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ABSTRACT   

Estimation theory is an important field in mechanical and electrical engineering, and is comprised of strategies that are 
used to predict, estimate, or smooth out important system state and parameters. The most popular and well-studied 
estimation strategy was developed over 60 years ago, and is referred to as the Kalman filter (KF). The KF yields the optimal 
solution in terms of estimation error for linear, well-known systems. Other variants of the KF have been developed to 
handle modeling uncertainties, non-Gaussian noise, and nonlinear systems and measurements. Although KF-based 
methods typically work well, they lack robustness to uncertainties and external disturbances – which are prevalent in signal 
processing and target tracking problems. The smooth variable structure filter (SVSF) was introduced in an effort to provide 
a more robust estimation strategy. In an effort to improve the robustness and filtering strategy further, this paper introduces 
an adaptive form of the SVSF based on the static multiple model strategy. 
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1. INTRODUCTION  

State estimation is the process of extracting numeric values of state variables from uncertain and noisy measurement data 
[1]. The term state refers to a vector that changes over time by which are governed by equations that describe the dynamics 
of a system [2, 3]. There are two different types of estimators which include the state and parameter estimator. The purpose 
of the estimation is to minimize the parameter or state estimation error while simultaneously being robust to disturbances 
and noise [2]. Disturbances and noise are inherently present in the measurement process, and are caused by the sensor and 
environmental factors [2]. System uncertainties are usually caused by an inaccurate model, variations and nonlinearities in 
the physical system parameters.  

Reliable estimates of state parameters is necessary for safely controlling electro-mechanical systems in real-time. When 
system dynamics are changed abruptly in the presence of faults, adaptive estimation strategies can be used to mitigate 
inaccurate estimation is the prediction stage.  This paper introduces the use of a smooth variable structure filter (SVSF) in 
conjunction with a static multiple models estimator (SMM) applied to an electro-hydrostatic actuator (EHA) model with 
leakage faults.   

Contributions to estimation theory date back to the 1500s from a several contributors of various backgrounds [2]. The first 
major contributor to this field was Thomas Bayes who introduced the Bayesian rule for statistical inference [2]. This 
provides the foundation for Bayesian estimation methods [2]. Carl Friedrich Gauss pioneered the study that produced an 
optimal estimate from noisy data. In 1975, he invented the famous least square estimation method to solve nonlinear 
estimation problems in mathematical astronomy [2].  

Andrei Markov later introduced the Markov process and Markov chain theories of statistical methods and probability [2]. 
The Markov process describe the transition of random processes from one state to another between a finite number states 
[2]. Markov proved that the probability distribution of states may be calculated using its current distribution that contains 
the effects of all the past events of the system [2, 3]. In 1933, Andrei Kolmogorov published Foundations of the Theory of 
Probability, which introduced the modern foundations of probability theory. Sydney Chapman continued the research on 
the Markov processes and Kolmogorov independently presented the Chapman-Kolmogorov equations used for solving 
basic equations in the estimation field [2]. 
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Ronald Aylmer Fisher introduced the Fisher information matrix which represents the measure of the amount of information 
extracted from a sample of values with a given probability distribution [2]. In 1949, Norbert Wiener introduced the Wiener 
filter formulation for signal processing applications which reduces the signal noise when compared with an estimation of 
the desired noiseless signal [2]. Wiener and Kolmogorov laid the foundation of estimation theory that were later used to 
develop prediction, filtering, and smoothing theory [2]. Weiner’s research eventually led to the derivation of an optimal 
estimator for continuous-time systems while Kolmogorov independently derived an optimal linear predictor for discrete-
time systems [2]. Their research became famously known as the Wiener-Kolmogorov filter (WF), a predecessor to the 
Kalman filter [2].  

2. ESTIMATION STRATEGIES 

2.1 Kalman Filter  

Based on the previously introduced estimation theories, Rudolf Kalman introduced a new approach to prediction problems 
and linear filtering in 1960. His work would eventually be referred to as the Kalman filter [2, 3]. The Kalman filter (KF) 
uses sequential discrete-time measurements from a linear system model with Gaussian noise to produce an optimal state 
estimate. Kalman and Bucy later developed a continuous version of the KF which later became referred to as the Kalman-
Bucy filter [2, 4].  

Some extensions to the KF formulation, such as linearization and approximation led to the extended Kalman filter (EKF) 
and the unscented Kalman filter (UKF), respectively [2]. These extensions allow the KF to be applied to nonlinear systems 
as well. Other advanced variants of the Kalman filter include the quadrature Kalman filter (QKF) [5, 6], mixture Kalman 
filter (MKF) [7], and the cubature Kalman filter (CKF) [2, 8]. Since its inception, the Kalman filter has had several 
monumental applications such as sensor filtering by NASA for the Apollo’s guidance and navigation system and quickly 
became popular as the most practical method for state estimation due to its proven optimality [2, 3, 9]. 

The KF has numerous applications pertaining to parameter and state estimation, target tracking, signal processing, fault 
detection, and financial analysis [10, 11, 12, 13]. The KF’s popularity stems from the optimality of the Kalman gain in 
minimizing the trace of the a posteriori state error covariance matrix [10, 11, 14, 15]. The trace represents the state error 
vector in the estimation process [11, 16]. Equations 2.1 through 2.5 form the basis of the KF estimation algorithm which 
is used in an iterative process. Equations (2.1) and (2.2) define the a priori state estimate 𝑥ො௞ାଵ|௞ and the corresponding 
state error covariance matrix 𝑃௞ାଵ|௞, respectively [1]. 

           𝑥ො௞ାଵ|௞ ൌ 𝐴𝑥ො௞|௞ ൅ 𝐵𝑢௞ (2.1) 

          𝑃௞ାଵ|௞ ൌ 𝐴𝑃௞|௞𝐴் ൅ 𝑄௞ (2.2) 

The Kalman gain 𝐾௞ାଵ (1.3) is used to update the state estimate 𝑥ො௞ାଵ|௞ାଵ as per (2.4). The gain makes use of an innovation 
covariance 𝑆௞ାଵ, which is defined as the inverse term found in (2.3) [10]. 

            𝐾௞ାଵ ൌ 𝑃௞ାଵ|௞𝐶்ൣ𝐶𝑃௞ାଵ|௞𝐶் ൅ 𝑅௞ାଵ൧
ିଵ

 (2.3) 

           𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵൣ𝑧௞ାଵ െ 𝐶𝑥ො௞ାଵ|௞൧ (2.4) 

The a posteriori state error covariance matrix 𝑃௞ାଵ|௞ାଵ is then calculated (2.5), and is used iteratively, as per (2.2) [10]. 

        𝑃௞ାଵ|௞ାଵ ൌ ሾ𝐼 െ 𝐾௞ାଵ𝐶ሿ𝑃௞ାଵ|௞ሾ𝐼 െ 𝐾௞ାଵ𝐶ሿ் ൅ 𝐾௞ାଵ𝑅௞ାଵ𝐾௞ାଵ
்  (2.5) 

Several different methods have extended the original KF to nonlinear systems [10]. The extended Kalman filter (EKF) is 
the simplest and most popular extension [10, 11, 17, 18]. The EKF algorithm is virtually identical to the KF with the 
exception of linearizing the system using its Jacobian [10]. However, this linearization process introduces uncertainties 
that can cause inaccurate estimates and numerical instability [10, 11, 18]. 
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2.2 Smooth Variable Structure Filter 

The SVSF is an extension of the KF that adds robustness. The SVSF is stable and robust to disturbances, noise, and 
modeling uncertainties when given an upper bound on the level of unmodeled dynamics and noise [10, 11, 19, 20, 21]. 
The SVSF method is model-based and may be applied to differentiable linear or nonlinear dynamic equations [10, 11, 22, 
23]. The basic estimation concept of the SVSF is shown in Figure 1. 

 

     Figure 1. Standard SVSF estimation concept with existence subspace boundary layer. 

The SVSF estimation process is similar to the KF, but presents a novel method of gain calculation [10, 11, 24]. The 
predicted state estimates 𝑥ො௞ାଵ|௞  and state error covariance 𝑃௞ାଵ|௞ are first calculated as per (2.1) and (2.2). Utilizing the 
predicted state estimates 𝑥ො௞ାଵ|௞, the corresponding predicted measurements 𝑧̂௞ାଵ|௞  and measurement errors 𝑒௭,௞ାଵ|௞ may 
be calculated: 

           𝑧̂௞ାଵ|௞ ൌ 𝐶𝑥ො௞ାଵ|௞ (2.6) 

             𝑒௭,௞ାଵ|௞ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ (2.7) 

The SVSF gain is a function of the following: 1) a priori and the a posteriori measurement errors 𝑒௭,௞ାଵ|௞ and 𝑒௭,௞|௞; 2) 
the smoothing boundary layer widths 𝜓; 3) and the ‘SVSF’ memory or convergence rate 𝛾. The SVSF gain 𝐾௞ାଵ is defined 
as follows [10, 11, 14, 25]: 

     𝐾௞ାଵ ൌ 𝐶௞
ା𝑑𝑖𝑎𝑔 ቂቀቚ𝑒௭ೖశభ|ೖ

ቚ ൅ 𝛾 ቚ𝑒௭ೖ|ೖ
ቚቁ ∘ 𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ

ቁቃ 𝑑𝑖𝑎𝑔 ቀ𝑒௭ೖశభ|ೖ
ቁ

ିଵ
 (2.8) 

where ∘ signifies Schur (or element-by-element) multiplication and the superscript ൅ refers to the pseudoinverse of a 
matrix [10]. The saturation function of (2.8) is defined by the following: 

𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ
ቁ ൌ ቐ

1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൒ 1
𝑒௭೔,௞ାଵ|௞/𝜓௜, െ1 ൏ 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൏ 1

െ1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൑ െ1
 (2.9) 

where 𝜓തିଵ is a diagonal matrix constructed from the elements of the smoothing boundary layer vector 𝜓: 
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𝜓തିଵ ൌ

⎣
⎢
⎢
⎢
⎡

1
𝜓ଵ

0 0

0 ⋱ 0

0 0  
1

𝜓௠⎦
⎥
⎥
⎥
⎤

 (2.10) 

The state estimates 𝑥ො௞ାଵ|௞ and state error covariance matrix 𝑃௞ାଵ|௞ are updated respectively as per (2.4) and (2.5) [10]. 
Finally, the updated measurement estimate 𝑧̂௞ାଵ|௞ାଵ and measurement errors 𝑒௭,௞ାଵ|௞ାଵ are calculated, and are used in later 
iterations: 

           𝑧̂௞ାଵ|௞ାଵ ൌ 𝐶𝑥ො௞ାଵ|௞ାଵ (2.11) 

𝑒௭,௞ାଵ|௞ାଵ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ାଵ (2.12) 

The existed subspace denoted by the dotted black line shown in Figure 2.1 represents the level of uncertainty present in 
the estimation process, in terms of modeling errors or the presence of noise [10]. The width of the existence space 𝛽 is a 
function of the uncertain dynamics associated with the inaccuracy of the internal model of the filter as well as the 
measurement model, and varies with time [10, 11, 25]. While this value is not precisely known, an upper bound may be 
selected based on a priori knowledge [10]. The estimated state trajectory is smoothed when the smoothing boundary layer 
is defined larger than the existence subspace boundary [10]. If the smoothing term is too small, however, chattering 
oscillations persist due to the uncertainties being underestimated [10]. 

2.3 Static Multiple Models Estimator 

The SMM assumes that the systems follows one of  r possible models 𝑀ଵ, 𝑀ଶ, … , 𝑀௥and uses weights,  
μ௞

௝ , at time 𝑘 associated with model 𝑀௝ to combine the state estimates of each model [26]. The weights are initially 
uniformly distributed and subsequent weights are calculated by the following [26]: 

μ௞
௝ ൌ

𝑝ሺ𝑧௞|𝑀௝ሻμ௞ିଵ
௝

∑ 𝑝ሺ𝑧௞|𝑀௜ሻμ௞ିଵ
௜௥

௜ୀଵ
  (2.13)       

 

 

The likelihood of measurement 𝑧௞ given 𝑀௝  is defined by the following [26]: 

   𝑝ሺ𝑧௞ห𝑀௝ሻ ൌ  
1

ට2𝜋𝜎௝
ଶ

𝑒𝑥𝑝
െሺ𝑧௞ െ 𝑧̂௞|௞ିଵሻଶ

2𝜎௝
ଶ  

(2.14) 

𝜎௝
ଶ ൌ 𝐶௞

௝𝑃௞|௞ିଵ
௝ 𝐶௞

௝்
൅ ሺ𝜎௭

ଶሻ௝ (2.15) 

where 𝜎௝
ଶis the variance of the measured state for model M୨  and zො୩|୩-ଵ is the predicted measurement at time 𝑘 for model 

𝑀௝ [26]. The adaptive state estimated is calculated using the weighted sum of the estimated produced by models as per 
(2.16) [26]: 

𝑥ො௞|௞ ൌ ෍ μ௞
௝

௥

௝ୀଵ

𝑥ො௞|௞
௝  (2.16) 

The adaptive covariance is calculated in a similar fashion: 

𝑃௞|௞ ൌ ෍ μ௞
௝

௥

௝ୀଵ

൤𝑃௞|௞
௝ ൅ ቀ𝑥ො௞|௞

௝ െ 𝑥ො௞|௞ቁቀ𝑥ො௞|௞
௝ െ 𝑥ො௞|௞ቁ

்
൨ (2.17) 
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3. ELECTRO HYDROSTATIC ACTUATOR 

The EHA modeled in this paper was designed and manufactured at the Centre for Mechatronics and Hybrid Technology 
at McMaster University [1]. The EHA is a self-contained hydraulic system and is composed of several components 
including a symmetric linear actuator, variable-speed servomotor, a bi-directional gear pump, a pressure relief valve, an 
accumulator, connecting tubes, and safety circuits for fault simulations [1]. A variable-speed brushless DC electric motor 
drives the bi-directional gear pump and forces oil into the cylinder. The gear pump adjusts the actuation performance by 
changing the fluid flow rate [1]. An accumulator is used to avoid cavitation and to collect the case drain leakage from the 
gear pump [1]. The control variable of the EHA is the input voltage to the motor that regulates the direction and speed of 
the pump [1]. This results in controlling the value of the fluid flow rate in the outer circuit and adjusts the position of the 
piston [1].  

The EHA system is described by four state variables which include the actuator position 𝑥ଵ ൌ 𝑥, velocity 𝑥ଶ ൌ 𝑥ሶ , 
acceleration 𝑥ଷ ൌ 𝑥, and differential pressure across the actuator 𝑥ସ ൌ 𝑃ଵ െ 𝑃ଶ  [1]. The physical modeling approach was 
used to obtain the nonlinear state-space equations in discrete-time described as follows [1]: 

𝑥ଵ,௞ାଵ ൌ 𝑥ଵ,௞ ൅ 𝑇𝑥ଶ,௞   (3.1) 

𝑥ଶ,௞ାଵ ൌ 𝑥ଶ,௞ ൅ 𝑇𝑥ଷ,௞   (3.2) 

𝑥ଷ,௞ାଵ ൌ 1 െ ൤𝑇
𝑎ଶ𝑉଴ ൅ 𝑀𝛽௘𝐿

𝑀𝑉଴
൨ 𝑥ଷ,௞ െ 𝑇

൫𝐴ா
ଶ ൅ 𝑎ଶ𝐿൯𝛽௘

𝑀𝑉଴
𝑥ଶ,௞ ൅ 𝑇

𝐴ா𝛽௘

𝑀𝑉଴

െ 𝑇
2𝑎ଵ𝑉଴𝑥ଶ,௞𝑥ଷ,௞ ൅ 𝛽௘𝐿൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝑀𝑉଴

𝑠𝑔𝑛ሺ𝑥ଶ,௞ሻ 

  (3.3) 

𝑥ସ,௞ାଵ ൌ
𝑎ଶ

𝐴ா
𝑥ଶ,௞ ൅

൫𝑎ଵ𝑥ଶ,௞
ଶ ൅ 𝑎ଷ൯

𝐴ா
𝑠𝑔𝑛൫𝑥ଶ,௞൯ ൅

𝑀
𝐴ா

𝑥ଷ,௞ (3.4) 

The input of the system is given by [1]: 

𝑢 ൌ 𝐷௣𝜔௣ െ 𝑠𝑔𝑛ሺ𝑃ଵ െ 𝑃ଶሻ𝑄௅଴  (3.5) 

where 𝜔௣ is the pump speed. The numeric values of the parameters in the state space equations are presented in Table 1. 

 

     Table 1. Numeric values of the EHA parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Description Parameter Values 

𝐴ா  Piston Area 1.52 ൈ 10ିଷ  m2 

𝐷௣  Pump Displacement 5.57 ൈ 10ି଻ m3/rad 

𝐿  Leakage Coefficient 4.78 ൈ 10ିଵଶ m3/(sൈPa) 

𝑀  Load Mass 7.376 kg 

𝑄௅଴  Flow Rate Offset 2.41 ൈ 10ି଺ m3/s 

𝑉଴  Initial Cylinder Volume 1.08 ൈ 10ିଷ m3 

𝛽௘  Effective Bulk Modulus 2.07 ൈ 10଼ Pa 

𝑎ଵ  Friction Coefficient 6.589 ൈ 10ସ  

𝑎ଶ  Friction Coefficient 2.144 ൈ 10ଷ  

𝑎ଷ  Friction Coefficient 436  
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4. SIMULATION RESULTS AND DISCUSSION 

In this section, the proposed algorithm (SVSF-SMM) is applied for state estimation on the EHA. The EHA was simulated 
over 9 seconds with a 0.5 Hz square wave pump speed input. Computer simulations were used to investigate the effect of 
parametric uncertainties in the system. The purpose of this example to demonstrate the efficacy of the SVSF-SMM 
estimation process in comparison to the classical SVSF and EKF. The SVSF-SMM algorithm also demonstrates robustness 
in the presence of modeling errors.  

The modeling errors are introduced to the system as leakage faults. The numerical values of the leakage coefficients and 
flow rate offsets are presented in Table 2.  A minor leakage is introduced to the system at t = 3 sec and a major leakage is 
introduced at t = 6 sec.  

 

 Table 2. Numeric values of the leakage coefficients and flow rate offsets 

 

Condition Leakage (𝑳) Flow Rate Offset (𝑸𝑳𝟎) 

Normal 4.78 ൈ 10ିଵଶ m3/(sൈPa) 2.41 ൈ 10ି଺ m3/s 

Minor Leakage 2.52 ൈ 10ିଵଵ m3/(sൈPa) 1.38 ൈ 10ିହ m3/s 

Major Leakage 6.01 ൈ 10ିଵଵ m3/(sൈPa) 1.47 ൈ 10ିହ m3/s 

 

The EKF and SVSF methods performed comparatively for EHA differential pressure estimation. However, the EKF 
performed better than the SVSF for position and velocity estimation, but considerably worse for acceleration estimation. 
Further tuning of the SVSF boundary layer widths may be required for the SVSF to outperform the EKF for all state 
estimate. The SVSF-SMM significantly improved estimation for the SVSF and vastly outperformed the EKF for velocity 
estimation and acceleration. The root-mean squared error (RMSE) of the simulation is shown in Table 3.  

The estimates for each state are shown in Figures 2, 3, 4, and 5. A minor leakage fault is introduced at 3 seconds and a 
major leakage fault was introduced at 6 seconds. Figure 2 shows that the position of the EHA piston was accurately 
estimated by all three filters (EKF, SVSF, SVSF-SMM). For velocity estimation, the error increased slightly for the EKF 
and significantly for the SVSF when the minor leakage fault was introduced as shown in Figure 3. The major leakage 
exacerbated the error further due to an even greater deviation from the initial assumed system model. Figure 4, however, 
depicts the SVSF outperforming the EKH for acceleration estimation. The SVSF-SMM process was able to accurately 
track the EHA for all four states even in the presence of leakage faults.  

 

     Table 3. RMSE computer experiment results  

 

Filter Position (m) Velocity (m/s) Acceleration (m/s2) Differential Pressure (Pa) 

EKF 0.00017642     0.0014599     1.3433     0.0010086      

SVSF 0.00029707     0.0091964     0.28991      0.0010076      

SVSF-SMM 0.00018335 0.0000801 0.00727 0.0010076      
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     Figure 2. Position estimates for the EHA computer experiment 

 

     Figure 3. Velocity estimates for the EHA computer experiment 
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     Figure 4. Acceleration estimates for the EHA computer experiment 

 

     Figure 5. Position Estimates for the EHA computer experiment 
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5. CONCLUSIONS 

This paper introduced the combination of the SVSF and SMM estimation strategies to produce a more robust filter in the 
presence of modeling uncertainties such as spontaneous leakage faults. The SVSF-SMM performs well for this particular 
EHA model due to two main factors. The system parameters of the different leakage modes vary significantly and the 
system noise covariance and measurement noise covariance are sufficiently small. Thus, there is minimal overlap between 
the a priori predictions of each leakage mode. This paper demonstrates that the addition of SMM to the SVSF method 
improves state estimation for a system with multiple modes. Future work will include application of the SVSF-SMM to 
the physical system.  
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