,𝑘+1|𝑘 − 𝑥̂𝑗,𝑘+1|𝑘)(𝑋̂𝑖,j,𝑘+1|𝑘 − 𝑥̂𝑗,𝑘+1|𝑘)
𝑇

2𝑛

𝑖=0

 

𝑃𝑧𝑧,𝑘+1|𝑘 = ∑𝑊𝑖(𝐶𝑋̂𝑖,j,𝑘+1|𝑘

2𝑛

𝑖=0

− C𝑥̂𝑗,𝑘+1|𝑘)(𝐶𝑋̂𝑖,j,𝑘+1|𝑘 − C𝑥̂𝑗,𝑘+1|𝑘)
𝑇
 

𝑃𝑥𝑧,𝑘+1|𝑘 = ∑𝑊𝑖(𝑋̂𝑖,j,𝑘+1|𝑘

2𝑛

𝑖=0

− 𝑥̂𝑗,𝑘+1|𝑘)(𝐶𝑋̂𝑖,j,𝑘+1|𝑘 − C𝑥̂𝑗,𝑘+1|𝑘)
𝑇
 

𝐾𝑘+1 = 𝑃𝑥𝑧,𝑘+1|𝑘𝑃𝑧𝑧,𝑘+1|𝑘
−1  
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Fig. 1 IMM algorithm [24]. 

 
  

3. SYSTEM UNDER SCOPE AND SIMULATION RESULTS 

3.1 The Electrohydrostatic Actuator (EHA) 

The EHA from [24] is used to test the proposed method IMM-SIF. The system is shown in Fig. 2 and 

summarized by the following state equation: 

⋯ 

𝑥̂𝑘|𝑘, 𝑃𝑘|𝑘  

Calculate the a priori states and covariance 

matrix 

𝑒1,𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − 𝐶1𝑥1,𝑘+1|𝑘 

Calculate 𝐾1,𝑘+1 

𝑥1,𝑘+1|𝑘+1 = 𝑥1,𝑘+1|𝑘 + 𝐾1,𝑘+1𝑒1,𝑧,𝑘+1|𝑘 

𝑃1,𝑘+1|𝑘+1 = (𝐼 − 𝐾1,𝑘+1𝐶1)𝑃1,𝑘+1|𝑘 

𝑒1,𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝐶1𝑥1,𝑘+1|𝑘+1 

𝛬1,𝑘+1 =

𝑒𝑥𝑝(
−

1
2

𝑒1,𝑧,𝑘+1|𝑘
𝑇 𝑒1,𝑧,𝑘+1|𝑘

𝑆1,𝑘+1
)

√|2𝜋𝑆1,𝑘+1|

 

Calculate the a priori states and covariance 

matrix 

𝑒𝑛,𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − 𝐶𝑛𝑥𝑛,𝑘+1|𝑘 

Calculate 𝐾𝑛,𝑘+1 

𝑥𝑛,𝑘+1|𝑘+1 = 𝑥𝑛,𝑘+1|𝑘 + 𝐾𝑛,𝑘+1𝑒𝑛,𝑧,𝑘+1|𝑘 

𝑃𝑛,𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑛,𝑘+1𝐶𝑛)𝑃𝑛,𝑘+1|𝑘 

𝑒𝑛,𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝐶𝑛𝑥𝑛,𝑘+1|𝑘+1 

𝛬𝑛,𝑘+1 =

𝑒𝑥𝑝(
−

1
2

𝑒𝑛,𝑧,𝑘+1|𝑘
𝑇 𝑒𝑛,𝑧,𝑘+1|𝑘

𝑆𝑛,𝑘+1
)

√|2𝜋𝑆𝑛,𝑘+1|

 

𝑐 = ∑𝛬𝑗,𝑘+1 ∑𝑝𝑖𝑗

𝑛

𝑖=1

𝜇𝑖,𝑘

𝑛

𝑗=1

, 𝜇𝑗,𝑘 =
1

𝑐
𝛬𝑗,𝑘+1 ∑𝑝𝑖𝑗

𝑟

𝑖=1

𝜇𝑖,𝑘 , 𝑗 = 1,… , 𝑛 

𝑥𝑘+1|𝑘+1 = ∑𝜇𝑗,𝑘+1𝑥̂𝑗,𝑘+1|𝑘+1

𝑟

𝑗=1

 

𝑃𝑘+1|𝑘+1 = ∑𝜇𝑗,𝑘+1 {𝑃𝑗,𝑘+1|𝑘+1 + (𝑥𝑗,𝑘+1|𝑘+1 − 𝑥𝑘+1|𝑘+1)(𝑥̂𝑗,𝑘+1|𝑘+1 − 𝑥𝑘+1|𝑘+1)
𝑇
}

𝑟

𝑗=1
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𝑥𝑘+1 =

[
 
 
 
 
 
 
 
 

𝑥1,𝑘 + 𝑇𝑥2,𝑘

𝑥2,𝑘 + 𝑇𝑥3,𝑘

[1 − 𝑇
𝑎2𝑉0 + 𝑀𝛽𝑒𝐿

𝑀𝑉0
] 𝑥3,𝑘 − 𝑇

(𝐴𝐸
2 + 𝑎2𝐿)𝛽𝑒

𝑀𝑉0
𝑥2,𝑘

−𝑇
2𝑎1𝑉0𝑥2,𝑘𝑥3,𝑘 + 𝛽𝑒𝐿(𝑎1𝑥2,𝑘

2 + 𝑎3)

𝑀𝑉0
𝑠𝑔𝑛(𝑥2,𝑘) + 𝑇

𝐴𝐸𝛽𝑒

𝑀𝑉0
𝑢𝑘

1

𝐴𝐸
(𝑎2𝑥2,𝑘 + (𝑎1𝑥2,𝑘

2 + 𝑎3)𝑠𝑔𝑛(𝑥2,𝑘)) ]
 
 
 
 
 
 
 
 

(1) 

 

 
Fig 2. The EHA under study [24]. 

  

The system is studied under three different operating modes: normal mode, friction mode, and internal 

leakage mode. We assume that only the first and the fourth states are measured. The sample rate used in 

this simulation was 𝑇 = 0.1 𝑚𝑠. The results of the proposed method are shown in Fig 3. The proposed 

method was compared to IMM-UKF. The comparisons are shown in Figures 4 and 5, and Tables 2 and 3. 

 

3.2 Results and Discussion 
 

Both the IMM-SIF and IMM-UKF successfully detected the correct operating mode. The IMM-UKF 

strategy correctly identified the normal operation with a probability level of 70.28% while IMM-SIF had 

93.26%. They obtained the leakage operation with the highest probability level of 80.33% for IMM-UKF 

and 96.27% for IMM-SIF. For the friction mode, the highest probability levels were 93.68% and 93.91% 

for the IMM-UKF and IMM-SIF, respectively. In this example, the IMM-SIF has better performance in 

detecting the correct operating mode. 
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Figure 3. The experimental EHA states with time. 

 

Table 2. IMM-UKF Mode Probability Results (Confusion Matrix) 

 Actual Condition 

Predicted Condition 

 Normal Leakage Friction 

Normal 70.28 % 16.67 % 2.72 % 

Leakage 29.63 % 80.33 % 3.60 % 

Friction 0.09 % 3.00 % 93.68 % 

 

Table 3. IMM-SIF Mode Probability Results (Confusion Matrix) 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 93.26 % 3.06 % 2.80 % 

Leakage 6.16 % 96.27 % 3.29 % 

Friction 0.458% 0.66 % 93.91 % 
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Fig 4. Calculated mode probabilities over time for the EHA using IMM-SIF. 

 

 
Fig 5. Calculated mode probabilities over time for the EHA using IMM-UKF. 
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4. CONCLUSIONS 

In this very brief work, both the SIF and KF were combined with the IMM technique. The methods were 

used to estimate the states during faulty conditions of an electrohydrostatic actuator. The results 

demonstrated that the IMM-SIF was robust during fault conditions and predicted the correct operating mode 

with a higher probability compared with the IMM-UKF. For future work, an experimental setup will be 

used to verify the results and a more comprehensive study and comparison will be completed. 

Appendix 

Table 6. List of Nomenclature and Corresponding Definition 

𝒇 Nonlinear system 𝒆𝒛 Innovation vector 

𝒙 State vector 𝝍 
SIF smoothing boundary layer 

width 

𝒛 Measurement vector 𝝁𝒋 Mode probabilities 

𝑨 linearized system matrix 𝝁𝒊|𝒋 Mixing probabilities 

𝑪 Measurement matrix 𝜦𝒋 Likelihood function 

𝑲 Filter gain matrix 𝒅𝒊𝒂𝒈[𝒂] Diagonal of some value 𝐚 

𝑷 State error covariance matrix 𝒔𝒂𝒕() Saturation function 

𝑷𝒙𝒛 Cross-covariance matrix  |𝒂| Absolute value of 𝐚 

𝑷𝒛𝒛 Innovation covariance matrix 𝑻 Sample rate  

𝑸 System noise covariance matrix + 
Pseudoinverse of a non-square 

matrix 

𝑹 Measurement noise covariance matrix ~ Error or difference of some value 

𝑺 Innovation covariance matrix ^ Estimated values 
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