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Abstract—The inverted pendulum is a classical controls theory
problem that is unstable and nonlinear. In this paper, the state
space equations for this system were derived and then linearized
using small angle approximations. Using a PID controller with the
Kalman and Unscented Kalman filters, the system was simulated
in Matlab and then programmed into an inverted pendulum robot
built for experimentation. The performance of these filters and
controllers were then compared. The results found that for both
the simulations and the actual implementation, the Kalman filter
produced better state estimates and allowed the system to resist
interference and further improve system stability.

I. INTRODUCTION

In this paper, the simulation and implementation of a PID
controller and Kalman Filter in an inverted pendulum robot
was performed. The purpose of this experiment was to control
the inverted pendulum robot with the Kalman Filter and prove
the Kalman Filter improves the system response of the robot.
The system was first simulated using a PID controller, a
Kalman Filter, and an Unscented Kalman Filter using Matlab.
The mechanical system was first modeled using the Lagrange
method and then the state space equations were used to
simulate the system. To simulate the Kalman Filter, the system
and measurement noise had to be found. The measurement
noise could be found in the sensor manual while the system
noise was approximated using the measurement noise. Next,
using an Arduino, the Kalman filter was used to balance
the movements of an Inverted Pendulum Robot. The sensors
used to record the angle and speed of the robot were an
ADXL345 accelerometer and a ITG 3200 gyroscope. The
first sensor measured the acceleration of the system while
the second measured the angular displacement and angular
velocity. Using these sensors, the angular displacement of the
robot was measured and controlled based on a setpoint of 0°
from the vertical axis.

II. LITERATURE REVIEW

A. Inverted Pendulum Robot and PID Controller

An inverted pendulum is a classical controls problem that
involves a nonlinear, unstable system with one input signal and
several output signals. As such, PID controllers are often used
to control inverted pendulum robots because they optimally
model Single-Input-Single-Output (SISO) systems. In cases
where there are multiple inputs to control, a Multiple-Input-
Multiple-Output system is implemented because one PID-

controller is not enough [1]. PID control is commonly im-
plemented on inverted pendulum systems and has been found
to be simple, effective, and robust according to the works
of Cole et. al [2], Sondhia et. al [1], and Wang et. Al [3].
The experimental set up used in this paper was based on the
work done by Cole et. al [2], the team that built the robot
implemented in this experiment and provided a summary on
the construction and programming of the segway-bot using
PID control. In conjunction with this, the tutorial provided by
Arduino that provides an example of simple programming for
PID control was used to refine the system.

B. Inverted Pendulum Robot and Kalman Filter

Several articles on the application of the Kalman filter (KF),
extended Kalman filter (EKF), and unscented Kalman filter
(UKF) to the control of an inverted pendulum were reviewed to
understand the effect of filters on the system. The KF has been
shown to improve control of an inverted pendulum through
the reduction of noise and improvement of the robustness of
the system [4][5]. Further, the filter tends to be applied to
the angle measurements of the system rather than the position
error [5]. The EKF also improves control and stability of the
system, evidenced by its ability to achieve results quickly and
accurately [6]. Unlike the KF, the EKF can be used to estimate
states in a non-linear system [8]. During the prediction stage,
the EKF uses the Jacobian of the non-linear state equations to
calculate the a priori state estimates. [6]. However, linearizing
the system can result in lost information, which is why the
UKF is often chosen for more complex systems. By using
only the non-linear equations, the UKF is able to improve
final estimation results for inverted pendulums, making it
an optimal filter for the inherently non-linear system [7]. A
significant amount of other literature has studied estimation
theory combined with control theory, with applications to
mechatronic systems [9-17].

III. MECHANICAL MODEL

In order to model the system, the state space model of the
system was derived. This was accomplished by modeling the
mechanical system using the Lagrange method. The param-
eters of the system are described in Table I. A free body
diagram of a wheel and the body of the robot can be seen
Figure 1. Using the free body diagram, the discrete state space
equations were derived. The experimental setup used for this
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TABLE I
LIST OF NOMENCLATURE

Symbol Meaning
θ Angle of rod with respect to vertical
ϕ Angle of wheel with respect to vertical
z Distance to center of gravity of rod
mw Mass of wheel
mb Mass of rod (body of robot)
r Radius of wheel
g Gravity
w Thickness of robot body
J1 Moment of inertia of the wheels
J2 Coupled moment of inertia
J3 Moment of inertia of the body of the robot
τ Torque or input of the motor

experiment was built in-house, and is shown in Figure 2 to
illustrate further the freed body diagram.

Fig. 1. Free Body Diagram of System

Fig. 2. Experimental Setup Used to Simulate an Inverted Pendulum
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In the above state space representation, J1, J2, and J3 are
represented by the following equations:

J1 = (mb +mw)r
2 + Iw

J2 = mbrz

J3 = mbz
2 + Ib

where:

Iw = mwr
2

Ib =
1

12
mb(2× z + 2× w)2

IV. SYSTEM SIMULATION

A. PID Controller

Following derivation of the state space equations, the system
was simulated with a PID controller to determine if the state
space equations accurately modeled the inverted pendulum
system. The values found in Table II were used in the simula-
tion and represent actual measurements taken from the inverted
pendulum robot. However, it is important to note that this only
compares the linearization of the model but not its accuracy.
To evaluate the model properly, the simulated results should
be compared with the experimental results. However, in this
paper, the simulation was used to tune a PID controller initially
before implementation on the experimental setup. The system

TABLE II
LIST OF PARAMETERS

Parameter Value Description
T 0.01 Period of system, in seconds
mw 0.1 Mass of wheel, in kilograms
mb 1.82 Mass of rod (body of robot), in kilograms
r 0.045 Radius of wheel, in meters
g 9.81 Gravity, in meters per seconds squared
w 0.09 Thickness of robot body, in meters
z 0.08 Distance to center of gravity of rod, in meters
τ 1 Torque or input of the motor, in newtons
t 0:T :5 Arbitrary time interval, in seconds
x

[
0 0.1 0 0

]′ Initialization of x

was initially calibrated and tuned without the incorporation of
noise in order to clearly model ideal conditions. Both the linear
and nonlinear state space equations were used in the model
in order to ensure that they approximated the same values.
Initially, the model displayed a typical dynamic response,
oscillating around the setpoint (θ = 0°) until it eventually
achieves steady state after several oscillations. The gains were
tuned to minimize steady state error (Table III), resulting in an
ideal inverted pendulum response where the angle of the body
decreases until a steady state value of θ ≈ 0° is achieved.
The value of Ki is equivalent to zero in this case because
the alterations to Kp and Kd already minimized the steady
state error, meaning Ki was not needed.This position would
be maintained for the duration of the simulation as no noise or



other destabilizing occurrences would be present (see Figure
3a).

Measurement and system noise were then added to the
system to create a more realistic simulation (Figure 3b).
These noise values were assumed to be Gaussian and white.
Measurement noise stemmed from the errors produced through
the position tracking provided by the gyroscope and ac-
celerometer sensors implemented on the inverted pendulum
robot. The values for measurement noise were found within
the specification manuals for the sensors used for the inverted
pendulum robot. System noise stemmed from any possible
interference that could affect the system measurements. This
includes things such as friction of the table and wheels, loose
bolts in the apparatus, or unwanted vibrations in the system.
These values were approximated since it is very difficult
to completely understand the total amount of system noise
the robot experiences. The measurement noise values were
used to approximate the system noise values. This experiment
assumed most of the noise would stem from the sensors, thus
the system noise was approximated to several factors less than
the measurement noise. The covariance matrices for system
(Q) and measurement (R) noise can be found in Table IV.

TABLE III
GAIN VALUES

Gain Value
Kp 1.1
Ki 0
Kd 0.2

TABLE IV
COVARIANCE MATRICES

System Measurement

Q =


6× 10−7 0 0 0
0 6× 10−7 0 0
0 0 6× 10−7 0
0 0 0 6× 10−7

 R =


6× 10−4 0 0 0
0 6× 10−4 0 0
0 0 6× 10−4 0
0 0 0 6× 10−4



B. Kalman Filters applied to PID Controller

In order to linearize the system model, small angle approx-
imations were made. Both the linear and non-linear system
models were simulated and the results were recorded over a ten
second interval to confirm that both models behaved similarly
for small angles. Thus, the linearized model was assumed to
be the true model and was used to calculate the a priori
state estimates and a priori state covariance in the Kalman
Filter. Using the non-linear equations in the EKF would not
significantly improve the accuracy of the state estimates for
small angles. Since the physical system is only expected to
operate within small angles, the EKF was not implemented.
If this assumption was not made, then the EKF would have
to be applied in place of the KF since when large angles are
encountered, the system would behave nonlinearly. This issue
did not apply to the UKF, which uses the nonlinear equations

without linearizing them. The discretized, nonlinear state space
equations can be found below:

d

dt

ϕθϕ̇
θ̇

 =


1 0 ϕT 0
0 1 0 θT

0
J2 sin(θ) cos θgmz+J2θ̇

2

(J2 cos(θ))2−J1J3
T 1

J2J3 sin(θ)θ̇2

(J2 cos(θ))2−J1J3
T

0
sin(θ)J1mbz+(1+J2

2g cos(θ) sin(θ)θ̇2

(J2 cos(θ))2−J1J3
T 0

1+J2
2g sin(θ) cos(θ)θ̇2

(J2 cos(θ))2−J1J3
T + 1


ϕθ
ϕ̇

θ̇



+


0
0

J3+J2 cos(θ)

J1J3−J2
2

−J1−J2 cos(θ)

J1J3−J2
2


00
τ
τ


Cs =

[
1 0 0 0
0 1 0 0

]
Figure 4 displays the filters applied to the system and

Table V displays the root-mean squared errors of the filters.
Application of the KF revealed that the filter was able to
accurately track the system, never deviating very much from
the true approximations. The UKF varied in response when
applied. While on some trials it would appear to track the
system perfectly, on others its values would explode, resulting
in incorrect approximations. From the reviewed theory, the
UKF should improve the system approximation. This suggests
that there is an issue in the code used to approximate with
the UKF. However, given the linear approximation made on
the system, it is reasonable that the KF would be the best
estimator since it is optimal for linear systems. Since the

TABLE V
RMSE VALUES

State KF (rad2) UKF (rad2)

θ 2.44× 10−3 2.53

ϕ 5.22× 10−4 1.55× 10−3

θ̇ 1.65× 10−3 3.94× 10−1

ϕ̇ 1.86× 10−2 2.58× 10−2

implementation on the real system involves improved body
angle control by applying the KF, a final simulation comparing
the measurement data was also conducted. This can be seen in
Figure 5. The efficacy of the Kalman filter was measured by
tracking body body angle error of the PID controller where the
setpoint was 0°. In one scenario, the sensor measurement was
used to calculate the body angle error of the PID controller.
The other scenario used the Kalman estimate to calculate
the the body angle error. The RMSE value of the PID error
decreases, as seen in Table VI, illustrating that applying the
KF to the inverted pendulum system should produce a better
response. The UKF’s response when applied in both cases
was unexpected. Because it is unstable, it makes sense that it
is unable to approximate the measurements in Fig. 5a. When



(a) (b)

Fig. 3. Initial Simulation Results: (a) Ideal PID Response (without noise), (b) Ideal PID Response (with noise).

Fig. 4. System with Filters Applied

the KF was used in the PID controller (Fig. 5b), the UKF
was able to produce more accurate estimates. However, it is
currently unknown why it has this effect.

TABLE VI
RMSE VALUES FOR MEASUREMENT COMPARISON

Without Kalman Error 4.78× 10−2°

With Kalman Error 3.66× 10−2°

V. SYSTEM IMPLEMENTATION

A. System Model Accuracy vs. Kalman Filter Efficacy

In order to tune and implement the KF into the inverted
pendulum robot, the value of variables in the initial state space
equations were changed. Eq. 1 represents the system matrix
constant (F ) which multiplied the angular position of the body
of the robot. From the initial measurements in Table II, this
factor was equal to 75.6. Eq. 2 represents the input matrix
constant (B) and has a value of 0.0015. Initial simulation of
the system model with these values was problematic, resulting
in an inaccurate system model that poorly balanced. After
implementing this model in Arduino, it was found that the

errors occurring in the system were the result of using incorrect
measurement values.

F =
J1gmbz

J1J3 − J2
2

(1)

B =
J1 − J2
J1J3 − J2

2

(2)

Figure 6a uses the incorrect system model. When compared
with the true states, the incorrect system model produces
estimates with high error. Aforementioned, the initial values
in Table II ranged from being measured and approximated.
This caused some inaccuracies in the model constants F and
B that adversely affected the system. The inaccurate estimates
caused the PID controller to produce the wrong torque needed
to control the system, resulting in an unstable system that
does not balance. The instability of the system indicates the
importance of using proper parameter measurement values in
the system model. The inertia of the pendulum system as well
as the effect of torque on that system are vital to its control.
Thus, accurate models are necessary to ensure the system
is stable. The system model variables were then adjusted
through trial and error until the correct system response was
achieved. Figure 6b illustrates the system response with the
adjusted system model. Using values which accurately model
the system produces more accurate body angle errors for the
PID controller.

B. Kalman Filter Process

As described, the KF is a predictor-corrector estimation
strategy that yields optimal estimates to linear systems and
measurements. A nonlinear form of the KF is known as
the extended KF, and essentially first-order Taylor series
approximations are used to create Jacobians or linear matrices.
The process is similar between the KF and EKF. The KF
process is described as follows. The first two equations below
represent the prediction stage and predict the state estimates
and covariances, respectively.

x̂k+1|k = Fx̂k|k +Buk (3)



(a) (b)

Fig. 5. Simulation Comparison to Measurement Values: (a) without Kalman Error; (b) with Kalman Error.

(a) (b)

Fig. 6. Simulated System Models: (a) with Poor System Measurements; (b) with Adjusted System Measurements.

Pk+1|k = FPk|kF
T +Qk (4)

The next section is referred to as the update stage. The
following equations are used iteratively with the prediction
stage to calculate the updated state estimates and covariances,
respectively. The first equation is used to calculate an innova-
tion covariance used to generate the Kalman gain. The H term
refers to the measurement matrix. Note that the upated state
estimates are used by the PID controller to generate the control
signal based on the error (difference between the desired and
estimated states).

Sk+1 = HPk+1|kH
T +Rk (5)

Kk+1 = Pk+1|kH
TS−1k+1 (6)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 −Hx̂k+1|k) (7)

Pk+1|k+1 = (I −Kk+1H)Pk+1|k (8)

C. Kalman Filter System Tuning

The Kalman filter was initially tuned in the Arduino assum-
ing a zero measurement covariance. The system constants were
tuned until the Kalman estimates matched the complementary
filter estimates. Initially, F was assumed to be 75.6 based

on measurements of the physical system and B was assumed
to be 0.015 based on the simulation. These system constants
overestimated the effect of the torque on the body angle. Thus,
the Kalman estimates produced much higher angles than the
complementary filter as seen in Figure 7a. F was tuned for
the KF to a value of 61 while B was tuned to a value of 0.001.
After the model was corrected, the KF estimates matched the
complementary filter estimates (Figure 7b).

D. Covariance Matrix

After tuning the system matrices, the covariance matrices
were tuned to further improve the estimates. The measurement
covariance matrix is not constant for all angles and thus needed
to be calculated for different angles. The calculated values
were taken in 5° increments and can be found in Table VII.
At small angles ( <10°), the covariance values were relatively
similar in magnitude. At angles ≥ 10°, however, the magnitude
increases substantially.

E. PID Tuning

The PID controller was retuned for the inverted pendulum
robot. The gains for the implementation were tuned in the
same order as in the Matlab simulations: The proportional
gain was tuned first while setting all other gains to zero.



(a) (b)

Fig. 7. Implemented System Models: (a) with Poor System Measurements; (b) with Adjusted System Measurements.

TABLE VII
COVARIANCE VALUES

Degrees Covariance

0 R = 4.7801× 10−4

5 R = 5.7013× 10−4

10 R = 1.1378× 10−3

Then, the derivative gain was slowly adjusted to smooth the
oscillations. Finally, integral gains were omitted because the
system is unstable and never expected to settle completely
with 0 steady state error. The PID was tuned initially on
the complementary filter, which combines sensor data from
both the accelerometer and gyroscope. Listing 1 displays the
system update equation can be seen for the complementary
filter. Using both the sensor data from the accelerometer and
gyroscope, a full picture of how the system reacted while a
controller or filter was maintaining its upright position can
be seen. The KF was then applied and also had to be tuned
until the parameter values in Table VIII were achieved. These
parameters created a stable system. The variables’ greatest
change in magnitude came from tuning the system noise and
the value for the input matrix constant.

Listing 1. Code Equation for Complementary Filter
C1= 0 . 9 8
C2 = 0 . 0 2
Complementary ( k )= C1 *( Complementary ( k−1)
+ g y r o s c o p e ( k )*T ) + C2 *( a c c e l e r o m e t e r ( k ) ) ;

VI. EXPERIMENTAL RESULTS

The PID controller was implemented using the complimen-
tary filter estimates as input followed by using the Kalman
filter estimates as the input (represented in Figures 8a and
8b, respectfully). The initial body angle offset was set to
approximately 4° with a setpoint of 0° which represents a
perfectly upright robot. The PID controller was allowed to run
until the inverted pendulum robot reached steady state. The

TABLE VIII
INITIAL AND TUNED PARAMETERS

Initial Parameters Tuned Parameters

Q =

[
6× 10−7 0
0 6× 10−7

]
Q =

[
2× 10−7 0
0 2× 10−7

]
R = 6× 10−4 R = 2× 10−5

System Constant = 75.6 System Constant = 61

B = 0.015 B = 0.001

Kp = 70 Kp = 12

Kd = 0.25 Kd = 0.1

RMSE values of both trials were calculated and are displayed
in Table IX.

TABLE IX
PID CONTROLLER RMSE VALUES

PID Controller Input RMSE of Error from Setpoint
Complimentary Filter Estimate 68.4210°

Kalman FIlter Estimate 65.0810°

VII. DISCUSSION

A. Experimental Analysis

The RMSE of the error from the setpoint was 68.412°
and 65.081° for the complimentary filter and Kalman filter
respectively. In addition, the complimentary filter estimates
produced a steady error of approximately 0.15° while the
Kalman filter had virtually no steady state error. Finally, the
settling time using the complimentary filter was approximately
7.8 seconds while the settling time using the Kalman filter was
approximately 4.5 seconds. The Kalman filter appears to offer
an improvement, over the complimentary filter, as predicted in
the simulated results. However, the results are very comparable
when considering that there was high variability in the exper-
imental setup. Some of the main contributors of variability
were the power and USB cables. The cables produced an
uncertain amount of positive torque and damping when they
dragged behind the robot. The Kalman filter estimates were
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Fig. 8. PID Controller Results: (a) Using Complimentary Filter Estimate as Input; (b) Using Kalman Filter Estimate as Input.

relatively consistent with the complimentary filter estimates
and offered only marginal improvement when used in the PID
controller as shown in Fig. 8. Thus it is reasonable to expect
that the Kalman filter would perform comparably with the
complementary filter. While the Kalman filter is able to smooth
out some of the noise, it appears to lag slightly behind the
complimentary filter during rapid oscillations. Thus, when the
angular velocity is positive, the Kalman estimates tend to be
lower than the complimentary filter estimates. The opposite is
true for negative angular velocities. The PID response shows
several oscillations before finally being able to settle close
to the setpoint. The magnitude of the oscillations do not
monotonically decreases as expected in a second order system
model. There are several contributing factors for the additional
oscillations. The motor driver was not consistent in its output
and often failed to output the correct torque based on the
setpoint error. In addition, there was significant backlash in the
motor-wheel system which was not modeled into the controller
or system matrix of the Kalman filter. The backlash would
often cause several degrees of movement before torque was
actually applied to the system.

B. System Problems

There were several physical limitations with the system that
greatly impacted the results. One issue was that the wires con-
nected to the power supply created a great deal of interference
with the system. In ideal situations, the controller or filter
should be the only stabilizing factor on the robot. In practice,
however, as the robot travelled away from the power supply,
the connecting wires would act like a spring and become tense
before pulling the robot backwards, causing a reaction force
on the robot that artificially controlled its movements. Another
issue stemmed from the motors. There were discrepancies with
the performance between the individual motors. The motor
response of the left motor was lacking compared to the right
motor. The left motor was occasionally unresponsive which
made the robot travel in circles instead of in a forward and
backward motion. The unresponsiveness could be due to the
amount of current entering the right motor compared to the left
motor. Another problem with controlling the robot was that the

motor could not output small values of torque to correct small
body angle errors. This is because the DC motors required
a certain threshold of voltage in order to operate. For small
angle errors, the PID controller would output a small voltage
to correct the body angle. However, the motors outputted zero
torque because the voltage was below the required threshold.
Thus, the motors would not activate until a certain body angle
error was achieved. One final issue with the robot was its
sensitivity to disturbances. This was due to the robot’s physical
design which caused it to have a small moment of inertia and
a low center of gravity. To improve the controllability of the
robot, more weight should be added higher up on the body of
the robot.

C. Future Work

Several additions can be made to the inverted pendulum
robot to improve performance. One addition would involved
incorporating more controllers, such as for the position or
the yaw of the system. A linear-quadratic regulator controller
could also be added in place of a PID controller to alter system
performance. Additionally, the estimation techniques need to
be refined as well. The UKF needs to be corrected in order to
correctly approximate the system. Fixing the UKF will allow
for incorporation of other estimation techniques, such as the
interacting multiple model, that could produce more refined
results. Finally, several physical aspects of the system should
be adjusted based on the limitations mentioned in the previous
section. This would include making the robot powered by a
battery to allow the wires to be removed and redesigning the
system to increase its mass and its the moment of inertia

VIII. CONCLUSIONS

Experimentation showed that implementation of a Kalman
filter with a tuned PID controller improved the response of
an inverted pendulum robot. The simulated and implemented
results also further demonstrated that an accurate system
model is important to good overall system performance. If any
estimates are inaccurate, the system model will not correctly
correspond with the actual system, resulting in inaccuracies
and possibly instabilities. Additional experimentation should



examine effects of different controllers and estimators in the
system. In future experiments, several modifications can be
made to the inverted pendulum robot in order to improve
performance such as removing the wires from the system,
correcting the unresponsive motor, and increasing the inertia
of the system.
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