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ABSTRACT

air-LUSI is a NASA sponsored project which uses optical and robotic equipment to autonomously capture
radiometric measurements of the Moon from within the science pod of an ER-2 aircraft while flying at an
altitude of 70,000 feet. The air-LUSI instrument was deployed for its first engineering flight campaign on August
1st and 2nd, 2018 and captured the worlds first High Altitude Lunar Spectral Irradiance (LUSI) measurements
from a semi-ground based system. By implementing instrumentation into NASA’s ER-2 aircraft to produce
an Airborne Lunar Observatory, unprecedented LUSI measurements can be obtained that are unadulterated
from the Earth’s atmosphere. By compiling a comprehensive LUSI dataset for a series of lunar phases, a Lunar
Calibration Model can be further refined to provide enhanced remote sensing capabilities for some instruments in
NASA’s Earth Observing System (EOS). This document presents information about the flight path of the ER-2
to capture High Altitude LUSI measurements, the mechanical design of the robotic telescope, the environmental
operating conditions of the design, the in flight tracking performance of the system, and the first raw lunar
spectrum captured at 70,000 feet.
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1. INTRODUCTION

A partnership between the National Aeronautics and Space Administration (NASA) and the United States
Geological Survey (USGS) has been developing a Lunar Calibration model for select instruments of NASA’s
Earth Observing System (EOS).1–4 The Moon provides a stable reflective surface for sun light that varies with
lunar phase and geometry. By compiling a dataset of accurate measurements, a Lunar Calibration model could be
used to improve the remote sensing capabilities of certain satellites.5 Unfortunately, the current Lunar Spectral
Irradiance calibration model has uncertainties within (5-10%) and therefore, the Lunar Spectral Irradiance (LUSI)
of the Moon needs to be measured with a higher degree of accuracy to achieve a desired absolute uncertainty of
1%.6

Until recently, LUSI measurements had only been acquired using ground based measurement techniques.
Ground based measurements allow for the radiometric instruments to be regularly calibrated, which contributes
to the overall accuracy of the captured spectrums. Unfortunately, the Earth’s atmosphere obstructs key lunar
wavelengths and prevents consistent LUSI measurements from being obtained. To achieve a high degree of
accuracy, a radiometric measurement system needed to be developed that could be regularly calibrated to
guarantee the accuracy of measured spectra, and that could travel to high altitudes to mitigate any spectral
degradation and obstruction from the Earth’s atmosphere.7

The requirement for a high altitude radiometric instrument that is capable of returning to Earth for calibration
resulted in the creation of the air-LUSI project. The Remote Sensing Group of the National Institute of Standards
and Technology (NIST) designed the telescope and radiometric system required to capture the Lunar Spectral
Measurements. A small group at the University of Guelph designed and manufactured the robotic system capable
of keeping the Moon centred within the Field of View of the telescope while operating from within a moving
aircraft.
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2. SUBSYSTEM DESIGN

2.1 Radiometric System

Individuals at NIST designed a custom telescope specifically for the radiometric subsystem of the air-LUSI
mission. The system uses a single lens telescope which is 18.5 inches in length and 6.5 inches in diameter to funnel
the light of the Moon to an integrating sphere. The captured moonlight is then relayed to a CAS spectrometer for
analysis. Given the sensitivity of the CAS spectrometer to environmental conditions, an environmental enclosure
was designed to maintain the atmospheric pressure and temperature of the unit.

The design was based on the extreme environmental conditions in which the system would operate and the
construction materials were selected for their thermal stability and strength. The telescope was constructed of
carbon fibre tubing with concentric steel rings that double as optical baffles and structural points for integrating
the telescope to the robotic structure. The telescope included a pressure fitting that served as an inlet for the
nitrogen purge system to prevent moisture from accumulating on the inside of the telescope. The system was
designed to be robust and provide accurate measurements given that it would be exposed to high points of
humidity, a temperature range of (23◦C to −55◦C), and large atmospheric pressure variation while the aircraft
travels from ground level to an altitude of 70,000 ft.

2.2 Robotic Design

The robotic telescope used two linear actuators as a robust, affordable, and simplified means of controlling the
system. As a whole, the design consisted of a telescope that was supported by trunnions that mounted to a double
gimbal. The gimbal provided two degrees of freedom and allowed the telescope’s pointing angles to be adjusted
in elevation and azimuth.8–11 The first linear actuator was mounted on the structural frame that supported the
system and used a rod end ball joint to attach to the spindle crank. This provided the moment arm that was
used to adjust the telescopes pointing angle in the azimuth. The second linear actuator was mounted within the
inner gimbal and connected to the telescope’s trunnion platform and allowed for its stroke position to adjust the
pointing elevation of the telescope.

By using linear actuators, the number of mechanical components were drastically reduced by eliminating
the requirement for gearing, additional bearings, and lubrication.12–14 The linear actuators relied on a servo
motor to turn an internal ACME screw which adjusted their stroke position. Each actuator was interfaced to
the robotic control computer and allowed for data and position commands to be written to the actuators.15

Figure 1. Design concept and rendering of the air-LUSI robotic telescope.

2.3 Mechanical Components

The linear actuators selected for the robotic system were the Ultramotion A2 series servo cylinders. They were
specifically selected based on their robust design and their ability to satisfy the harsh environmental conditions
encountered during high altitude flights. The linear actuators offered a sealed enclosure with internal humidity
control, liquid ingress protection and a temperature range extended to −45◦C. Thin film heaters and thermostats
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were attached to the actuators to ensure that their external temperatures did not drop outside of the operating
limits.15,16

Flight grade self lubricating flanged journal bearings were obtained from Kaman Specialty Bearings and
Engineered Products to provide the freedom of rotation required by the design. The Kamatics series journal
bearings consisted of a PTFE resin applied to the inside of a stainless steel bushing to offer low friction coefficients
for a wide range of temperatures. The PTFE resin is extremely wear resistant, chemically inert, has very low
moisture absorption, and can operate in temperatures as low as −73C◦. Specifically designed for operating in
harsh environments within aerospace applications, the self lubricating bearings provided by Kaman were the
obvious choice when selecting bearings for the design.16–18

3. CONTROL SYSTEM

3.1 Machine Vision

The Basler Ace U (acA1920-40um) series machine vision camera was the primary data acquisition system used
to acquire the Moon as a target and provide tracking information to the control computer. The tracking camera
was mounted near the aperture of the telescope and provided an eye in hand vision feedback system used for
visual servoing. Once the robotic system was in a tracking mode, the telescope would move up from its stowed
position to its initial tracking position which provided the telescope and tracking camera a view of the night sky
while operating from within the ER-2 science pod.

The strategy that was used to target the Moon exploited the fact that the missions would be flown at night
and that the Moon would be the largest and brightest object in the sky. Given this targeting scenario, the
incoming tracking camera frames were thresholded to yield binary images where all the pixels associated with
the Moon were white, and all other pixels within the frame were black. Contouring was then performed to locate
the boundary of the Moon within the images, and a minimum enclosing rectangle was fit around the target. The
center point of the minimum enclosing rectangle was taken as the (x,y) pixel location of the target. This 2D
location within the image frame was then passed on as the inputs to the telescope’s pointing controllers.10,11,19–21

Figure 2. Machine Vision camera and integrated IMU used for data acquisition and target tracking.

3.2 Pointing Controllers

Prior to the flights, the tracking camera and telescope were aligned to determine the pixel position within the
tracking camera image that corresponded to a target being centred within the field of view of the telescope. While
capturing tracking camera images, the telescope was laser aligned with a distant light source. The location of
this light source within the tracking camera image was determined using the same techniques as the targeting
system for the Moon. Given that the telescope and tracking camera were viewing the light source from two
slightly different vantage points, a parallax correction was made to the y dimensions of the pixel setpoint.22–26

The robotic control system used the established pixel setpoint as the desired state of the system and used
the target locations within the tracking frame as a state measurement. The difference between the setpoint and
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the target position in (x,y) within the tracking camera frames provided the two state error measurements that
were used as the inputs to the two independent elevation and azimuth PID controllers. Given the magnitude
of the state errors in x and y, a control effort was calculated and applied by writing position commands to the
linear actuators. The stroke positions of the two linear actuators were then adjusted and forced the pointing
error between the telescope and the Moon to converge to zero in azimuth and elevation.?, 27, 28

4. ENGINEERING FLIGHT

The air-LUSI instrument was first deployed on August 1st and 2nd, 2018 for its two night engineering flight
campaign. The mission system was tested at the Airborne Sciences Laboratory of NASA Armstrong Flight
Research Center (AFRC) and integrated into the right science pod the ER-2 aircraft. The robotic telescope
system was located in the aft section of the science pod, which had an upward facing aperture that could be
used to view the Moon. The bulk of the radiometric subsystem and the robotic control computer were contained
in the somewhat temperature and pressure regulated mid body of the science pod. A bulk head separated the
two sections of the science pod and a pass-through plate was fabricated to connect the control computers and
measurement equipment to the telescope and the robotic mount.

4.1 Flight Path

A flight path was designed to provide a 40 minute tracking window in which the Moon could be visible to
the telescope when looking out from the aft pod aperture. The flight was scheduled in the early hours of the
morning and targeted lunar elevations that fell within the line of sight of the design. At approximately (0200)
the aircraft took off from AFRC located in Palmdale California, climbed to its maximum altitude traveling in
a North Eastern direction, and headed for its initial tracking heading located in the North Western corner of
Arizona. At that point, the pilot turned the aircraft to achieve the lunar tracking heading, and maintained the
long straight course flying over the southern tip of Nevada. This trajectory provided a forty minute tracking
window in which the air-LUSI subsystem was locked onto the Moon collecting valuable spectral measurements.
At the end of the tracking phase of the mission, the aircraft abandoned course and quickly returned to AFRC
for landing. The entire trajectory is plotted in Figure 3 and was obtained using the navigation data from the
ER-2 that was relayed to mission control via ground link.

30°N
120°W

Flight Path EF2

Figure 3. ER-2 flight path for engineering flight.
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4.2 Aircraft Data

Figure 4 shows the temperature and altitude recorded by the ER-2 during the engineering flight. The aircraft
reached a maximum altitude of 70,000 feet and maintained this height during the lunar tracking phase of the
mission. At 70,000 feet, the aircraft maintained its tracking heading for a duration of forty minutes, at which
point the system was actively tracking the Moon within an ambient temperature of −55◦ C.
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Figure 4. ER-2 temperature and altitude data

4.3 Tracking Performance

The performance of the robotic subsystem that was responsible for managing the pointing and lunar tracking of
the telescope was evaluated by recording the radial pixel separation between the Moon and the setpoint within
the image frames of the tracking camera. The radial pixel distance was calculated by adding the x and y pixel
offsets in quadrature. Overall, the robotic system managed to track the Moon with a Root Mean Squared Error
(RMSE) of 1.12 pixels. Using a conversion factor the pixel error corresponds to an RMSE traking error of 0.059
degrees over the tracking phase of the mission. Figure 5 shows a times series of radial offset pixel measurements
over the course of the forty minute tracking window while table 1 outlines some of the more meaningful tracking
statistics used to evaluate the systems overall tracking performance, and the performance of the two independent
controllers responsible for adjust the telescope’s pointing in azimuth and elevation.

The bar chart represented by Figure 6 provides a concise summary of the performance of the system’s
performance in azimuth and elevation. The y axis of the chart is the percentage of data points that fall within a
given error while the x axis represents a pixel error separating the target from the setpoint in x and y. By refering
to the chart, we can observe that of the total data points collected during the mission, over 90% placed the Moon
within ±1 pixel of the setpoint in both x and y. From Figure 6 we can also deduce that the tracking performance
of the elevation controller was slightly worse when compared to the azimuth. This could be a result of having
less optimal gain settings for the elevation controller or that the system is subjected to greater disturbances in
elevation than in azimuth.

Statistic X Y Radial Offset Degree Offset
Min. Val. -5.00 -5.00 0.00 0.000◦

Max. Val. 6.00 4.00 6.32 0.335◦

RMSE 0.74 0.84 1.12 0.059◦

Table 1. Tracking statistics for pixel error

4.4 Raw Uncalibrated Lunar Spectrum

Due to proprietary concerns, only the raw uncalibrated spectrum could be included. The following figure shows
the first lunar spectrum captured from an altitude of 70,000 feet. The spectrum was a result of over 270 spectral
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Figure 5. ARTEMIS tracking performance.
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Figure 6. ARTEMIS tracking performance in x and y image coordinates.

scans of the Moon taken over the 40 minute tracking window. The spectral measurements were remarkably
consistent and showed very little variance. As expected, by flying above the Earth’s atmosphere, no lunar
wavelengths were lost or obstructed. Had this spectrum been captured from the ground, it would have shown
large valleys for shorter wavelengths where no light intensity or counts were measured. This spectrum however
shows exceptional completeness for all wavelengths which is impossible to capture from ground based systems
due to the obstruction of key lunar wavelengths from the Earth’s atmosphere.
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Figure 7. Raw uncalibrated lunar spectrum.

5. CONCLUSIONS

In conclusion, the first deployment of the air-LUSI project was an extraordinary success. The simplified robotic
strategy which uses linear actuators to manage the pointing and tracking of the telescope while in flight provide
a robust and cost effective design that produced better than expected results. The system operated reliably in
the high altitude environment for the entire 3 hour duration of the flight and allowed for over 270 lunar spectral
scans to be acquired through out the 40 minute tracking window. The Lunar Spectrum that was acquired during
air-LUSI’s first set of engineering flights showed notable consistency and completeness. The spectrum shown
by Figure 7 shows a complete spectrum for all wavelengths within the visible spectrum which is impossible to
achieve from ground based measurement systems. Given the impressive results obtained from air-LUSI’s first
mission, Fall 2019 dates are being reviewed for a second set of science flights to target specific lunar phases.
By acquiring a large High Altitude Lunar Spectral Irradiance dataset, air-LUSI may play a key role in refining
a Lunar Calibration Model to meet its accuracy targets and improve the remote sensing capabilities of certain
instruments in NASA’s Earth Observing System.
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