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ABSTRACT 

This paper contains a comparison of several sigma-point Kalman filters, including the unscented Kalman 

filter (UKF), the cubature Kalman filter (CKF), and the central difference Kalman filter (CDKF). The 

comparison is based on a simulated electro-hydrostatic actuator, which is commonly used for flight surface 

actuation in aerospace systems. This brief study compares the response, root mean square error, and the 

stability of these sigma-point Kalman filters. 
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1. BRIEF INTRODUCTION  

Estimation is the process of extracting useful information from a noisy signal. One of the most well-studied 

categories within estimation theory is model-based filters, which use models that mimic the system and 

sensor. Pioneering work in this area is nearly 60 years old, and is the well-known Kalman filter (KF). The 

KF is a predictor-corrector model-based filter that was developed to minimize estimation error, and is 

applicable on linear systems and measurements. In this case, the KF yields the optimal estimation assuming 

the system and measurement models are known and the respective noises are white [1-6].  

When the model of the system and/or sensor are/is not linear, the traditional KF cannot be 

implemented. Several works were developed to modify the KF and to make it applicable to nonlinear 

systems. These works include the extended KF (EKF), the iterated EKF (IEKF), and higher-order EKF; 

where these techniques use linearization approaches such as first order Taylor series expansions and 

Jacobian matrices [7-10]. On the other hand, other types of KFs were developed that use statistical 

linearization, which is accomplished by weighted linear regression methods. These include the sigma point 

KF (SPKF), such as the unscented KF (UKF), the cubature KF (CKF; which is a special case of the UKF) 

and the central difference KF (CDKF) [11-17]. 

 The rest of this brief paper is organized as follows. Three SPKFs are introduced in Section 2. 

Section 3 describes the electro-hydrostatic actuator, which is the benchmark problem of this work as it is 

used in aerospace applications. The results are discussed in Section 4 and are concluded Section 5. 
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2. THE UNSCENTED, CUBATURE AND CENTER-DIFFERENCE KALMAN 

FILTERS  

The SPKFs linearize the models statistically using sigma points that are drawn from known distributions, 

and are fused together using certain weights. The UKF, CKF and CDKF are illustrated in Tables 1, 2 and 

3, respectively.  

Table 1. The pseudocode for the UKF code, as per [7]. 

𝑘 = 0 → 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 �̂�0|0 𝑎𝑛𝑑
 
𝐏0|0 

Start 𝑘 = 𝑘 + 1 

𝑓𝑜𝑟
  
𝑖 = 0,1,… ,2𝑛     

�̂�𝑖𝑘−1|𝑘−1 = �̂�𝑘−1|𝑘−1 +

{
 

 
0 𝑖 = 0

(√𝑛P𝑘−1|𝑘−1)𝑖
𝑇

1 ≤ 𝑖 ≤ 𝑛

−(√𝑛P𝑘−1|𝑘−1)𝑖
𝑇

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

 , �̂�𝑖𝑘|𝑘−1 = 𝐟(�̂�𝑖𝑘−1|𝑘−1 , 𝑢𝑘−1) 

𝑒𝑛𝑑 

 �̂�𝑘|𝑘−1 = ∑
1

2𝑛
2𝑛
𝑖=0 �̂�𝑖𝑘|𝑘−1,     𝐏𝑘|𝑘−1 = ∑

1

2𝑛
(�̂�𝑖𝑘|𝑘−1 − �̂�𝑘|𝑘−1) (�̂�𝑖𝑘|𝑘−1 − �̂�𝑘|𝑘−1)

𝑇
 2𝑛

𝑖=0  + 𝐐𝑘−1 

 

𝑓𝑜𝑟
 
𝑖 = 0,1, … ,2𝑛 

�̂�𝑖𝑘|𝑘−1 = �̂�𝑘|𝑘−1 +

{
 

 
0 𝑖 = 0

(√𝑛P𝑘|𝑘−1)𝑖
𝑇

1 ≤ 𝑖 ≤ 𝑛

−(√𝑛P𝑘|𝑘−1)𝑖
𝑇

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

 ,    �̂�𝑖𝑘|𝑘−1 = �̂� (�̂�𝑖𝑘|𝑘−1) 

𝑒𝑛𝑑

   �̂�𝑘|𝑘−1 = ∑
1

2𝑛
2𝑛
𝑖=0 �̂�𝑖𝑘|𝑘−1,   𝐏𝑧𝑧 = ∑

1

2𝑛
(�̂�𝑖𝑘|𝑘−1 − �̂�𝑘|𝑘−1) (�̂�𝑖𝑘|𝑘−1 − �̂�𝑘|𝑘−1)

𝑇
2𝑛
𝑖=0 + 𝐑𝑘 

 𝐏𝑥𝑧 =∑
1

2𝑛
(�̂�𝑖𝑘|𝑘−1 − �̂�𝑘|𝑘−1) (�̂�𝑖𝑘|𝑘−1 − �̂�𝑘|𝑘−1)

𝑇
 

2𝑛

𝑖=0
 

𝐊𝑘 =  𝐏𝑥𝑧 𝐏𝑧𝑧
−1,    �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐊𝑘(𝐳𝑘 − �̂�𝑘|𝑘−1),   𝑷𝑘|𝑘 = (𝐏𝑘|𝑘−1 − 𝐊𝑘 𝐏𝑧𝑧𝐊𝑘

𝑇)  

 

Go back to Start 

 

Table 2. The pseudocode for the CKF code, as per [7]. 

𝑘 = 0 → 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 �̂�0|0 𝑎𝑛𝑑
 
𝐏0|0 

Start 𝑘 = 𝑘 + 1 

𝑓𝑜𝑟
  
𝑖 = 0,1,… ,2𝑛     

�̂�𝑖𝑘−1|𝑘−1 = �̂�𝑘−1|𝑘−1 +

{
 

 
0 𝑖 = 0

(√𝑛P𝑘−1|𝑘−1)𝑖
𝑇

1 ≤ 𝑖 ≤ 𝑛

−(√𝑛P𝑘−1|𝑘−1)𝑖
𝑇

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

  ,    �̂�𝑖𝑘|𝑘−1 = 𝐟(�̂�𝑖𝑘−1|𝑘−1 , 𝑢𝑘−1) 

𝑒𝑛𝑑 

 �̂�𝑘|𝑘−1 = ∑
1

2𝑛
2𝑛
𝑖=0 �̂�𝑖𝑘|𝑘−1,     𝐏𝑘|𝑘−1 =

1

2𝑛
∑ (�̂�𝑖𝑘|𝑘−1�̂�𝑖𝑘|𝑘−1

𝑇 − �̂�𝑘|𝑘−1�̂�𝑘|𝑘−1
𝑇 )2𝑛

𝑖=1 + 𝐐𝑘−1 
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𝑓𝑜𝑟
 
𝑖 = 0,1, … ,2𝑛 

�̂�𝑖𝑘|𝑘−1 = �̂�𝑘|𝑘−1 +

{
 

 
0 𝑖 = 0

(√𝑛P𝑘|𝑘−1)𝑖
𝑇

1 ≤ 𝑖 ≤ 𝑛

−(√𝑛P𝑘|𝑘−1)𝑖
𝑇

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

     ,     �̂�𝑖𝑘|𝑘−1 = �̂� (�̂�𝑖𝑘|𝑘−1) 

𝑒𝑛𝑑

   �̂�𝑘|𝑘−1 = ∑
1

2𝑛
2𝑛
𝑖=0 �̂�𝑖𝑘|𝑘−1,   𝐏𝑧𝑧 =

1

2𝑛
∑ (�̂�𝑖𝑘|𝑘−1�̂�𝑖𝑘|𝑘−1

𝑇 − �̂�𝑘|𝑘−1�̂�𝑘|𝑘−1
𝑇 )2𝑛

𝑖=0 + 𝐑𝑘 

 𝐏𝑥𝑧 =
1

2𝑛
∑(�̂�𝑖𝑘|𝑘−1�̂�𝑖𝑘|𝑘−1

𝑇 − �̂�𝑘|𝑘−1�̂�𝑘|𝑘−1
𝑇 ) 

2𝑛

𝑖=0

 

𝐊𝑘 =  𝐏𝑥𝑧 𝐏𝑧𝑧
−1,   �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐊𝑘(𝐳𝑘 − �̂�𝑘|𝑘−1),   𝑷𝑘|𝑘 = (𝐏𝑘|𝑘−1 − 𝐊𝑘 𝐏𝑧𝑧𝐊𝑘

𝑇)  

 

Go back to Start 

Table 3. Pseudocode of the CDKF from [7] 

𝑘 = 0 → 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 �̂�0|0 𝑎𝑛𝑑
 
𝐏0|0 

Start 𝑘 = 𝑘 + 1 

𝑓𝑜𝑟
  
𝑖 = 0,1,… ,2𝑛     

�̂�𝑖𝑘−1|𝑘−1 = �̂�𝑘−1|𝑘−1 +

{
 

 
0 𝑖 = 0

(√3𝐏𝑘−1|𝑘−1)𝑖
𝑇

1 ≤ 𝑖 ≤ 𝑛

−(√3𝐏𝑘−1|𝑘−1)𝑖
𝑇

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

,   �̂�𝑖𝑘|𝑘−1 = 𝐟 (�̂�𝑖𝑘−1|𝑘−1 , 𝑢𝑘−1) 

𝑒𝑛𝑑 

 �̂�𝑘|𝑘−1 = ∑ [�̂�𝑖𝑘|𝑘−1 × {

3−𝑛

3
𝑖 = 0

1

6
 𝑖 ≠ 0

]2𝑛
𝑖=0 , 𝑬𝒊 = �̂�𝑖𝑘|𝑘−1 − �̂�𝑖+𝑛𝑘|𝑘−1 , 𝑫𝑖 = �̂�𝑖𝑘|𝑘−1 + �̂�𝑖+𝑛𝑘|𝑘−1 − 2�̂�0𝑘|𝑘−1 

𝐏𝑘|𝑘−1 =∑
1

12
𝑬𝑖𝑬𝑖

𝑻
𝑛

𝑖=1
+∑

1

18
(𝑫𝑖𝑫𝑖

𝑇)
𝑛

𝑖=1
+ 𝐐𝑘−1 

 

𝑓𝑜𝑟
 
𝑖 = 0,1, … ,2𝑛 

�̂�𝑖𝑘|𝑘−1 = �̂�𝑘|𝑘−1 +

{
 

 
0 𝑖 = 0

(√𝟑𝐏𝑘|𝑘−1)𝑖
𝑇

1 ≤ 𝑖 ≤ 𝑛

−(√3𝐏𝑘|𝑘−1)𝑖
𝑇

𝑛 + 1 ≤ 𝑖 ≤ 2𝑛

 ,      �̂�𝑖𝑘|𝑘−1 = �̂� (�̂�𝑖𝑘|𝑘−1) 

𝑒𝑛𝑑

  

 �̂�𝑘|𝑘−1 = ∑ [�̂�𝑖𝑘|𝑘−1 × {

3−𝑛

3
𝑖 = 0

1

6
 𝑖 ≠ 0

]2𝑛
𝑖=0 ,   𝑬𝒊 = �̂�𝑖𝑘|𝑘−1 − �̂�𝑖+𝑛𝑘|𝑘−1 , 𝑫𝑖 = �̂�𝑖𝑘|𝑘−1 + �̂�𝑖+𝑛𝑘|𝑘−1 − 2�̂�0𝑘|𝑘−1 

 

𝐏𝑧𝑧 = ∑
1

12
𝑬𝑖𝑬𝑖

𝑻𝑛
𝑖=1 + ∑

1

18
(𝑫𝑖𝑫𝑖

𝑇)𝑛
𝑖=1 + 𝐑𝑘,       𝐏𝑥𝑧 =

1

2
√
𝐏𝑘|𝑘−1

3
([

�̂�1𝑘|𝑘−1
𝑇

⋮
�̂�𝑛𝑘|𝑘−1
𝑇

] − [

�̂�1+𝑛𝑘|𝑘−1
𝑇

⋮
�̂�2𝑛𝑘|𝑘−1
𝑇

]) 

𝐊𝑘 =  𝐏𝑥𝑧 𝐏𝑧𝑧
−1,   �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐊𝑘(𝐳𝑘 − �̂�𝑘|𝑘−1),   𝑷𝑘|𝑘 = (𝐏𝑘|𝑘−1 − 𝐊𝑘 𝐏𝑧𝑧𝐊𝑘

𝑇)  
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Go back to Start 

3. MATHEMATICAL MODELS FOR THE EHA STUDY 

In this section, the aforementioned algorithms are applied to the electro-hydrostatic actuator (EHA) shown 

in Fig. 1. This type of device is used in several applications including aerospace for flight surface actuation. 

It is used to control components of a wing including the spoiler, aileron, flaps, elevator, and rudder [18]. 

The EHA model equations are defined as follows [18][19]: 

𝐱𝑘+1 =

[
 
 
 
 
 
 
 
 

𝑥1 + 𝑇𝑠𝑥2
𝑥2 + 𝑇𝑠𝑥3

𝑥3 − 𝑇𝑠

[
 
 
 
 
𝑎2𝑉0 +𝑀𝛽𝑒𝐿

𝑀𝑉0
𝑥3 +

(𝐴𝐸
2 + 𝑎2𝐿)𝛽𝑒
𝑀𝑉0

𝑥2

+
2𝑎1𝑉0𝑥2𝑥3 + 𝛽𝑒𝐿(𝑎1𝑥2

2 + 𝑎3)

𝑀𝑉0
𝑠𝑔𝑛(𝑥2)]

 
 
 
 

+ 𝑇𝑠
𝐴𝐸𝛽𝑒
𝑀𝑉0

𝑢𝑘

1

𝐴𝐸
(𝑎2𝑥2 + (𝑎1𝑥2

2 + 𝑎3)𝑠𝑔𝑛(𝑥2)) ]
 
 
 
 
 
 
 
 

k

(1) 

Where we have the following 

𝑇𝑠 0.001 𝑠𝑒𝑐 𝑀 7.3760 𝑎1 83108 

𝐴𝐸  1.52 × 10−3 𝛽𝑒 2.07 × 108 𝑎2 2100 

𝑉0 1.08 × 10−3 𝐿 4.8 × 10−12 𝑎3 512 

In this case, the first and fourth states (position and differential pressure) are measured. 

 

Figure 1. The EHA experimental setup at McMaster University [18][19]. 
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4. SIMULATION RESULTS 

The setup from Section 3 was used. The sampling time was 0.1 seconds. Four scenarios are considered: 

1. Case 1: No modeling uncertainties and low noise level. 

2. Case 2: No modeling uncertainties and high noise level. 

3. Case 3: With modeling uncertainties (assuming 𝛽𝑒 is 5000 times its value) and low noise 

level. 

4. Case 4: With modeling uncertainties (assuming 𝛽𝑒 is 5000 times its value) and high noise 

level. 

 The results of these cases are presented in Tables 4 to 7, and Figures 2 to 5. The results reveal that 

the UKF has similar results as the CKF. These two filters have superior performance compared to CDKF 

and EKF. Moreover, CDKF has better performance than the EKF which reinforces the fact that sigma point 

approximations are more accurate than linearization. Increasing the noise level makes the performance 

worse, particularly for the non-measured states (2 and 3). In this case, the root mean square error (RMSE) 

increased between 10 to 100 times. When modelling uncertainties are injected, the RMSE increased from 

10 to 107 times which could be catastrophic for aerospace systems. This is further magnified when the 

noise level is increased. 

Table 3. RMSE results for Case 1. 

Filter 
RMSE 

Position × 𝟏𝟎𝟏𝟏 Velocity × 𝟏𝟎𝟗 Acceleration × 𝟏𝟎𝟒 Pressure × 𝟏𝟎𝟒 

EKF 2.63 67.2 56.9 1.92 

UKF 2.47 1.63 1.46 1.92 

CKF 2.47 1.63 1.46 1.92 

CDKF 2.48 1.50 1.58 1.92 

Table 4. RMSE results for Case 2. 

Filter 
RMSE 

Position × 𝟏𝟎𝟗 Velocity × 𝟏𝟎𝟕 Acceleration × 𝟏𝟎𝟑 Pressure× 𝟏𝟎𝟐  

EKF 7.23 12.0 4.73 1.92 

UKF 7.23 3.48 1.31 1.92 

CKF 7.23 3.48 1.31 1.92 

CDKF 7.22 3.48 1.32 1.92 
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Table 3. RMSE results for Case 3. 

Filter 

RMSE 

Position × 𝟏𝟎𝟏𝟎 Velocity × 𝟏𝟎𝟓 
Acceleration ×

𝟏𝟎−𝟑 

Pressure × 𝟏𝟎𝟒 

EKF 4.32 8.22 3.84 1.92 

UKF 4.34 8.47 3.07 1.92 

CKF 4.34 8.47 3.07 1.92 

CDKF 4.34 8.47 3.07 1.92 

Table 4. RMSE results for Case 4. 

Filter 

RMSE 

Position × 𝟏𝟎𝟗 Velocity × 𝟏𝟎𝟒 
Acceleration ×

𝟏𝟎−𝟑 

Pressure × 𝟏𝟎𝟐 

EKF 2.27 1.30 3.88 1.92 

UKF 2.27 1.35 3.09 1.92 

CKF 2.27 1.35 3.09 1.92 

CDKF 2.27 1.35 3.09 1.92 

 

Figure 2. State estimation for Case 1. 
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Figure 3. State estimation for Case 2. 

 

Figure 4. State estimation for Case 3. 
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Figure 5. State estimation for Case 4. 

5. CONCLUSIONS 

In this work, a comparison between UKF, CKF, CDKF and EKF estimation strategies was conducted. A 

simulation based on a real experiment setup of the EHA was used as a benchmark problem. The results of 

the simulation demonstrate that all four filters were able to successfully estimate the states given a known 

input. The UKF and CKF yielded similar performances and they provided the best estimates among the 

other filters. This was followed by CDKF and then finally EKF. When modeling uncertainties were 

injected, the error significantly increased. Future work will look at studying these filters as applied on an 

experimental setup. 

6. APPENDIX 

The following table summarizes the main nomenclature used in this paper. 

 

Table 5. List of nomenclature [18][19]. 
 

1−
.
T

 
Inverse, and transpose, respectively. 𝐏zz The output’s error covariance matrix. 

(𝐚)𝑖 The 𝑖 row of 𝐚. 𝐏 The error covariance matrix. 

𝐞𝐦 The estimation error vectors in m. 𝑞 The number of the sigma points. 

𝐟(. ) The system’s model function. 𝐐 The process noise covariance matrix. 

𝐠(. ) The sensor’s model function. 𝐑 The measurements noise covariance 

matrix. 
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𝑖, 𝑗 Subscripts used to identify elements. ∑   The summation operator. 

𝐈𝑛×𝑛 The identity matrix with dimensions of 

n × n. 

𝑇𝑠 Sampling time, and is equal to 

0.001 𝑠𝑒𝑐. 
𝑘 Time step value. 𝐯,𝐰 The measurement and system noise, 

respectively. 

𝑘|𝑘 − 1 The a priori value at time k. 𝑊𝑖 The assigned weight. 

𝑘|𝑘 The a posteriori value at time k. 𝐱 The state vector. 

𝐊𝑋 The correction gain of the filter 𝑋. 𝐳 The output vector. 

𝑚, 𝑛 Number of measurements and states, 

respectively. 

𝐗𝒊 and 

𝐙𝒊: 
The estimate and its measurement for 

the 𝑖𝑡ℎ sigma point, respectively. 

𝐏xx The state's error covariance matrix.   
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