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ABSTRACT  

With the ever-increasing adoption of interconnected technologies and rapid digitization observed in modern-day life, many 

online networks and applications face constant threats to the security and integrity of their operations or services. For 

example, fraudsters and malicious entities are continuously evolving their techniques and approaches to bypass current 

measures in place to prevent financial fraud, vandalism in online knowledge bases and social networks like Wikipedia, 

and malicious cyber-attacks. As such, many of the supervised models proposed to detect these malicious actions face 

degradations in detection performance and are rendered obsolete over time. Furthermore, fraudulent or anomalous data 

representing these attacks are often scarce or very difficult to access, which further restricts the performance of supervised 

models. Generative adversarial networks (GANs) are a relatively new class of generative models that rely on unsupervised 

learning. Moreover, they have proven to effectively replicate the distributions of real data provided to them. These models 

can generate synthetic data with a degree of quality such that their resemblance to real data is almost indistinguishable, as 

demonstrated in image and video applications – like with the rise of DeepFakes. Based on the success of GANs in 

applications involving image-based data, this study examines the performance of several different GAN architectures as 

an oversampling technique to address the data imbalance issue in credit card fraud data. A comparative analysis is 

presented in this paper of different types of GANs used to fabricate training data for a classification model, and their impact 

on the performance of said classifier. Furthermore, we demonstrate that it is possible to achieve greater detection 

performance using GANs as an oversampling approach in imbalanced data problems. 

Keywords: Anomaly detection, generative adversarial networks, semi-supervised learning, machine learning, artificial 

intelligence, classification, imbalanced data 

  

1. INTRODUCTION  

Supervised anomaly detection techniques work under the assumption that the data set used consists of labelled instances 

that fall under either a normal or anomalous class. Most approaches under this category construct a predictive model for 

the normal and anomalous classes, and new unseen data can be classified by comparing it against the determined model. 

A significant issue with supervised anomaly detection, is that the anomalous class is usually rare in occurrence compared 

to the normal class [1]. It is also challenging to obtain accurate labels representative of the anomalous class, known as the 

class imbalance problem. In practical applications, the ratio between the classes can be as drastic as 1:10,000 [2].  

Many techniques have been proposed in the literature to handle the imbalanced data issue, in both the algorithmic and 

data levels [3] [4]. In the former, algorithms or models are adjusted so that the bias towards the majority class is reduced 

to improve classification performance. Whereas in the latter, sampling techniques generate new samples in the minority 

class or eliminate samples from the majority class to balance the dataset. This class imbalance issue is encountered in 

binary and multi-class classification problems. However, in this paper, we focus on the binary problem and apply it to 

credit card fraud detection. 

This study proposes using generative adversarial networks (GANs) as an oversampling strategy. Specifically, minority 

data instances are generated using the trained generator of a GAN and augmented into the training set of a classifier. GANs 

can parallelize sample generation with classification and avoid making assumptions about distributional and variational 

bounds compared to other oversampling techniques. Furthermore, GANs do not rely on Markov chains or maximum 

likelihood estimation. By designing and implementing various GAN architectures for oversampling fraudulent credit card 
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data, we present a comparative analysis of the performance of several different GAN architectures for generating data to 

improve the performance of a classifier. Some examples include the traditional vanilla GAN, the Wasserstein GAN 

(WGAN) and the Wasserstein GAN with gradient penalty (WGAN-GP). In section 2, we provide a brief background on 

the different GAN architectures examined in this paper and the classifier involved in the experiment. We follow with a 

discussion and overview of the proposed approach's experimental methodology and provide details on the dataset used in 

section 3. The experimental results are then presented in section 4, along with commentary and discussion of the relevant 

findings of the study. Finally, concluding remarks and suggestions for future research are given in section 5. 

 

2. BACKGROUND 

2.1 Generative Adversarial Networks 

GANs are a type of deep learning framework proposed by Goodfellow et al. in 2014 that consists of two networks in 

competition with each other [5]. The first is a generative model G to capture the distribution of the training data. Its 

adversary is a discriminative model D that determines the probability of a sample coming from the training data instead of 

G. The objective in training G is to maximize the chance of inducing D, which is simply a classifier, to make mistakes 

distinguishing the data [5]. The two models in a GAN are deep learning architectures that learn a representation of the 

original input. Increasing the number of layers or the size of layers in the network can help it learn deeper and more abstract 

representations [6]. 

As illustrated in Figure 1, the generative model's input is random noise 𝑧, which it then transforms with a function and 

then produces examples of the real data [7]. The discriminator then learns to better distinguish between the real and 

generated examples by minimizing its prediction errors, and the generator tries maximizing the error, resulting in a 

competition formalized as a minimax game in (2.1): 

min
𝜃𝐺

max
𝜃𝐷

( Ε𝑥~𝑝𝑑
[log 𝐷(𝑥)] +  Ε𝑧~𝑝𝑧

[log (1 − 𝐷(𝐺(𝑧)))]) (2.1)  

where 𝜃𝐺 and 𝜃𝐷 are the parameters of the generator and discriminator networks, respectively,  𝑝𝑑 is the data distribution 

and 𝑝𝑧 is the prior distribution of the generative network [5]. Although GANs are unsupervised learning algorithms, they 

use a supervised loss as part of the training. In most financial fraud applications to date, GANs have been used in a semi-

supervised fashion as a method of oversampling for data augmentation, which is the reasoning behind their classification 

under semi-supervised in this paper [7]. 

 

 

Figure 1. Schematic of a GAN’s generator G, accepting random noise z as input and outputting generated examples to 

the discriminator D. The discriminator distinguishes the generated examples by G from the real data u. 
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2.2 Wasserstein GANs 

Traditional GANs often face the problems of mode collapse and vanishing gradients. Mode collapse is when the 

GAN’s generator or discriminator collapses to one or a few modes of those present in the entire distribution of the data, 

with the remainder of the modes disappearing. This is an issue as real-world datasets often have many modes associated 

with each different class. Furthermore, the vanishing gradient problem is associated with the loss function of traditional 

GANs. This issue arises during the training stage, specifically when the discriminator is getting better and better, to the 

point where the feedback it provides becomes less informative to the generator. In fact, the discriminator may result in 

gradients close to zero, which is not helpful to the generator, and thus, it is unaware of how it can improve. 

The Wasserstein GAN (WGAN) has been proposed by Arjovsky et al. in [8] as a means of addressing the issues 

associated with traditional GANs. The WGAN makes use of a modified loss function, which is based on a measure known 

as the Earth Mover’s (EM) distance. The EM distance measures how different two distributions are by estimating the 

amount of effort it would take to make the generated distribution equal to the real. The function depends on both the 

distance and the amount of the generated distribution. Unlike the traditional GAN, it does not have flat regions where the 

distributions start to get very different. Thus, the discriminator is prohibited from improving a lot, and as such, the issue 

of vanishing gradients is eliminated, while also reducing the likelihood of mode collapse. 

With the WGAN, the discriminator is referred to as the critic, as denoted by 𝐶 in (2.2), the modified loss function of 

a WGAN. In a traditional GAN, the output of the discriminator must be a prediction between 0 and 1. The Wasserstein 

loss, however, does not have that requirement. Instead, its output can be interpreted as how real the critic considers an 

image to be. The name change from discriminator to critic is due to the output no longer being bounded by 0 and 1. The 

critic is essentially responsible for maximizing the distance between its evaluations on a fake and its evaluations on a real 

sample. 

min
𝜃𝐺

max
𝜃𝐶

Ε𝑥~𝑝𝑐
[𝐶(𝑥)] − Ε𝑧~𝑝𝑧

[𝐶(𝐺(𝑧))] (2.2)  

Training a WGAN using the Wasserstein loss requires the fulfilment of a special condition to prevent the generation 

of poor samples or failure to converge, which is being 1-Lipschitz continuous. Specifically, this means that the norm of 

the critic’s gradients must be at most one. Originally, the authors of [8] suggested using a weight clipping method. 

However, this has proven to be computationally intensive. Instead, a WGAN with a gradient penalty (WGAN-GP) has 

been proposed as a more favourable alternative to ensure Lipschitz continuity. The WGAN-GP’s loss function involves 

adding a regularization term to the loss function of a WGAN from (2.2). This regularization term penalizes the critic when 

the norm of its gradient is greater than one, as can be seen in (2.3) below [9]: 

min
𝜃𝐺

max
𝜃𝐶

Ε𝑥~𝑝𝑐
[𝐶(𝑥)] − Ε𝑧~𝑝𝑧

[𝐶(𝐺(𝑧))] +  𝜆Ε𝑥̂~𝑝𝑥̂
[(‖∇𝑥𝐷(𝑥̂)‖2 − 1)2] (2.3)  

where 𝑥̂~𝑝𝑥 are random sample and 𝜆 is a hyperparameter value which must be tuned, signifying how much to weigh the 

regularization term against the loss function. 

 

2.3 XGBoost 

In this study, we propose using the popular eXtreme Gradient Boosting (XGBoost) classification model, which is 

based on the gradient-boosted decision tree algorithm (GBDT) [10]. In addition, XGBoost can be considered state-of-the-

art in classification models, performing exceptionally well in detection accuracy while effectively using computational 

resources to be able to handle billions of samples with far fewer resources than traditional approaches. 

The XGBoost model is composed of multiple regression trees, whereby the final output is the consequence of the 

additive combination of the decision results of all subtrees. This is known as an ensemble approach, where with a high 

number of individually weak but complementary classifiers, the resultant is a robust estimator. The term boosting refers 

to the nature in which new models are added to the ensemble sequentially, where at each particular iteration, a new weak, 

base-learner model is trained with respect to the error of the whole ensemble learnt so far [11]. Thus with XGBoost, the 

principle idea is to construct the new base-learners to be maximally correlated with the negative gradient of the loss 

function associated with the whole ensemble [11]. 
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3. METHODOLOGY 

As discussed, in this paper, we aim to showcase how GANs can be used as an method to handle data oversampling. 

Oversampling implies that the the dataset being used has a heavy imbalance between classes. In this paper, we focus on a 

credit card fraud dataset, wherein the fraudulent data is heavily outweighed by the benign data. To rectify this imbalance, 

we created GAN models to virtually create more fraudulent data points to be used in the classifier's training. The data used 

is from the credit card fraud detection dataset by ULB Machine Learning Group, collected in September 2013 from 

European cardholders. The dataset is composed of 30 features, including time and amount, and other features which have 

been transformed using principal component analysis (PCA) to protect users’ privacy. The dataset is labelled with a binary 

indicator to identify between fraudulent and non-fraudulent data. As mentioned, there is a high imbalance between classes, 

with only 492 fraudulent samples of a total sample size of 284,807 samples, meaning the fraudulent data makes up only 

0.17 percent of the total samples. 

 

3.1 Data Preprocessing 

Prior to any training of the models, the dataset involved in the study was examined in order to eliminate any issues 

associated with improper or unclean data. The first observation from the data, was that the transaction values were highly 

skewed to the left, with most transactions having a value less than 2,500, and some transactions reaching a value as high 

as 25,000. This original distribution is shown in Figure 2. In order to account for the low number of extremely high 

transaction values, this feature was log-transformed, resulting in a near-normal distribution, as can be seen in Figure 3. 

 

Figure 2. Original distribution of transaction values in the credit card fraud dataset. 

 

Figure 3. Distribution of log-transformed transaction values 
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Additionally, we noticed that the time feature was expressed in seconds format, spanning a period of two days. To 

allow for more interpretable outcomes and representation of behaviors over the span of those two days, the time feature 

was transformed from seconds to hours. As such, transactions can occur from 0th hour (start of the data), up to the 48th 

hour (end of the data). Besides the aforementioned time and transaction amount features, all other features were already 

affected by PCA, and were consequently not altered. 

 

3.2 Network Structure and Training 

The proposed network structures of the GAN, WGAN, and WGAN-GP follow similar design and training procedures. 

Firstly, each architecture’s generator and discriminator are modelled as a multilayered perceptron (MLP), otherwise known 

as an artificial neural network (ANN). Both the generator and discriminator were designed with 3 hidden layers, 

maintaining a rather simple structure, as well as an input and output layer. The generator’s input layer consists of 32 

perceptrons, which was an arbitrary choice for the random noise vector which acts as input to the generator. Subsequent 

hidden layers in the generator then double in size, and consist of 64, 128 and 256 layers in the first, third and hidden layer, 

respectively. This generic structure for the generator of each GAN is graphically shown in Figure 4. As for the 

discriminator, its’ structure is symmetric to that of the generator, in that the input layer takes the input data, which consists 

of the output of the generator, and passes it to three subsequent hidden layers with 256, 128 and 64 perceptrons before it 

classifies each generated sample as real or fake. 

In the hidden layers of the generators, a leaky rectified linear unit (ReLU) function is used with the hyperparameter 

alpha tuned to a value of 0.2. We also employ batch normalization in each of the layers, as it has been observed to improve 

stability during the training phase. Similarly, the discriminator’s perceptrons involved a leaky ReLU function with an alpha 

value of 0.2. In addition to this, a dropout chance of 15% was incorporated for each perceptron in the discriminator, rather 

than batch normalization, which reduced or eliminated the chance of overfitting the model. A batch size of 128 was used 

throughout the training stage. Furthermore, it is important to note that the activation function of the penultimate layer of 

the discriminator uses the sigmoid function to generate a binary classification. In the WGAN and WGAN-GP, however, 

this sigmoid function is not used, as the output of the critic is not bounded between 0 and 1, as previously described in 

section 2 of this paper. The choice of hyperparameter values for the networks, such as the learning rate, dropout probability, 

alpha parameter, size of each layer and choice of activation function were determined through an extensive grid search. 

 

 

Figure 4. Representation of the network structure of the generators of all the different GANs proposed in this study, 

which are the same regardless of the type of GAN used. 
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3.3 Data Augmentation and Classification 

Following successful training of the GAN architectures, an XGBoost model was designed for the binary classification 

task of detecting fraudulent credit card transactions. The training dataset’s minority class was oversampled using random 

oversampling (ROS), and this was used to tune the hyperparameters of the baseline classification model through an 

extensive grid search. The tuned hyperparameters of the baseline classification model were then utilized for the subsequent 

models involving data generated from the GAN, WGAN and WGAN-GP. 

Each of the generators from the trained GAN architectures were made to produce a set number of fraudulent samples, 

which was chosen to be 227,057. The number of samples generated was based on the difference of legitimate and 

fraudulent transactions in the training set, and with the goal of ensuring a balanced dataset was used for the training of the 

classification model. Subsequently, each respective classification model augmented with GAN-generated fraud data is 

evaluated on the test set. The following metrics are then used to compare the performance of each model: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦   =    
1

𝑛
(∑|𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

) (3.1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.3) 

where, 𝑦̂𝑖 is the predicted value, 𝑦𝑖  is the true value, 𝑇𝑃 is the number of true positives predicted, 𝐹𝑃 is the number of false 

positives predicted, and 𝐹𝑁 is the number of false negatives predicted. Note that each of these performance measures is 

bounded between 0 and 1. 

 

4. RESULTS AND DISCUSSION 

The generated fraudulent sample for each model was compared against the fraudulent samples from the original 

dataset. For each set of real and generated data samples, a boxplot was produced highlighting the distribution of each 

feature in each dataset. Figure 5 below shows the distribution of the samples generated by the vanilla GAN. It can be seen 

from this figure that the vanilla GAN struggles to generate samples that capture the entire distribution of the actual fraud 

data. Instead, the vanilla GAN can be seen to encounter the issue of mode collapse, whereby the generator only learns to 

produce one or a very few modes of the original distribution.  

 

 
Figure 5. Boxplot of the real fraudulent data (red) and the fake fraudulent data (blue) generated by a GAN. 
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In Figure 6, the boxplot of the data generated by a WGAN is displayed. It is evident from this figure that the 

distribution of the data produced by the WGAN’s generator more closely resembles that of the original data than the GAN 

from Figure 5. Furthermore, it is clear that the mode collapse issue has been somewhat eliminated and the WGAN is able 

to capture more modes and a wider representation of the original data. However, it can be observed that for certain features, 

the WGAN either overshoots or undershoots the interquartile range (IQR) of the features of the original data. Furthermore, 

despite having improved stability, it can still be seen that some features exhibit some form of mild mode collapse. 

 

 
Figure 6. Boxplot of the real fraudulent data (red) and the fake fraudulent data (blue) generated by a WGAN. 

 

Finally, it can be seen from Figure 7 that the distribution of the data generated by the WGAN-GP far exceeds that of 

the previous two models in terms of accurately matching the distribution of the original fraudulent data. The IQR of each 

of the features generated by the WGAN-GP almost perfectly track that of the original, except for slight overestimates and 

underestimates of the 25th and 75th percentile of some features. This under or overestimation is most visible in the time 

feature, where it is clear that the latter of the two occurs – otherwise, the second most obvious case is the overestimation 

of the 25th percentile in the ‘V17’ feature. 

 

 

Figure 7. Boxplot of the real fraudulent data (red) and the fake fraudulent data (blue) generated by a WGAN-GP. 

Proc. of SPIE Vol. 12113  121131U-7



 Table I. Distribution of class labels in the dataset explored 

 ROS GAN WGAN WGAN-GP 

Accuracy 0.999508444 

 

0.999526000 0.999543555 0.999438222 

Precision 0.872340426 

 

0.917647059 0.909090909 0.817307692 

Recall 0.836734694 

 

0.795918367 0.816326531 0.867346939 

F1 score 0.854166667 

 

0.852459016 0.860215054 0.841584158 

AUROC  0.918261832 

 

0.897897633 0.908092922 0.933506404 

 
Following the augmentation of the generated data from each GAN architecture to the respective XGBoost models, the 

classification performance measures for each was recorded, as can be seen in Table I. In this table, the highest score 

achieved by a model for each of the performance measures is indicated in bold text. From initial examination of Table I, 

the models augmented with GAN-generated data result in superior performance in terms of accuracy, precision, recall, F1 

and AUROC scores than ROS. 

Specifically, it can be seen that the vanilla GAN results in a 5.2 percent increase in terms of precision compared to 

ROS, with negligible change in accuracy and F1 score. However, this increase in precision comes at the cost of a 4.9 

percent decrease in recall and a 2.2 percent decrease in AUROC. Since this study involves the task of credit card fraud 

detection, these results are not entirely favourable as the costs associated with a lower recall are greater than that of an 

improved precision. The WGAN’s results indicate that it addresses the issues associated with the vanilla GAN in terms of 

the decreases in F1 score and AUROC. Furthermore, it is apparent that the WGAN achieves the highest accuracy and F1 

score, at the cost of a 1 percent decrease in precision from the vanilla GAN model. However, this is not enough to warrant 

the WGAN superior to ROS, as the recall remains inferior by 2.4 percent.  

Finally, it is apparent that the WGAN-GP results in the greatest recall score of all the models examined from Table I, 

with an increase of approximately 3.7 percent compared to that of ROS. This signifies that of all the models, the WGAN-

GP is able to detect more fraudulent transactions than all other GAN architectures, and even ROS. This increase in recall 

is also accompanied with the highest AUROC achieved by the WGAN-GP of any of the models, improving by 1.7 percent 

compared to ROS. This improved performance comes at the cost of a non-trivial decrease in precision, by up to 6.3 percent. 

As such, it can be said that the WGAN-GP’s performance is favourable over other GAN architectures and ROS for 

imbalanced data problems, assuming an increase in the amount of false positives is tolerable. It can also be inferred that 

regardless of the drop in precision, the WGAN-GP is the best overall architecture due to having the greatest AUROC score 

of all the architectures studied in this paper. 

 

5.  CONCLUSION 

In this study, a comparative analysis of different GAN architectures applied to augmenting minority class samples 

into an unbalanced training set was carried out. Namely, a vanilla GAN, WGAN and WGAN-GP were designed, tuned 

and implemented to produce artificial data resembling fraudulent credit card transactions, so that when augmented into the 

training set of an XGBoost classification model, improved detection of the fraudulent class would be achieved. It was 

demonstrated throughout this study that GANs often face the issue of mode collapse and vanishing gradients, resulting in 

instability during training and the generation of unsatisfactory low-spectrum samples. By adding a gradient penalty to the 

WGAN architecture, it was proven that the result is a more encompassing distribution by the generated data, which much 

more closely resembles that of the original data. Furthermore, when augmented with samples generated by a WGAN-GP, 

it has been further corroborated that a classification model’s ability to detect fraudulent instances is improved. This 

improvement, however, comes at the cost of a slight increase in the amount of false alarms by the model. Thus, the 

assumption must be made that the benefit associated with the increased detection of fraud outweighs the cost associated 

with more false positives. Future work involves exploring more complex methods, such as time series forecasting models 
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like long short-term memory (LSTM) networks as the generator or discriminator of a GAN to account for the temporal 

behaviour of the nature of data used in this study. 
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