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Abstract—This paper presents fast tracking of a mobile robots
2D pose in a plane using the open source computer vision
library(OpenCV). This can be useful for setting up experiments to
study mobile robot control, robot formation or conflict resolution.
Here the feature detectors SIFT, AKAZE and ORB are tested for
their speed and accuracy for tracking a robot on a plane of size
2.7m x 2.1m. To determine the accuracy that can be achieved
they are compared against an edge-based template matching
algorithm which has a known accuracy. First the accuracy vs
detection time is studied on different size images. Then sensor
fusion is studied by combining the extended Kalman filter (EKF)
and unscented Kalman filter (UKF) with odometry to see what
gains can be made. Root mean squared pose errors of less than
3mm in translation and less than 1 degree in heading are achieved
at a object detection times of less than 50ms.

I. INTRODUCTION

In order to develop accurate control strategies for mobile

robots or self driving cars, their position must be estimated

accurately [1], [2]. This can be achieved in several ways. If

a kinematic model of the robot is known, the position can be

derived by using sensors on the robot, a method known as

odometry. One of the oldest techniques is to use encoders on

the motor drives, such as the robot in [3]. Encoders placed on

the wheels can suffer from wheel slippage. Therefore other

techniques have been tried. In [4] an optical mouse is used.

While it was shown to have a high resolution, it suffers from

problems during non-straight displacements of the robot and

depends on the surface.

Using odometry depends on certain dimensional parameters

which cannot be known with infinite precision. Therefore any

method based on odometry alone will suffer from an error

accumulating with time known as drift. Due to this, it is

usually complemented with at least one other sensor such as

gyroscopes [5], ultrasonic [6] and vision [7].

While a great deal of research is focused on localization or

mapping in unknown environments, this paper considers the

problem of localization when the robot is confined to a known

arena. This is particularly useful for experiments studying

conflict resolution and formation strategies such as in [8] and

[9]. In these situations, tracking must be fast so the robot can

make quick decisions. A couple of examples are provided next.

The work in [10] used light emitting diode’s on the robots

and an overhead camera for localization. Based on a blinking

pattern the algorithm determines which robot is in view. The

absolute accuracy and detect time was not mentioned. Jarupat

in [11] uses 2 overhead cameras to detect robots playing

soccer. A blob detection algorithm was used to localize the

robot. Positioning errors of 91-105mm in translation and 13-

18degrees were reported.

In this paper, descriptor based matching is utilized in order

to accurately track a mobile robot. Descriptor based methods

have been shown to be fast and accurate. The work in [12],

commonly known as the scale-invariant feature transform

(SIFT) provided a fast recognition framework shown to be

invariant to projective transformations. The work in [13],

known as ORB showed similar performance to SIFT but

was much faster. More recently, the AKAZE detector [14]

was shown to have better performance than ORB and similar

performance to SIFT with recognition speeds somewhere in

between ORB and SIFT.

II. CONTRIBUTIONS

Since no literature could be found on the absolute pose

accuracy that descriptor methods could obtain for tracking

objects in a plane, this paper attempts to quantify it. As a

ground truth, the edge-based method in [15] is used since it

was shown to have accuracies of 1/22 of a pixel and 1/100th

of a degree. Later in the paper the use of this algorithm as a

ground truth is justified. The results can be used as a reference

point for other researches setting up similar experiments.

Finally we study if the results of fusing vision together

with odometry using an extended Kalman filter (EKF) and

unscented Kalman filter (UKF) to see what gains can be made.

III. BACKGROUND

This paper is based on the kinematics for a differential drive

mobile robot that moves around in a plane. The robot has

3 degrees of freedom. It is able to move to a position on a

plane which can be described using three coordinates (x, y, θ).
These three coordinates can be obtained using odometry from



wheel encoders, or by using machine vision techniques. They

can also be fused together using a Kalman filter, which is

discussed next.

IV. KALMAN FILTERING

Odometry and machine vision can be combined using a

Kalman filter to obtain a better estimate of the robots position

than either technique could yield individually [16], [17]. A

prediction can be made to estimate the robots pose at time

(t+1) given information from time t [18]. Since the prediction

equations are non-linear, the extended Kalman filter (EKF) as

well as the unscented Kalman filter (UKF) were chosen. Only

the EKF is described here. The reader is referred to [19] for

the details of the unscented Kalman filter. The prediction state

of the EKF can be written as:

Prediction

x̂k+1|k = f(xk|k, yk|k, θk|k) (1)

Pk+1|k = FkPk|kF
ᵀ
k +Q (2)

where x̂ represents the states, f is a function of the state

variables, P is the state covariance matrix, Q is the system

noise covariance matrix and F is the state transition matrix.

The matrix F is obtained by taking the Jacobian of the state

variables and can be written as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂xt+1

∂xt

∂xt+1

∂yt

∂xt+1

∂θt
∂yt+1

∂yt

∂yt+1

∂yt

∂yt+1

∂θt
∂θt+1

∂xt

∂θt+1

∂yt

∂θt+1

∂θt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣
1 0 −�c sin(θt)
0 1 �c cos(θt)
0 0 1

⎤
⎦

The prediction state can be updated using a vision measure-

ment and can be written as:

Update

Kk = Pk+1|kHᵀ(HPk+1|k+1H
ᵀ +R)−1

Pk+1|k+1 = (1−Kk+1H)Pk+1|k(1−Kk+1H)ᵀ+

Kk+1RKᵀ
k+1

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 −Hx̂k+1|k)

where K represents the Kalman gain, H is the measurement

mapping matrix, R is the measurement noise covariance ma-

trix and z is the measurement. Since the vision measurement

maps linearly to the state variables, it can be written as

H =

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

The matrices Q and R are discussed in the results section.

V. EXPERIMENTAL SETUP

An overview of the testing environment is shown in Figure

1. A mobile robots position is tracked in an area of 2.7m by

2.1m. A 2.5 mega-pixel camera captures the scene from above.

Fig. 1: System Overview. A tracked mobile robots position is

estimated using odometry (red triad), machine vision (green

triad) and Kalman filtered (blue triad). The world coordinate

system is shown in the bottom left corner

A. Robot

Here the details of the robot are discussed. A tracked mobile

robot was used with a baseline distance between the wheels of

242mm and a wheel radius of 51.3mm. Each wheel contained

an encoder with a resolution of 12 pulses/revolution. Using

the gear ratio of 64, the expected resolution using encoders

Rencoder can be calculated as:

Rencoder =
(2)(π)(51.3mm)

12 ∗ 64pulses

= 0.419mm/pulse

B. Vision

Machine vision was used to get the robots ground truth pose.

Steger’s method outlined in [15] was chosen for its accuracy

and speed. The specific implementation can be found in the

commercial software Halcon by Mvtec. Using a least square’s

refinement strategy Steger’s method has been demonstrated to

be accurate to within 1/22 of a pixel and 1/100 of a degree.

Over the field of view this gives a translation resolution of:

RSteger =
1

22
pixels

2763mm

1626pixels
= 0.077mm.

The number of pyramid levels for searching was set to 5. A

greediness parameter can speed up the matching and has been

set to 0.75.

The camera was calibrated using the method outlined in [20].

The perspective-n-point algorithm given in [21] was used to

compute a world coordinate system, which is shown in the

bottom left corner of Figure 1.



Descriptor based methods were compared against Steger’s to

determine how accurate they are. Specifically, the OpenCV

implementations of SIFT, AKAZE and ORB were tested. For

SIFT and ORB, default parameters were used. For AKAZE,

the response threshold was changed from 0.001 to 0.0001

to allow it to detect enough key-points on reduced-size im-

ages. To match descriptors, a brute force matcher was used.

The matcher returns the two closest points using k-nearest

neighbors. The points can be kept or rejected by examining a

distance metric and comparing it to a user defined threshold.

For SIFT, the L2 norm is used to compute the distance

between descriptors. Since AKAZE and ORB both use binary

descriptors the hamming distance was used to compute the

distance. Descriptor methods work well when there is a lot of

texture on the object. Therefore a cereal box has been placed

on the robot for easier matching.

For computing the rigid transform between the template and

the image the OpenCV implementation of ’estimateRigid-

Transform’ was used. Data from the encoders was gathered

using the on-board Arduino micro controller. All Kalman

filtering was done using Matlab.

VI. RESULTS AND DISCUSSION

Here the results are discussed. First the results from odometry

are discussed without sensor fuson. It is shown how odometry

results in poor tracking over long periods due to the drift.

Next pose estimation using machine vision is discussed. In

particular, descriptor based methods are compared against each

other to see which one is best in terms of accuracy and

speed. Finally the results of two sensor fusion simulations are

discussed.

A. Encoder Results

Figure 2 shows the result of encoder translation and Figure 3

shows the angle estimation. The encoder drift can easily be

seen. By the end of the run, the robot is off by a distance of

85mm from ground truth and over 10 degrees.

B. Vision Results

For vision testing, two different scenarios were tested. First

tracking was performed on the full size image. This results in

high accuracy but also high detection time. Then the image

was reduced using OpenCV’s ’resize’ function by 2.5 times

(or multiplied by 0.4). This results in a loss of accuracy

but tracking time is reduced. During the testing it was

verified visually that the descriptor based methods were all

less accurate than Steger’s method. This was done manually

by zooming in on the found position in the image. Steger’s

method was the only one that did not show any coordinate

variance while the robot was motionless. This can seen by

looking at Figure 4 which shows coordinate systems from

both Steger’s method (blue) and AKAZE (red). Here the robot

is stationary. The blue coordinate system (Steger’s) does not

move. However the red coordinate system (AKAZE) bounces

around. This justifies the choice of using Steger’s algorithm

as the ground truth.
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Fig. 2: Translation Estimation using odometry from wheel

encoders.
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Fig. 3: Angle Estimation using odometry from wheel encoders.

Fig. 4: Zoomed in images of a stationary robot. The blue

coordinate system represents Steger’s algorithm. The red is

AKAZE. Note that no movement can be detected on the blue

coordinates system. It remains at the same location. However

movement can easily be seen on the red coordinate system,

indicating it is not as accurate as the blue.



Figure 5 shows the root mean squared error (RMSE) results

of vision-only tracking using three descriptor methods. The

results are also displayed in Table I where L2 indicates the L2

norm. This was used to combine the errors in both the X and

Y directions. The accuracies are reported relative to Steger’s

edge gradient method. The left part of the graph shows the

accuracies on a full size image. The right side shows what

happens if the image size is reduced by 2.5 times (multiply by

0.4). ORB is clearly the worst of the three. SIFT and AKAZE

show similar accuracies. This result compares favorably with

recent research shown in [22] which compares the differences

between SIFT and AKAZE.

Vision RMSE Translation and Angle

ORB AKAZE SIFT ORB (0.4) AKAZE (0.4) SIFT (0.4)
0

1

2

3

4

5

6

R
oo

t M
ea

n 
Sq

ua
re

d 
Er

ro
r (

m
m

, d
eg

)

Translation Error (mm)
Angle Error (deg)

Fig. 5: Results of vision tracking. The left side bars indicate

accuracy on a full size image. The right side bars show

accuracies on reduced-size images (image size decreased by a

factor of 0.4)

Full Image Reduced Image
L2 (mm) Angle (deg) L2 (mm) Angle (deg)

ORB 2.82 0.68 5.28 1.03
AKAZE 2.11 0.20 5.1 0.61

SIFT 1.86 0.40 4.46 0.17

TABLE I: RMSE Errors
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Fig. 6: Detect times for the various methods. The times

indicate how fast the each algorithm can detect and locate

in pixel coordinates. Two instances for each are shown: one

on a full size 2.5Mp image, and one on a reduced size 1Mp

image

(a) Full Image

Time (ms)
Steger 1.0 6.0
ORB 1.0 151.2

AKAZE 1.0 491.4
SIFT 1.0 1017.9

(b) Reduced Image

Time (ms)
Steger 0.4 1.95
ORB 0.4 49.3

AKAZE 0.4 82.8
SIFT 0.4 360.9

TABLE II: Detect Times

Not surprisingly, the RMSE increases almost proportionately

to the image size. The only exception to this seems to be the

angle of SIFT, of which the error has dropped by half. Figure

6 shows the detect times for the descriptor-based methods

as well as Steger’s for both the full image and reduced size

images. Steger’s method easily runs in real-time on the full size

as well as reduced-size images. ORB is the next best. AKAZE

can only run in real time on the reduced image. Although SIFT

is the most accurate of the three descriptor methods, it cannot

run in real time on a full image or reduced-image.

In summary, these results show that ORB is the only method

that is suitable for real-time tracking for this particular prob-

lem. If the image size can be reduced, AKAZE could achieve

real-time tracking. SIFT, although the most accurate of the

three descriptor based methods, is not suitable for fast tracking.

For planar applications, the descriptor based methods all have

a difficult time achieving the sub-millimeter and sub-degree

accuracy that Steger’s edge based method achieves. Although

for most tracking applications, the descriptor based methods

achieve an accuracy that should be sufficient.

C. Kalman Filter Simulation 1 - High Vision Variance

It was shown in section V-B that the vision system has a

resolution that is approximately 5.5 times better than the

encoder. This might not always be the case. For example,

if the encoder had a resolution of over 230,000 pulses per

revolution like many industrial servo motors do, it could reach

resolutions of over 50 times what the vision system could

do. In order to simulate the scenario where the vision and

encoder resolutions are more closely matched, Gaussian white

noise is added to Steger’s ground truth vision measurement.

Specifically, translation and rotation noise with a standard

deviation of 55mm and 10 degrees are added to the vision

measurement, respectively. Then the EKF and UKF filters are

applied.

Since the noise was added to the vision measurement, the

matrix measurement covariance matrix noise R is given as

R =

⎡
⎣
3062.2 0 0

0 2534.3 0
0 0 1.035

⎤
⎦ .

The system covariance matrix Q was computed by comparing

the ground truth with the odometry prediction at each time

step and then calculating the variance of each state. This was



used as a starting point and then it was manually modified.

The final matrix is given as

Q =

⎡
⎣
16.74 0 0
0 21.51 0
0 0 0.000486

⎤
⎦ .

Figures 7 and 8 show the translational and angular results

of applying the EKF and UKF. Table III shows the root

mean squared errors (RMSE) for all methods. The EKF and

UKF show similar results. The EKF does slightly better in

translation and the UKF does slightly better in angle. Overall

the EKF and UKF show much better results than using vision

or odometry individually.
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Fig. 7: Simulation 1 - EKF and UKF filters for translation

tracking using vision and odometry.
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Fig. 8: Simulation 1 - EKF and UKF filters for angle tracking

using vision and odometry.

RMSE
State EKF UKF Odometry Vision

X (mm) 16.1222 16.3718 72.5548 54.3846
Y (mm) 16.2234 17.1214 68.982 53.4756

Angle (deg) 2.68276 2.07099 8.76642 10.6263

TABLE III: Simulation 1 - High Vision Variance RMSE

D. Kalman Filter Simulation 2 - Low Vision Variance

The accuracy of descriptor based methods was shown in

section VI-B. This section investigates whether the pose es-

timation can be improved further by using information from

the encoders. In this simulation, translation and rotation noise

with a standard deviation of 6mm and 4 degrees are added

to the vision measurement, respectively. This produces vision

RMSE results that are close to what the descriptor methods

produced on a reduced size image shown in Figure 5. It will

be shown how much these errors can be reduced by using the

EKF and UKF.

The measurement noise covariance matrix R and the system

noise covariance matrix Q were computed in a similar manner

to the last simulation and are given as:

R =

⎡
⎣
45.7 0 0
0 45.7 0
0 0 0.0055

⎤
⎦

and

Q =

⎡
⎣
25.47 0 0
0 24.52 0
0 0 0.00082

⎤
⎦ .

Figures 9 and 10 show the translational and angular results

of applying the EKF and UKF. The EKF and UKF show

very similar results. Although the EKF and UKF show better

results than using odometry or vision individually, the result

is not as pronounced as it was in the high variance simulation

previously. In this simulation, the vision system is already very

accurate. Nevertheless, both the EKF and UKF are able to use

the prediction from odometry to obtain a better result than

pure vision.

Table IV shows how much the EKF and UKF are able to

lower the RMSE compared to using vision by itself. For the

translation the RMSE is lower by about 1.2mm. For the angle

it is lower by about 1 degree. In fact, by complementing vision

with odometry, the accuracy of the full-sized image is obtained

from the left side bars of Figure 5. This means that a reduced

image can be used to speed up the vision recognition time

while keeping the accuracy that was obtained using a full size

image.
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Fig. 9: Simulation 2 - EKF and UKF filters for translation

tracking using vision and odometry.
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Fig. 10: Simulation 2 - EKF and UKF filters for angle tracking

using vision and odometry.

RMSE
State EKF UKF Odometry Vision

X (mm) 2.67621 2.7069 72.5548 3.90613
Y (mm) 3.15117 3.16597 68.982 4.38743

Angle (deg) 0.817416 0.794677 8.76642 1.34938

TABLE IV: Simulation 2 - Low Vision Variance RMSE

VII. CONCLUSIONS

This paper showed the accuracy and detection time that could

be obtained using descriptor based matching for tracking a

mobile robot in a plane. RMSE of less than 3mm and 1degree

accuracy were reported. Of the three descriptor based methods,

ORB seems to be the best choice for planar tracking. Although

not as accurate as SIFT and AKAZE, its accuracy should be

sufficient for most planar tracking applications. Furthermore it

runs over 3 times faster than AKAZE and almost 7 times faster

than SIFT. If the vision results are complemented with the EKF

and UKF, the accuracy results can be improved, though only

marginally. This is because using descriptor based methods is

already much more accurate than odometry. The effect may

be more pronounced if higher resolution encoders are used.
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