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ABSTRACT 
One of the most popular trajectory-tracking controllers 

used in industry is the PID controller. The PID controller 
utilizes three types of gains and the tracking error in order to 
provide a control gain to a system. The PID gains may be 
tuned manually or using a number of different techniques. 
Under most operating conditions, only one set of PID gains 
are used. However, techniques exist to compensate for 
dynamic systems such as gain scheduling or basic time-
varying functions. In this paper, an adaptive PID controller is 
presented based on Bayesian theory. The interacting multiple 
model (IMM) method, which utilizes Bayes’ theorem and 
likelihood functions, is implemented on the PID controller to 
present an adaptive control strategy. The strategy is applied to 
a simulated electromechanical system, and the results of the 
proposed controller are compared with the standard PID 
method. Future work is also considered. 

 
INTRODUCTION 

Control theory is an integral part of many, if not all, 
engineering systems. It typically involves the modification of 
a system or environment in order to obtain a desired outcome. 
One of the most common scenarios is trajectory tracking or 
trajectory following. In this case, an engineer requires a 
system to follow a certain path, such as in robotic welding 
systems. The engineer knows what path needs to be followed 
by the robot, and this path is referred to as the desired 
trajectory. Utilizing sensors and measurements, and some 
knowledge of the system dynamics, a signal is sent from the 
output of the system to the controller; known as feedback. The 
controller compares the desired trajectory with the actual 
trajectory, and a corresponding control input is calculated. 
This input signal is used by the system to modify its output 
accordingly. Although drastically simplified, this is the basic 
principle behind control theory. 
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The ability to control a mechanical or electrical system 
depends on the knowledge of the true states or parameters of 
interest. For example, consider a linear electromechanical 
system, where the kinematics states such as position, velocity, 
and acceleration are defined to be the states of interest. The 
state dynamics, or how the system operates with time, may be 
captured by using a state representation as follows: 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅  ௞ (1.1)ݓ
where ݔ௞ defines the system states, ܣ is the linear system 
matrix, ܤ is the input gain matrix, ݑ௞ is the corresponding 
input to the system, and ݓ௞ refers to the system noise present 
in the system. To understand the behaviour of a system, 
elements from the state vector need to be observed or 
measured. Sensors placed in the environment are used to 
measure the states of interest. A relationship exists between 
the measurements and the states, and may be defined as 
follows: 

௞ାଵݖ ൌ ௞ାଵݔܥ ൅  ௞ାଵ (1.2)ݒ
where ݖ௞ defines the measurements, ܥ refers to the linear 
measurement matrix, and ݒ௞ refers to the measurement noise 
present in the sensors. It is assumed in that the system and 
measurement noises are modeled as Gaussian noise, with zero 
mean and covariance’s ܳ௞ and ܴ௞, respectively as follows: 

,௞ሻ~ࣨሺ0ݓሺ݌ ܳ௞ሻ (1.3) 
,௞ሻ~ࣨሺ0ݒሺ݌ ܴ௞ሻ (1.4) 

Therefore, it is the role of a filter to extract knowledge of 
the true states typically from noisy measurements or 
observations made of the system, and form state estimates ݔො௞. 
The name ‘filter’ is appropriate since it removes unwanted 
noise from the signal. The concept of filter applies equally 
well to nonlinear systems and measurements, defined 
respectively by: 

௞ାଵݔ ൌ ݂ሺݔ௞, ௞ሻݑ ൅  ௞ (1.5)ݓ
௞ାଵݖ ൌ ݄ሺݔ௞ାଵሻ ൅  ௞ାଵ (1.6)ݒ
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where ݂ and ݄ represent the nonlinear system and 
measurement models, respectively. The most popular and 
well-studied estimation method is the Kalman filter (KF), 
which was introduced in the 1960s [1, 2]. The KF yields a 
statistically optimal solution for linear estimation problems, 
as defined by (1.1) and (1.2), in the presence of Gaussian 
noise. The KF derivation was based on linear algebra, statics, 
and probability theory [3]. 

In this paper, an adaptive controller is presented based on 
Bayesian or probability theory. The interacting multiple 
model (IMM) method, which utilizes Bayes’ theorem and 
likelihood functions, is implemented on the PID controller to 
present an adaptive control strategy. The strategy is applied to 
a simulated electromechanical system, and the results of the 
proposed controller are compared with the standard PID 
method. The KF and IMM methods are described in the 
following sections. The standard PID controller and the 
proposed adaptive PID controller are then discussed. An 
electromechanical system simulation is described and the 
results are discussed. The paper then concludes with a 
summary and statement on future work. 

 
KF ESTIMATION STRATEGY 

The following five equations form the core of the KF 
algorithm, and are used in an iterative fashion. Equations (2.1) 
and (2.2) define the a priori state estimate ݔො௞ାଵ|௞ based on 
knowledge of the system ܣ and previous state estimate ݔො௞|௞, 
and the corresponding state error covariance matrix ௞ܲାଵ|௞, 
respectively. 

ො௞ାଵ|௞ݔ  ൌ ො௞|௞ݔܣ ൅  ௞ (2.1)ݑܤ
 ௞ܲାଵ|௞ ൌ ܣ ௞ܲ|௞்ܣ ൅ ܳ௞ (2.2) 

The Kalman gain ܭ௞ାଵ is defined by (2.3), and is used to 
update the state estimate ݔො௞ାଵ|௞ାଵ as shown in (2.4). The gain 
makes use of an innovation covariance ܵ௞ାଵ, which is defined 
as the inverse term found in (2.4). 

௞ାଵܭ  ൌ ௞ܲାଵ|௞்ܥ൫ܥ ௞ܲାଵ|௞்ܥ ൅ ܴ௞ାଵ൯
ିଵ

 (2.3) 

ො௞ାଵ|௞ାଵݔ  ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵݖ௞ାଵ൫ܭ െ  ො௞ାଵ|௞൯ (2.4)ݔܥ
The a posteriori state error covariance matrix ௞ܲାଵ|௞ାଵ is 

then calculated by (2.5), and is used iteratively, as per (2.2). 
 ௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ሻܥ௞ାଵܭ ௞ܲାଵ|௞ (2.5) 

The derivation of the KF is well documented, with details 
available in [1, 2, 4]. The optimality of the KF comes at a price 
of stability and robustness. The basic KF assumptions do not 
always hold in real applications. If these assumptions are 
violated, the KF yields suboptimal results and can become 
unstable [5, 6]. Furthermore, the KF is sensitive to computer 
precision and the complexity of computations involving 
matrix inversions [7, 8]. 
 
INTERACTING MULTIPLE MODEL METHOD 

In nature, many systems behave according to a number 
of different models (modes, or operating regimes) [9, 10]. For 
example, in target tracking, a target may travel straight (i.e., 
uniform motion) or turn (i.e., undergo a coordinated turn) 
[11]. Furthermore, a system may experience different types of 
noises (i.e., white or ‘coloured’) [7]. In these scenarios, it is 
desirable to implement adaptive estimation algorithms, which 

‘adapt’ themselves to certain types of uncertainties or models 
in an effort to minimize the state estimation error [11]. One 
type of adaptive estimation technique includes the ‘multiple 
model’ (MM) algorithm [12]; which include the following: 
static MM [13], dynamic MM [11], generalized pseudo-
Bayesian (GPB) [14, 15, 16, 17], and the interacting multiple 
model (IMM) [11, 18, 19]. For the MM methods, a Bayesian 
framework is used (i.e., probability based). Essentially, based 
on some prior probabilities of each model being correct (i.e., 
the system is behaving according a finite number of modes), 
the corresponding updated probabilities are calculated and 
implemented [11]. 

Throughout this paper, it will be assumed that all of the 
models are linear with the presence of Gaussian noise; 
however, nonlinear models could be used via linearization 
[11]. Each MM method requires estimation of the states and 
their corresponding probability. The most popular strategy 
that has been implemented in the MM framework remains the 
Kalman filter (KF), and is referred to as the IMM-KF [7]. The 
interacting multiple model (IMM) estimation algorithm is 
conceptually requires ݎ number of filters (such as the KF) that 
operate in parallel [11]. The state estimate is calculated under 
each possible current model, with a mixed initial condition 
(i.e., a different combination of the previous model-
conditioned estimates) [11]. Furthermore, according to and as 
presented in [11, 19], the input to the filter matched to ܯ௝ is 
obtained from an interaction of the ݎ filters, which consists of 
the mixing of the estimates ݔො௜,௞|௞ and weightings ߤ௜|௝,௞|௞ 
(mixing probabilities). This is equivalent to merging taking 
place at the beginning of each estimation cycle, which limits 
the number of filters to [19] ݎ. The IMM strategy has shown 
to be very effective, and is more computationally efficient 
than other multiple model algorithms [11]. The following 
figure helps to explain the IMM method more effectively. 
 

 
Figure 1. IMM estimator for two models  

(adapted from [3, 11]). 
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The IMM estimator consists of five main steps: 
calculation of the mixing probabilities, mixing stage, mode-
matched filtering, mode probability update, and state estimate 
and covariance combination. The first step involves 
calculating the mixing probabilities (i.e., the probability of the 
system currently in mode ݅, and switching to mode ݆ at the 
next step). These are calculated using the following two 
equations [11]: 

௜|௝,௞|௞ߤ ൌ
1
ܿ௝̅
 ௜,௞ (3.1)ߤ௜௝݌

ܿ௝̅ ൌ෍݌௜௝

௥

௜ୀଵ

 ௜,௞ (3.2)ߤ

The mixing probabilities ߤ௜|௝,௞|௞ are used in the mixing 
stage, next. In addition to the mixing probabilities, the 
previous mode-matched states ݔො௜,௞|௞ and covariance’s ௜ܲ,௞|௞ 
are also used to calculate the mixed initial conditions (states 
and covariance) for the filter matched to ܯ௝. The mixed initial 
conditions are found respectively as follows [11]: 

ො଴௝,௞|௞ݔ ൌ෍ݔො௜,௞|௞ߤ௜|௝,௞|௞

௥

௜ୀଵ

 (3.3) 

଴ܲ௝,௞|௞

ൌ෍ߤ௜|௝,௞|௞

௥

௜ୀଵ

ቄ ௜ܲ,௞|௞

൅ ൫ݔො௜,௞|௞ െ ො௜,௞|௞ݔො଴௝,௞|௞൯൫ݔ െ ො଴௝,௞|௞൯ݔ
்
ቅ 

(3.4) 

The next step involves mode-matched filtering, which 
involves using (3.3) and (3.4) as inputs to the filter matched 
to ܯ௝. Each filter also uses the measurement ݖ௞ାଵ and input to 
the system ݑ௞ (if any). The likelihood functions are calculated 
for each mode-matched filter as follows [11]: 

௝,௞ାଵ߉ ൌ ࣨ൫ݖ௞ାଵ; ,௝,௞ାଵ|௞ݖ̂ ௝ܵ,௞ାଵ൯ (3.5) 
Equation (3.5) may be solved by each filter as follows 

[11, 7]: 
௝,௞ାଵ߉

ൌ
1

ටห2ߨ ௝ܵ,௞ାଵห஺௕௦

ቌ݌ݔ݁
െ
1
2 ௝݁,௭,௞ାଵ|௞

்
௝݁,௭,௞ାଵ|௞

௝ܵ,௞ାଵ
ቍ (3.6) 

Utilizing the likelihood functions from each filter, the 
mode probability may be updated by [11]: 

௝,௞ߤ  ൌ
1
ܿ
௜௝݌௝,௞ାଵ෍߉

௥

௜ୀଵ

 ௜,௞ (3.7)ߤ

where the normalizing constant is defined as [11]: 

ܿ ൌ෍߉௝,௞ାଵ෍݌௜௝

௥

௜ୀଵ

௜,௞ߤ

௥

௝ୀଵ

 (3.8) 

Finally, the overall state estimates (3.9) and covariance 
(3.10) are calculated. However, note that for this paper, one is 
mainly interested in utilizing (3.7) for determining the system 
behavior in an effort to improve controller accuracy. 

ො௞ାଵ|௞ାଵݔ ൌ෍ߤ௝,௞ାଵݔො௝,௞ାଵ|௞ାଵ

௥

௝ୀଵ

 (3.9) 

௞ܲାଵ|௞ାଵ

ൌ෍ߤ௝,௞ାଵ ቄ ௝ܲ,௞ାଵ|௞ାଵ

௥

௝ୀଵ

൅ ൫ݔො௝,௞ାଵ|௞ାଵ
െ ො௝,௞ାଵ|௞ାଵݔො௞ାଵ|௞ାଵ൯൫ݔ െ ො௞ାଵ|௞ାଵ൯ݔ

்
ቅ 

(3.10) 

Equations (3.1) through (3.10) summarize the IMM 
estimator strategy, and are used recursively. Note that (3.9) 
and (3.10) are used for output purposes only, and are not part 
of the algorithm recursions [11]. The IMM strategy has 
successfully been applied to a number of estimation problems 
[20], ranging from target tracking in a traffic controller setting 
[21] to fault detection and diagnosis [22, 23]. 
 
PID CONTROLLER 

The PID controller is one of the post popular control 
strategies used in industry [24, 25]. The controller makes use 
of system feedback (typically a state of interest such as 
position or pressure). The system feedback is compared with 
the desired state trajectory and an error signal is created. The 
error signal is used in conjunction with three types of gains: 
proportional, integral, and derivative (or PID). The 
proportional gain is multiplied with the error signal, the 
integral gain is multiplied with the integral of the error signal, 
and the derivative gain is multiplied by the derivative of the 
error signal. The three gain multiplications are summed and 
the corresponding signal is used as an input to the system. The 
PID controller input is defined as follows: 

௞ݑ ൌ ௉݁௞ܭ ൅ ூܭ න݁௞ ൅ ஽ܭ
݀݁
ݐ݀

 (4.1) 

In most cases, the input to the system will cause the 
system to behave according to the desired state trajectory. 
However, modeling uncertainties, noise, and external 
disturbances can cause the PID controller to fail [3]. In 
general, increasing the proportional gain causes the system to 
respond faster but may introduce unwanted overshoot and 
oscillations. Increasing the integral gain typically reduces the 
steady-state error (since it increases the system order by 
adding a pole to the system). Increasing the derivative gain 
may reduce unwanted overshoot but usually slows down the 
system response. Due to significant interaction among the 
gains, tuning manually can be challenging. This fact has 
encouraged the development of various tuning rules and 
methods [3]. 
 
PROPOSED PID-IMM CONTROLLER 

In this paper, it is proposed that combining the PID 
controller with the IMM strategy will improve the overall 
trajectory tracking accuracy, particularly in systems that are 
not well defined. The basic principle and concept of the 
adaptive PID or PID-IMM strategy may be summarized by 
the following figure. 
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Figure 2. Proposed adaptive PID control strategy. 

 
 In the PID-IMM strategy, the PID utilizes the tracking 

error ݁ and the mode likelihood probability ߤ (a value 
between 0 and 1), to generate a ‘weighted’ system input ݑ. 
The IMM requires the system input and the output from the 
system ݔ (or ݖ if using measurements) in order to calculate 
the mode probability as per (3.7). If the system is being 
measured, a Kalman filter (KF) or smooth variable structure 
filter (SVSF) may be implemented to reduce the effects of 
unwanted noise [3]. Essentially, the adaptive PID strategy 
utilizes the IMM mode probabilities to formulate ‘weighted’ 
system and input matrices in an effort to capture the actual 
dynamics of the system. 

 
ELECTROMECHANICAL SYSTEM AND RESULTS 

In this paper, an electromechanical system based on a 
type of aerospace actuator was studied [26]. An 
electrohydrostatic actuator (EHA) is typically used in the 
aerospace industry for aircraft maneuvering by controlling 
flight surfaces. EHAs are self-contained units comprised of 
their own pump, hydraulic circuit, and actuating cylinder. The 
main components of an EHA include a variable speed motor, 
an external gear pump, an accumulator, inner circuitry check 
valves, a cylinder (or actuator), and a bi-directional pressure 
relief mechanism. A mathematical model for the EHA has 
been described in detail in [27]. For the purposes of this paper, 
only the main state space equations will be explored. The 
input to the system is the rotational speed of the pump ߱௣, 
with typical units of ݏ/݀ܽݎ. In this setup, the sample rate for 
this simulation was defined as ܶ ൌ  The state space .ݏ݉	1
equations are defined as follows: 

ଵ,௞ାଵݔ ൌ ଵ,௞ݔ ൅ ଶ,௞ݔܶ ൅  ଵ,௞ (6.1)ݓܶ
ଶ,௞ାଵݔ ൌ ଶ,௞ݔ ൅ ଷ,௞ݔܶ ൅  ଶ,௞ (6.2)ݓܶ

ଵ,௞ାଵݔ

ൌ ൤1 െ ܶ ൬
ܤ ଴ܸ ൅ ܮ௘ߚܯ

ܯ ଴ܸ
൰൨ ଷ,௞ݔ

െ ܶ
ሺܣଶ ൅ ௘ߚሻܮܤ

ܯ ଴ܸ
ଶ,௞ݔ

െ ܶ ቈ
ଶܤ2 ଴ܸݔଶ,௞ݔଷ,௞

ܯ ଴ܸ

൅
ଶ,௞ݔଶܤ൫ܮ௘ߚ

ଶ ൅ ଴൯ܤ
ܯ ଴ܸ

቉ ,ଶݔሺ݊݃݅ݏ ݇ሻ

൅ ܶ
௘ߚ௣ܦܣ
ܯ ଴ܸ

௞ݑ ൅  ଷ,௞ݓܶ

(6.3) 

Note that ܣ (in this case) refers to the piston cross-
sectional area, ܤ# represents the load friction present in the 
system, ߚ௘ is the effective bulk modulus (i.e., the ‘stiffness’ in 
the hydraulic circuit), ܦ௣ refers to the pump displacement, ܮ 
represents the leakage coefficient, ܯ is the load mass (i.e., 

weight of the cylinders), and ଴ܸ is the initial cylinder volume. 
The values used to obtain a linear normal operating model are 
summarized in the appendix. Two more models were created 
based on a severe friction fault (the friction was increased 3 
times) and a severe leakage fault (the leakage coefficient was 
increased 4 times). The normal, friction fault, and leakage 
fault system matrices (ܣଵ, ܣଶ, and ܣଷ) are respectively 
defined as follows: 

ଵܣ ൌ ൥
1 0.001 0
0 1 0.001
0 െ41.0258 0.6099

൩ (6.4) 

ଶܣ ൌ ൥
1 0.001 0
0 1 0.001
0 െ51.8627 0.2226

൩ (6.5) 

ଷܣ ൌ ൥
1 0.001 0
0 1 0.001
0 െ73.5364 0.6015

൩ (6.6) 

All three input gain matrices remained the same, and 
were calculated as follows: 

ܤ  ൌ ൥
0
0

0.0135
൩ (6.7) 

Note also that artificial system and measurement noise 
was added to the simulation problem to make it more 
challenging. The zero-mean Gaussian noise was generated 
using system and measurement noise covariance’s ܳ and ܴ 
which were diagonal matrices with elements equal to 1 ൈ
10ି଺. 

The desired position, velocity, and acceleration 
trajectories are shown in the following three figures. Note that 
for the first 4 seconds, the system behaved normally. A 
friction fault was injected at 4 seconds and lasted for 4 
seconds. At 8 seconds, the friction fault was remove and a 2 
second leakage fault was implemented. 
 

 
Figure 3. Desired EHA position trajectory. 
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Figure 4. Desired EHA velocity trajectory. 

 

 
Figure 5. Desired EHA acceleration trajectory. 

 
Three different sets of PID gains were tuned (manually) 

for each operating mode, as shown in the following table. The 
gains were tuned such that rise time was maximized and 
overshoot was minimized. For the standard PID controller, 
only the ‘normally’ tuned sets of gains were used since the 
controller had no knowledge of the operating mode. The 
results of the tuned PID controller applied on the EHA 
simulation are shown in Figure 6. After 1,000 simulations, the 
average root mean square error (RMSE) of the PID controller 
was 0.0115	݉. The first four seconds was tracked very well. 
At four seconds, the EHA overshot the change in trajectory, 
and was relatively slow to respond to the change at eight 
seconds. 
 
Table 1. PID values for EHA operating modes. 

Gain Normal 
Friction 

Fault 
Leakage 

Fault 
Proportional 100 120 500 
Integral 10 10 10 
Derivative 10 40 25 

 

 
Figure 6. Simulation results with tuned PID controller. 

 
As shown in Figure 2, the adaptive PID strategy makes 

use of the mode probabilities calculated by the IMM strategy. 
The mode probabilities are weighted against the gains used by 
the PID controller. For example, if the EHA was detected to 
operate normally at 80% and with friction at 20%, the 
proportional gain used by the PID would be 104. For this 
simulation, the IMM yielded very strong operating modes, as 
shown in Figure 7. The operating mode probabilities (out of 
1) were initialized at 0.8, 0.1, and 0.1. The results of applying 
the proposed adaptive PID controller is shown in Figure 8. 
After 1,000 simulations, the average root mean square error 
(RMSE) of the adaptive PID controller was 0.0089	݉, a 
tracking improvement of about 35%. As illustrated also in 
Figure 9, the adaptive PID provides significantly improved 
tracking performance. Utilizing the mode probabilities greatly 
improved the results. 
 

 
Figure 7. Operating mode probabilities calculated by the 

IMM strategy. 
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Figure 8. Simulation results with adaptive PID controller. 

 

 
Figure 9. Position tracking error of PID and  

proposed adaptive PID controllers. 
 
CONCLUSIONS AND FUTURE WORK 

This paper proposed an adaptive PID controller based on 
Bayesian theory. The interacting multiple model (IMM) 
method, which utilizes Bayes’ theorem and likelihood 
functions, was implemented on the PID controller to present 
an adaptive control strategy. The strategy was applied to a 
simulated electromechanical system. When compared with 
the standard PID controller, the proposed adaptive PID 
controller improved the tracking performance by 
approximately 35%, as well as the overall system response. 
Future research will be more comprehensive and provide a 
more in-depth study. The adaptive controller will be applied 
to an experimental EHA, and will be compared with other 
robust control strategies. 
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