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ABSTRACT

In this brief work, a novel filtering technique that combines the newly developed sliding innovation filter
with a multiple model strategy is proposed. Introduced in 2020, the sliding innovation filter is a relatively
new filter used for state and parameter estimation. Based on variable structure techniques, it shares the same
principles with sliding mode observers. The filter is robust and stable under system modeling uncertainties.
The proposed method multiple model-based sliding innovation filter is tested on an electrohydrostatic
actuator (EHA) and the results are discussed.
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1. INTRODUCTION

The Kalman filter (KF) is the most well-known filter that minimizes state and parameter estimation error.
It is applicable on linear, known systems under the presence of white system and measurement noise. In
order to make it applicable to nonlinear systems, the KF was extended to several forms including the
extended, the unscented (UKF), the cubature (CKF), and the central difference KF (CDKF) [1-11].
However, these filters assume that the system is well-known. If the system changes it structure, the
performance of the filter degrades significantly. In order to overcome this, several techniques have been
introduced, such as using other type of filters or combining the previous filters with a more robust filter
(e.g., sliding mode observer, the smooth variable structure filter, and the sliding innovation filter (SIF) [12-
19]). Another approach is to use multiple models and fuse them statistically as in interacting multiple model
(IMM) [20-23].
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This very brief paper is organized as follows. The IMM, SIF, and KF are introduced in Section 2. The
system under study and the simulation results are summarized in Section 3. The paper is then concluded in
Section 4.

2. STRATEGIES IN USE

This section provides a general overview of the IMM strategy along with the UKF and SIF. Figure 1 shows
the IMM structure in general. This algorithm is then combined with SIF or UKF. The differences between
IMM-SIF and IMM-UKF can be summarized with two main points: the calculation of the a priori
(predicted) states and covariance matrix, and calculation of the gain. These can be summarized by Table 1.

The IMM process depends on the mixing probabilities ;) i |x, Which is defined as the probability of the
system switching from one mode to another mode.

Table 1. IMM-SIF versus IMM-UKF
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Fig. 1 IMM algorithm [24].

3. SYSTEM UNDER SCOPE AND SIMULATION RESULTS

3.1 The Electrohydrostatic Actuator (EHA)
The EHA from [24] is used to test the proposed method IMM-SIF. The system is shown in Fig. 2 and
summarized by the following state equation:
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Fig 2. The EHA under study [24].

The system is studied under three different operating modes: normal mode, friction mode, and internal
leakage mode. We assume that only the first and the fourth states are measured. The sample rate used in
this simulation was T = 0.1 ms. The results of the proposed method are shown in Fig 3. The proposed
method was compared to IMM-UKF. The comparisons are shown in Figures 4 and 5, and Tables 2 and 3.

3.2 Results and Discussion

Both the IMM-SIF and IMM-UKF successfully detected the correct operating mode. The IMM-UKF
strategy correctly identified the normal operation with a probability level of 70.28% while IMM-SIF had
93.26%. They obtained the leakage operation with the highest probability level of 80.33% for IMM-UKF
and 96.27% for IMM-SIF. For the friction mode, the highest probability levels were 93.68% and 93.91%
for the IMM-UKF and IMM-SIF, respectively. In this example, the IMM-SIF has better performance in
detecting the correct operating mode.
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Figure 3. The experimental EHA states with time.
Table 2. IMM-UKF Mode Probability Results (Confusion Matrix)
Actual Condition
Normal Leakage Friction
. .. Normal 70.28 % 16.67 % 2.72%
Predicted Condition |7 10 oc 29.63 % 80.33 % 3.60 %
Friction 0.09 % 3.00 % 93.68 %
Table 3. IMM-SIF Mode Probability Results (Confusion Matrix)
Actual Condition
Normal Leakage Friction
Predicted Normal 93.26 % 3.06 % 2.80 %
Condition Leakage 6.16 % 96.27 % 3.29%
Friction 0.458% 0.66 % 9391 %
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Fig 4. Calculated mode probabilities over time for the EHA using IMM-SIF.
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Fig 5. Calculated mode probabilities over time for the EHA using IMM-UKF.
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4. CONCLUSIONS

In this very brief work, both the SIF and KF were combined with the IMM technique. The methods were
used to estimate the states during faulty conditions of an electrohydrostatic actuator. The results
demonstrated that the IMM-SIF was robust during fault conditions and predicted the correct operating mode
with a higher probability compared with the IMM-UKEF. For future work, an experimental setup will be
used to verify the results and a more comprehensive study and comparison will be completed.

Appendix
Table 6. List of Nomenclature and Corresponding Definition
Nonlinear system e, Innovation vector
x | State vector " SI.F smoothing boundary layer
width
z | Measurement vector K Mode probabilities
A | linearized system matrix Mijj Mixing probabilities
C | Measurement matrix A; Likelihood function
K | Filter gain matrix diag|a] | Diagonal of some value a
P | State error covariance matrix sat() | Saturation function
P, | Cross-covariance matrix la| Absolute value of a
P,, | Innovation covariance matrix T Sample rate
. . . P i f -
Q | System noise covariance matrix + seudomverse ol a non-square
matrix
R | Measurement noise covariance matrix ~ Error or difference of some value
S | Innovation covariance matrix A Estimated values
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