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Abstract—In this paper, a new model in augmented state space 
allowing for faster prediction of hydrogen peroxide decay rates 
is proposed. This information is important for the development 
of new hydrogen peroxide solutions used to fight pathogens and 
harmful germs. The well-known Kalman filter and the 
unscented Kalman filter are applied on developed mathematical 
models and experimental measurements. The results are 
compared and discussed. 
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I.  INTRODUCTION  

Virox Technologies Inc. (Oakville, Ontario) specializes in 
the development of innovative cleaning and disinfection 
technologies based on hydrogen peroxide as the active 
ingredient. Hydrogen peroxide is an optimal ingredient for use 
in disinfectant formulations as it has a wide spectrum of 
antimicrobial efficacy, has a highly preferred environmental 
profile, and does not leave toxic residues on surfaces upon 
application (i.e., it breaks down to water and oxygen). More 
specifically, Virox Technologies Inc. is an industry leader in 
innovating peroxide based antimicrobial formulations wherein 
very low concentrations of hydrogen peroxide (less than 1%) is 
synergistically made to be highly effective against pathogenic 
organisms. This selective acceleration of hydrogen peroxide’s 
activity against pathogens has been possible by blending 
hydrogen peroxide with specific types and amounts of readily 
available and safe inert ingredients; such as anionic surfactants, 
cyclic carboxylic acids, and more. The innovative discoveries on 
synergistic mixtures of hydrogen peroxide at low concentrations 
with the select inert additives has led to development of the 
multi-patented accelerated hydrogen peroxide (AHP) 
technology platform. Today, products based on the AHP 
technology platform are found in over 60 countries worldwide, 
and in about 75% of Canadian healthcare institutions. 

Experiments performed at Virox have shown that collecting 
statistically significant data regarding hydrogen peroxide decay 
requires weeks of incubation time.  The need of an accelerated 
degradation method is required to speed up the determination of 
hydrogen peroxide lifetime. This paper suggests a hypothetical 

setup using estimation strategies that predict two parameters: 
temperature variation, and hydrogen peroxide concentration. 

State and parameter estimation theory is an important field 
in mechanical and electrical engineering. The strategies are used 
to predict, estimate, or smooth out important system state and 
parameters [1, 2]. The Kalman filter (KF) is the most popular 
estimation strategy, and yields a statistically optimal solution to 
the linear estimation problem [3]. The goal of the KF is to 
minimize the state error covariance, which is a measure of the 
estimation accuracy and is defined as the expectation of the state 
error squared [4]. The state error is defined as the difference 
between the true state value and the estimation state value. 
Although the KF yields a solution for linear estimation 
problems, it is based on a few strict assumptions: the system and 
measurement models must be known, the noise distribution is 
Gaussian, and the behavior is linear [5, 6]. If any of these 
assumptions are not held by the actual system, then the KF may 
yield inaccurate or unstable estimation results [7]. A popular 
nonlinear form of the Kalman filter is the unscented Kalman 
filter (UKF). It utilizes statistics to approximate the nonlinear 
probability density function (PDF) [8]. 

For the experiments performed in this paper, the following 
assumptions have been made: (1) reactions are first order only.  
In the event that this is not the case, one can still consider 
reactions as pseudo-first order but with a different reaction 
constant kobs(t) [9]; and, (2) the loss of hydrogen peroxide is 
independent on the concentration when the concentration is low.  
This applies to the experiments in this paper due to the fact that 
hydrogen peroxide concentrations were relatively low, ranging 
between 0.5% to 2% of total solution weight. The experimental 
data is described in Section 2, the methods and analysis are 
described in Section 3, the results are found in Section 4, and the 
papers is then concluded. 

II. EXPERIMENTAL DATA 

Experimental data was obtained within the facilities at Virox 
and averaged in order to determine initial reaction constant and 
variances that needed to be fed into matrix R, the measurement 
noise covariance. A summary of data is available in Tables I 
through III. 
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Based on this data, it is sufficient to determine the reaction 
constant ݇ , activation energy ܧ a (also known as the enthalpy 
of decomposition), and the initial parameter A0 which come into 
the Arhenius equation in (1). In (1), ܴ  is the universal gas 
constant and ܶ is the temperature. 

 ݇ሾܪଶܱଶሿ ൌ ሻܴܶ/ܽܧ–expሺܣ 

In order to determine k, one linearly fits the natural log of 
peroxide loss over time via following relationship: 

 

  lnሾܥሺݐሻ/0ܥሿ ൌ– ݇ሾ2ܱ2ܪሿ(2)            ݐ 

 

where C(t) and C0 are the concentrations of the current and initial 
time steps respectively. Analogously, one fits reciprocal 
temperature to natural log of k to determine Ea and A0: 

 

          ሺ– ሻܴܶ/ܽܧ  lnሺ0ܣሻ ൌ lnሺ݇ሺܶሻሻ           (3) 

 

Plots of the curve fitting described by (2) and (3) are shown 
in Fig. 1 and 2.   

TABLE I.  PERCENT LOSS OF H2O2 AT 50°C 

Time   
(Hr) 

pH = 2 pH = 3 pH = 4 pH = 5 
% 

Loss 
Err
or 

% 
Loss 

Err
or 

% 
Loss 

Err
or 

% 
Loss 

Err
or 

120 0.16 0.27 0.00 0.00 0.02 0.03 0.00 0.00 

240 1.43 0.55 0.00 0.00 0.49 0.47 0.06 0.10 

360 2.92 1.06 0.06 0.08 0.47 0.41 0.21 0.27 

 

TABLE II.  PERCENT LOSS OF H2O2 AT 54°C 

Time   
(Hr) 

pH = 2 pH = 3 pH = 4 pH = 5 
% 

Loss 
Err
or 

% 
Loss 

Err
or 

% 
Loss 

Err
or 

% 
Loss 

Err
or 

120 1.37 0.70 0.07 0.07 0.03 0.04 0.00 0.00 

240 2.41 0.85 0.35 0.60 0.51 0.51 0.04 0.03 

360 2.97 0.95 0.21 0.36 0.24 0.41 0.00 0.00 

 

TABLE III.  PERCENT LOSS OF H2O2 AT 70°C 

Time   
(Hr) 

pH = 2 pH = 3 pH = 4 pH = 5 
% 

Loss 
Err
or 

% 
Loss 

Err
or 

% 
Loss 

Err
or 

% 
Loss 

Err
or 

120 1.680 1.94 0.03 0.06 0.03 0.05 0.00 0.00 

240 7.85 1.29 0.07 0.07 0.00 0.00 0.12 0.21 

360 10.98 1.05 0.30 0.52 0.71 0.72 0.04 0.07 

 

 
Figure 1.  Linear fit of (2). 

 
Figure 2.  Linear fit of (3). 

Both of these fits from Fig. 1 and 2 can provide all required 
ingredients for the determination of ݇. The constants have been 
determined as follows: 

 
Ea = 70 kJ ൈ	mol-1 

A0 = 0.4 ൈ 105.8 min-1 
k = 1.45 ൈ 10-6 min-1 at 50°C 

The obtained values are within reasonable agreement with 
results published elsewhere for aqueous solutions, keeping in 
mind the pH levels in this study [10]. Additionally, analysis of ݇ 
constants was performed on various pH levels. Results are 
depicted in Fig. 3.  As there are only 4 points, there is no clear 
relationship between ݇  and pH. Therefore, it will be 
omitted in calculations. 
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Figure 3.  K at various pH Levels. 

III. METHODS AND ANALYSIS 

A. Linear System of Equations 

The augmented state space system is based on three 
variables, c - concentration, T - temperature, and k - reaction 
rate constant.  The discretized augmented state space system is 
written as: 

 

,              (4) 

where Δt is sampling time (200 minutes). Initial conditions for 
all simulations are shown in (5). 

 

                         (5) 

B. Determination of Q and R matrices  

In most cases, only c and T are measurable during 
experiments. Thus, H, or measurement matrix, is 
written as: 

                                            (6) 

Additionally, the noise covariance matrices ܳ (system noise) 
and ܴ  (measurement noise) are required to run any type of 
Kalman filter. The determination of ܴ is straightforward and it 
is obtained through experimental setup. For this study, it is 
determined to be: 

                              (7) 

The determination of the Q matrix is usually the trickiest part 
of Kalman filtering.  Matrix elements of Q are treated as tunable 
parameters which are determined based on the uncertainties that 
may arise in a system. With this experiment, these uncertainties 
might be temperature and humidity variations. Additionally, for 
the augmented state space system, matters become more 
complicated due to the fact that the augmented part of the 
system, shown below: 

                        (8) 

This becomes a Wiener process with unbounded variance shown 
in (9).  One solution to this problem is to set variances wT, wK to 
zero. However, doing so would change the controllability 
of the system.  

                                (9) 

There is another way, however, to keep variances nonzero 
while having bounded covariances of augmented state variables. 
This is described in [2], and the procedure is as follows: 

 Choose matrix elements of Q to be a few percent of 
estimated values 

 Run simulations for true and Kalman estimated systems 

 Calculate variances of simulated variables  

 Adjust matrix elements of Q such that (10) is satisfied 

                               (10) 

The procedure from [3] was adopted and the resulting Q 
matrix was determined to be: 

                         (11) 

C.  System Setup and Kalman Estimators  

The estimators used in this study were the Kalman filter 
(KF), unscented Kalman filter (UKF), and the interacting 
multiple model (IMM) setup based on the KF and the UKF. For 
the IMM algorithm, (12) was used as the probability transition 
matrix: 

                                (12) 

Temperature profiles were treated as unknown parameters 
fed into the Kalman estimators. The main objective was to assess 
the accuracy of predicted reaction rate constants compared to 
their true counterparts. 
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IV. RESULTS 

A.  Profiles with Rising Temperatures 

Rising temperature profiles were simulated through raising 
the temperature by a certain amount at ܪ ൌ 2 as demonstrated 
in Fig. 4, Fig. 5, and Fig. 6.  The three state variables (Peroxide 
concentration, temperature, and k-constant) are shown in each 
of these figures, along with the KF, UKF, and IMM results.  The 
probabilities (Mu) of the IMM system being in the KF or UKF 
mode are also shown.  

 
Figure 4.  Temperature profile with a 50°C change. 

 
Figure 5.  Temperature profile with a 5°C change, late onset. 

 
Figure 6.  Temperature profile with a 5°C change, early onset. 

It is interesting to note that in the case of large temperature 
change, neither one of the Kalman estimators provided correct 
values of k. At lower changes in temperature and based on the 
root mean square errors (RMSE) seen in Tables IV and V, one 
can see that the IMM and the UKF are similar in accuracy. The 
plain KF is unable to estimate the non-linear k constant of the 
system. 

TABLE IV.  RMSE’S FOR TEMPERATURE PROFILE WITH A 5°C CHANGE, 
LATE ONSET 

System States 
Estimator RSME 

KF UKF IMM 
Concentration 

(M) 
8.64662×10-5 8.60678×10-5 8.41062×10-5 

Temperature 
(K) 

5.25555×10-1 1.41209×10-1 7.67782×10-2 

K Constant 
(min-1) 

5.85417×10-7 1.60082×10-7 6.5447×10-8 

 

TABLE V.  RMSE’S FOR TEMPERATURE PROFILE WITH A 5°C CHANGE, 
EARLY ONSET 

System States 
Estimator RSME 

KF UKF IMM 
Concentration 

(M) 
8.14059×10-5 8.15825×10-5 7.98528×10-5 

Temperature 
(K) 

5.26052×10-1 1.401×10-1 7.6568×10-2 

K Constant 
(min-1) 

5.84784×10-7 1.09314×10-7 6.8593×10-8 

 

 

B.  Profiles with Random Temperature Changes  

Experimental setup remains the same as described in the 
preceding section, but here the temperature profiles have 
random temperature variations to simulate hydrogen peroxide 
products being used and stored under real world conditions.  
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The simulation results are shown in Fig. 7 through Fig. 9 and 
Tables VI through VIII.   

 

 
Figure 7.  First profile with random temperature variation. 

 
Figure 8.  Second profile with random temperature variation. 

 
Figure 9.  Third profile with random temperature variation. 

 

TABLE VI.  RMSE’S FOR FIRST PROFILE WITH RANDOM TEMPERATURE 
VARIATION 

System States 
Estimator RSME 

KF UKF IMM 
Concentration 

(M) 
8.60051×10-5 8.54607×10-5 8.3524×10-5 

Temperature 
(K) 

1.02656 1.51515×10-1 9.73733×10-2 

K Constant 
(min-1) 

1.34067×10-7 1.29145×10-7 1.71801×10-7 

 

TABLE VII.  RMSE’S FOR SECOND PROFILE WITH RANDOM TEMPERATURE 
VARIATION 

System States 
Estimator RSME 

KF UKF IMM 
Concentration 

(M) 
1.74623×10-4 2.27619×10-4 2.25101×10-4 

Temperature 
(K) 

4.55449 6.321×10-1 6.21528×10-1 

K Constant 
(min-1) 

1.29936×10-6 2.91613×10-7 6.26771×10-7 

 

TABLE VIII.  RMSE’S FOR THIRD PROFILE WITH RANDOM TEMPERATURE 
VARIATION 

System States 
Estimator RSME 

KF UKF IMM 
Concentration 

(M) 
8.13347×10-5 8.34285×10-5 8.16195×10-5 

Temperature 
(K) 

4.56238×10-1 1.47175×10-1 8.8286×10-2 

K Constant 
(min-1) 

1.34067×10-7 1.29145×10-7 1.71801×10-7 
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Based on Fig. 7 through Fig. 9 and Tables VI through VIII, 
one can see that the general trend is preserved.  The UKF and 
IMM do the best job at predicting the reaction constant ݇, in 
terms of state estimation error. Additionally, the probability of 
switching between KF and UKF modes are more pronounced 
during large temperature variations. This indicates the 
robustness of IMM predictions with respect to random 
temperature spikes. 

V. CONCLUSION 

This paper proposes a new augmented state space model for 
faster prediction of hydrogen peroxide decay under any user-
defined temperature profile. It was shown that the best state 
estimation accuracy was achieved by the UKF and IMM 
methods. Additionally, it was shown that for the IMM and UKF 
to have the best accuracy, low temperature changes and shorter 
durations of particular temperature variations are required. In 
terms of future work, more temperature profiles will be tested, 
and the pH level will be incorporated into the model. As the 
team was unable to find equations that relate the pH level to the 
rate of reaction, the effects of pH level would have to be 
incorporated through experimental data. The team will utilize a 
small set of experimental data with combined estimation and 
deep learning algorithms to create a more comprehensive model 
in the future. 
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