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Abstract—This paper studies estimation and control methods 
applied on a double-inverted pendulum. The most popular 
estimation strategy, referred to as the Kalman filter (KF), was 
programmed and implemented on a double-inverted pendulum 
built by Quanser (Markham, Ontario). A linear quadratic 
regulator (LQR) was used to control the actuator joints of the 
double-inverted pendulum to keep it vertically balanced under 
different conditions. The application of the KF improved the 
tracking performance. The results of the paper are discussed, 
and future work is considered. 

Keywords—double inverted pendulum; control system; Kalman 
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I.  INTRODUCTION  

The double-inverted pendulum is one of the most popular 
mechatronic research systems used to study control and 
estimation strategies. The system itself is relatively easy to build, 
and is naturally unstable which makes it quite popular to study. 
The complex dynamics of a double-inverted pendulum offers a 
system suitable for the development and examination of new 
control and estimation methodologies. The findings can be 
applied to problems in current research, such as holding the 
balance of a robot or rotor-based aircraft [1].  In order to improve 
the control performance of the system, estimation strategies can 
be used to provide better knowledge of the states [1]. 

State and parameter estimation theory is an important field 
in mechanical and electrical engineering. The strategies are used 
to predict, estimate, or smooth out important system state and 
parameters [2, 3]. The Kalman filter (KF) is the most popular 
estimation strategy, and yields a statistically optimal solution to 
the linear estimation problem [4]. The goal of the KF is to 
minimize the state error covariance, which is a measure of the 
estimation accuracy and is defined as the expectation of the state 
error squared [5]. A popular nonlinear form of the Kalman filter 
is the unscented Kalman filter (UKF). It utilizes statistics to 
approximate the nonlinear probability density function (PDF) 
[6]. These filters can be applied on mechanical or electrical 
systems to improve the overall control tracking performance [4]. 

The brief paper is organized as follows. In Section II, the 
linear-quadratic regulator (LQR) controller, the standard KF, 
and the MATLAB simulation is summarized. The application 
results are provided and discussed in Section III. Conclusions 
and future work are considered in the final section of the paper. 

 

II. METHODOLOGY 

A. Model and Linear–quadratic regulator (LQR) control 

The double-inverted pendulum has a complex dynamic 
system [7]. In order to improve the control performance (e.g., 
balancing the system dynamics), a linear-quadratic regulator 
control strategy is applied in this paper. Quanser (Markham, 
Ontario) built the double-inverted pendulum system used in this 
paper [7]. The results of this paper were built upon this platform 
and the provided software. The first step of applying the LQR 
control strategy is to obtain the state-space model of the system. 
The motion equations may be obtained by using the following 
Euler-Lagrange equation, as follows [7]: 
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The generalized coordinate ݍ may be found as follows [7]: 
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where the above parameters are defined as follows [7]: 
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The Lagrange (or energy) equation for the double-inverted 
pendulum system is defined by: 

ܮ ൌ ܶ െ ܸ                                      (7) 

In equation (7), ܶ refers to the kinetic energy of the double-
inverted pendulum system, ܸ is the total potential energy of the 
double-inverted pendulum system. According to equations (4) 
through (7), the generalized forces of the system may be found 
as follows [7]: 

ܳଵ ൌ ܨ െ ሶݔܤ                                  (8) 
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After obtaining the nonlinear motion equations, a Jacobian 
matrix is calculated and the linear state-space model may be 
found as follow: 

ሶݔ ൌ ݔܣ   (11)                                 ݑܤ

ݕ ൌ ݔܥ   (12)                                 ݑܦ

where  ݔ refers to states, ݑ is the input from the motor, ܣ is the 
system matrix, ܤ  is the input matrix, ܥ  is the measurement 
matrix, and ܦ is the feedforward matrix.  The state and output 
equations are respectively as follows: 
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After obtaining the linear state-space matrices, the LQR 
controller can be implemented. The LQR control strategy can 
provide full feedback control of the system [4]. The LQR 
equation is defined by [7]: 
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In equation (15), ܳ and ܴ are system and measurement noise 
covariances, respectively: 
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ܴ ൌ 0.02                               (17) 

In order to reduce regulation error of the linear cart, an 
integral term is added: 
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According to the control law, the equation of control 
feedback of this double-inverted pendulum may be found as 
follows: 

ݑ ൌ െܭሺߟሻ                              (20) 

There are three important model characterizations for control 
of the double-inverted pendulum: observability, controllability, 
and stability.  Observability of a system states can be observed 
from the system output [8]. In this paper, the system is 
observable but not completely observable because the 
measurement matrix is a non-square matrix. The dynamic 
system is said to be controllable which means for any desired 
final state, the system can be driven by the input [8]. In this paper, 
by calculating the rank of the controllability matrix, the 
controllability can be proven. The system is stable if every 
bounded input produces a bounded output (principle of BIBO 
stability).  In this paper, the stability was calculated using Maple, 
because some poles are positive, the system is considered to be 
unstable [9]. 

B. Kalman Filter and Matlab Simulink 

For the control of the double-inverted pendulum, the cart 
position, and both pendulum angles are measured.  According to 
the measurements, a voltage is determined that is used by the 
control system to actuate the cart’s motor.  As a result, the cart 
balances the double inverted pendulum and keeps the upright, 
vertical position. 

For the software, the programs Matlab and Simulink were 
used. For this system, the controller could only be implemented 
in Simulink, whereas the programming environment of Matlab 
offers more possibilities. The workstation provides specialized 
Simulink blocks to communicate with the pendulum control.  In 
real-time, the measurements of the position and angles are 
processed to control the motor by setting the voltage (as per the 
Figure 1). Simulink was used as the interface with the 
workstation, and Matlab as the data processor and background 
algorithms. The goal of this setup was to go beyond the setup 
provided commercially by Quanser in [7], and create a setting 
that enables real-time signal processing and the capability to add 
features over the time without losing the overview. 

 
Figure 1.   Control loop of the double-inverted pendulum. 

C. Implementation of the Kalman Filter 

 For the Kalman filter, a linear, discrete-time, and time-
invariant system model is used [10]: 

ାଵݔ ൌ ݔܣ  ݑܤ                          (21)ݓ

ାଵݖ ൌ ାଵݔܥ   ାଵ                          (22)ݒ

The Kalman filter is based on two stages: prediction and 
update.  In each stage, the state vector and its covariance matrix 
are calculated. To simplify the notation, we write for the 
expected value of the a-priori density of the prediction as 
follows: 

ሽݖ|ାଵݔሼܧ ൌ  ሶାଵ                         (23)ݔ

For the expected value of the a-posteriori density of the 
update as follows: 

ሽݖ|ାଵݔሼܧ ൌ  ොାଵ                         (24)ݔ

The estimation criterion is the minimization of the square 
norm if the estimation error: 

ොሺ݊ሻݔ|ሼܧ െ ሺ݊ሻሽݖ|ሺ݊ሻଶݔ → ݉݅݊             (25)   

With the linearized matrices of the dynamic coefficient 
matrix ܣ, the coupling matrix ܤ, and the measurement matrix ܥ, 
we can use the extended Kalman filter (EKF) to decrease our 
measurement deviation. For the computation, the equations are 
shown below [11]: 

Prediction stage: 
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Update stage: 
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       (28) 
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The unscented Kalman filter (UKF) belongs to the group of 
sigma point Kalman filter, which uses a weighted statistical 
linear regression strategy that approximates the nonlinear 
model statistically [6]. 

D. Implementation of the Developed Interface 

The Kalman filters are implemented in a Matlab block in 
Simulink. The advantage is its simplicity. The block has to be 
created, the function to be written and the connection of inputs 
and outputs to be made. The drawbacks are the computation time 
that might be slower in comparison with the usage of Simulink-
only state space blocks. Nevertheless, the Matlab function block 
can be used. The value of the gain ‘FilterChoice’ can be 
modified using the user interface. With the if-operation and the 
modification of the choice input, different code sections can be 
executed, performing different KF options. The voltage input for 
the KF is provided by a ‘Data Store Read’ block. If we would 
connect the input ݑ with the output of the voltage determination 
step, we would create an algebraic loop. Due to the discrete state 
space model, the computation has to be executed in a finite time 
step. By calling itself, an infinite circle is created making a 
discrete state space computation impossible. Due to this, instead 
of initiating the execution of the KF function by the arrival of 
the voltage input, we write the input ݑ in a ‘Data Store Write’ 
block and the value can be read out if the measurements initiate 
the execution of the block. 

 
Figure 2.  Structure of the workstation software. 

Matlab can modify the Simulink model and the user interface 
during the simulation by changing the parameters in Matlab’s 
data structure. In the opposite way, Matlab obtains the data from 

Simulink over event-listeners and from the user interface over 
callbacks. In order to accomplish this, the event listeners and 
callback functions have to be implemented first. The function 
‘localCreateUI’ creates the figure of the user interface with all 
components and adds callback functions that are executed, each 
time the buttons are pressed. Additionally, this function also 
executes the function ‘localLoadModel’, which implements the 
event-listeners for the measurements of the cart position and the 
angles of the short and medium pendulum. Each time, a value 
arrives at one of the event-listener blocks, the event-listener 
function in Matlab is executed. By this approach, a bidirectional 
connection between the Simulink model and the user interface 
over the model is possible. 

III. SIMULATION RESULTS 

A. Software Simulation 

The software only simulation is based on Matlab and 
Simulink.  It provides software-based system running simulation 
for this double inverted pendulum system.  All of the important 
parameters of the system such as output voltage, cart position, 
and pendulum angles are visible by real time graphs.  Software 
only simulations can be roughly divided into ideal and non-ideal 
cases. Ideal types do not have system and measurement noises 
included in the simulation. While the non-ideal cases take all 
these factors in count and the results are closer to real system.   
In this paper, we test system performance for all these situations. 

The system is built in Simulink and all components are 
represented by functional blocks. There are two key parts in the 
system design, namely LQR balance controller and the 
pendulum system.  The pendulum system itself can be simulated 
in several ways. Regardless, using any method to simulate the 
pendulum system, there is only one input (motor voltage) for this 
system. The three output states are cart position and angles of 
the two pendulums. 

1) Ideal Case 
This specific simulation employs an ideal system model, 

which contains no noise interference. The results should be ideal 
inputs and output which will be considerably different from the 
hardware-connected case. However, this insight-view provides 
a convenient way to become familiar with the system and can 
benefit the configuration and optimization of the physical 
system. Simulink is the platform to perform this work. All of the 
parameters will be monitored in Simulink scopes. The Matlab 
file provides all the matrices and parameters of the system. The 
operation of the Simulink model is based on content loaded into 
Matlab’s workspace. The pendulum system itself is represented 
by the state space model. Data flow for this target mainly 
contains the input, which is the voltage applied to the cart motor.  
The output are the three states of the system, cart position, angle 
of the first pendulum and the angle of the second pendulum, 
respectively. LQR balance control is the selected controller in 
this paper; however, the popular PID controller could also be 
used. The LQR part sends the calculated voltage values to 
control the motor motions. The simulation performed is set to 
contain two position values: the cart is supposed to stay at one 
place for ten seconds, then move to the second position and stay 
there for the next ten seconds, before returning to the original 
position. The simulation results are shown next. 
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Figure 3.  Simulation output without noise (Case 1). 

In Figure 3(top-left), the yellow curve is the position setting 
and the blue curve is the cart output. The simulated cart moves 
in a rather smooth manner to reach the settling points. Compared 
with the yellow curve, the blue curve shows reasonable 
overshoot and low steady state error. The joint angles and 
voltage show small fluctuations, only occurs when the cart 
moves from one location to another. 

 
2) Noisy Measurement Case 

In this case, noisy measurements are considered and added 
to the simulation. In order to improve the control results, the 
Kalman filter was added to estimate the states. The noisy signal 
with filtered results are shown in Figure 4. 

 
Figure 4.  Simulation output with the KF (Case 2). 

The results contain small fluctuations during the stabilization 
process of the cart (after quick position movements). The 
simulation shows that the steady-state error stays approximately 
at the same level compared with the ideal case.  In contrast, the 
angles were more unstable. However, unlike the ideal case, the 
fluctuations never settle. 

 
3) System with Process and Measurement Noise 

In this case, the simulation contains both system and 
measurement noise. The cart position results without the 
addition of the KF shows significantly more fluctuations 
compared to the ideal case. The angles reveal the same trend as 
the cart position. In contrast, the addition of the KF shows more 
fluctuations which means the cart requires additional 
movements to keep the system balanced. 

 

 
Figure 5.  Simulation output with the KF (Case 3). 

B. Experimental System and Software Simulation 

This section focuses on the simulation with the pendulum.  
The motion and status of the real system is considerably different 
from the simulated type. The goal is to achieve and demonstrate 
the successful control of the double-inverted pendulum system. 

1) Normal Case 
In case, consider the system noise covariance matrix as per 

equation (16) and the measurement uncertainty covariance 
matrix as per equation (17). The normal case results are shown 
in the following figure. 

 

 
Figure 6.  Normal case results. 

The movement of the cart is fast and steady.  The cart moves 
forward and backward in small scales to keep the balance of both 
pendulums. The angle values fluctuate as the cart moves to keep 
the whole system balanced. The addition of the KF improved the 
overall steady-state error of the system. Note also that the two 
angle states were quite similar in these two cases. 

2) Noisy Case 
The noisy system cases were simulated by increasing the 

noise covariance.  The results are shown as per Figure 7. The 
system noise covariance matrix was changed as follows: 

ܳ ൌ

ۏ
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ێ
ێ
ێ
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0 350 0 0 0 0 0
0 0 100 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
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ې

            (31) 
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Figure 7.  Noisy case results. 

The cart moves quickly but in small movements in this case. 
The addition of the KF to the system improves the system 
performance, and the required settling time was decreased. It is 
important to note that both the LQR and the LQR with the KF 
methods were able to balance the double-inverted pendulum 
system. However, the LQR with KF method had improved 
response and faster settling time. 

IV. CONCLUSIONS AND FUTURE WORK 

In this brief paper, the results of applying a controller and 
estimation strategy on a double-inverted pendulum were 
summarized and discussed. With well-defined parameters and a 
well-tuned KF, the system is able to overcome instabilities and 
external forces. The results demonstrate that the KF results are 
closer to the true values, which means that the LQR control 
strategy with the KF provides a better performance for the 
double-inverted pendulum system. Future work will look at 
implementing other control strategies, such as an adaptive PID, 
and comparing the results. 
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