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Abstract— In this work, well known Quadrature Kalman 

Filters (QKFs), namely 2-point QKF (SeQKF), 3-point QKF 

(ThQKF), and 4-point QKF (FoQKF), were used to monitor a 4-

degree of freedom prismatic-revolute-revolute-revolute (PRRR) 

manipulator. This manipulator represents a well-known 

industrial arm robot. These methods are applied on a PRRR 

robot, and are compared in terms of stability, robustness, 

computation time, complexity, and the quality of the optimality. 

For completeness, the results were compared to those obtained 

from the popular Unscented Kalman Filter (UKF) and a special 

form of the UKF known as the Cubature Kalman Filter (CKF). 

Keywords— Quadrature Point; Filtering; Estimation; 

Unscented Kalman Filter; Cubature Kalman Filter; Robotic Arm; 

PRRR. 

I.  INTRODUCTION 

Since the last decade, robotic arms and manipulators are 
widely used in industrial applications due to their robustness, 
stability, and their ability to work in dull, dangerous, and dirty 
environments [1, 2, 3]. The enhancement of existing robotic 
designs commonly requires the use of high precision motors 
and sensors, which inevitably carries the burden of increased 
costs.  In the effort of maintaining precision while balancing 
cost, estimation techniques, including filters, can be used as an 
alternative to high accuracy devices. By using such techniques, 
an industry may use less expensive components with minimal 
effects on overall performance. The prospect of achieving high 
performance with less capital investment has led many 
researchers to investigate and expand the use of estimation 
techniques within highly industrialized fields [4, 5, 6, 7].   

One of the major branches in filtering is the optimal filter 
[8, 9]. These filters try to minimize the cost function to obtain 
an optimal solution; i.e. [8, 9, 10, 11]: 

1- Minimum mean squared error (MMSE).  

2- Maximum a posteriori (MAP).  

The pioneer work of Rudolf Kalman in 1960 [12] is considered 
one of the major steps in estimation theory. It is a recursive, 
optimal and model based estimator formulated as predictor-
corrector form. Some of the limitations associated with this 

filter is that it only applies to linear systems containing 
normally distributed uncertainties [9, 11, 12]. A Large number 
of researchers broadened that work and tried to modify the 
Kalman Filter (KF) to overcome these limitations. These 
efforts included the Joseph Stabilized KF [9], Sequential KF 
[9], Information KF [13, 14], Perturbation KF [15, 16], 
Extended KF (EKF) [17], Iterated EKF [9, 13], Higher Order 
EKF [9, 18], Unscented KF [9, 19, 20, 21, 22, 23], Central 
Difference KF [24, 18, 25], Quadrature KF [26, 27, 28, 29] and  
Cubature KF [28, 30, 31]. Additionally, vast amounts of 
research has been dedicated to combining the KF with other 
filtering methods [1, 3, 32, 33] and intelligent techniques [34, 
35, 36, 37] to improve its robustness given uncertainty, and 
system and measurement noise.  

This paper targets the Sigma-point Kalman filters (SPKF) 
which include the Unscented Kalman Filter (UKF) and 
Cubature Kalman Filter (CKF), in addition to the Quadrature 
Kalman Filter (QKFs). These popular estimation filters are 
widely known for their optimality/sub-optimality solutions. 
The filters have the ability to handle noise and the nonlinearity 
of a system without the use of linearization techniques. The 
two previously mentioned filters are commonly used for 
nonlinear applications, are widely used within common 
technology, and are highly recommended for industrial 
applications [1, 2, 32].  

Within the subsequent sections, the use of SPKFs 
(specifically the  UKF and CKF) and the QKFs (2, 3, and 4 
point) to estimate the states of a 4-DoF PRRR robotic arm are 
discussed and compared on the basis of stability, robustness, 
the quality of optimality, complexity, and computation time.  

The paper is divided into four sections, with section 2 
dedicated to the QKFs, and the SPKFs while section 3 is 
assigned to the PRRR robotic system, results and discussion. 
Section 4 summarizes the effectiveness of the filters in 
estimating the states of the PRRR manipulator given the 
simulated results for three different uncertainty and noise 
scenarios.  

  



Nomenclature 

𝐚−1, 𝐚𝑇  
Inverse, and transpose of the vector/matrix a, 

respectively. 

𝐚̂, 𝐚̅ The estimate and mean of a, respectively. 

𝐚̇ 
Derivative of a with respect to time. More dots 

indicates higher derivative. 

(𝐚)𝑖 The 𝑖 row of 𝐚. 

𝐞𝐦 The estimation error vectors in m. 

𝐟(. ) System nonlinear matrix. 

𝐠(. ) Measurement nonlinear matrix. 

𝑖, 𝑗 Subscripts used to identify elements. 

𝐈𝑛×𝑛 
The identity matrix with dimensions of 𝑛 ×
𝑛. 

𝑘 Time step value. 

𝑘|𝑘 − 1 The a priori value at time k. 

𝑘|𝑘 The a posteriori value at time k. 

𝐊𝑋 The correction gain of the filter 𝑋. 

𝑚 Number of measurements 

𝑛 Number of states 

ℕ(𝑥|𝑚, 𝑃) 
The Gaussian probability density function, 

with mean of m and standard deviation of P. 

𝐏xx The state's error covariance matrix. 

𝐏zz The output’s error covariance matrix. 

𝐏 The error covariance matrix. 

𝑞 The number of the quadrature points. 

𝐐 The process noise covariance matrix. 

𝐑 The measurement noise covariance matrix. 

𝑇𝑠 Sampling time, and is equal to 0.001 𝑠𝑒𝑐. 

𝐯,𝐰 
The measurement and system noise, 

respectively. 

𝑊𝑖 
 

The assigned weight for the 𝑖𝑡ℎ quadrature 

point. 

𝐱, 𝐳 The state and output vectors, respectively. 

𝐗𝒊 and 𝐙𝒊 
The estimate and its measurement for the 𝑖𝑡ℎ 

quadrature point, respectively. 

 

II. THE QUADRATURE KALMAN FILTERS 

The Quadrature Kalman Filters (QKFs) are predictor-
corrector sub-optimal filters that linearize the nonlinear 
functions in the system using weighted statistical linear 
regression. They approximate the integration using a weighted 
summation of the function around specific points which are 
commonly referred to as the quadrature points [26, 27, 28, 29, 
38, 39, 40, 41, 42, 43]. 

∫ 𝑓(𝑥)ℕ(𝑥|𝑥̅, 𝑃)𝑑𝑥
∞

−∞

=∑𝑊𝑖𝑓(𝑋𝑖)

𝑛

𝑖=1

 (1) 

The quadrature points and the weights used in this work are 
based on [38, 44], where the points are defined as: 

𝐗̂𝑖 = 𝐱̂ + (Γi√𝐏)𝑖
𝑇
 (2) 

Γi is described by: 

Γi = √2𝜓𝑖   (3) 

Where 𝜓𝑖 is the ith eigenvalue of a symmetric tridiagonal matrix 
having zero diagonal elements while the entries located to the 
right of the diagonal are proportional to the row number (each 

having a value of 
1

√2
 of the corresponding row value). The ith 

weighted value is defined as the squared value of the first 
element of the normalized eigenvector that corresponds to the 
ith eigenvalue.   

The resultant filter has the same structure of the Sigma-
Point Kalman Filter (SPKF), although they have been derived 
from different respective sources [1, 11, 21, 45]. These filters 
differ in the number of points (𝑞), their values (related to Γi) 
and their associated weights (𝑊𝑖). A summary of the filters is 
shown in table 1. There is however some overlap between the 
presented methods as outlined by [46], which describes the 
CKF (a 2-point simplex QKF) as a special case of the UKF 
which falls within the SPKF category.  

The QKFs and the SPKFs start by drawing out the points 
from the state’s probability distribution function as shown in 
figure 1, and then projects them through the system’s model to 
obtain the a priori estimates for the probability distributions. 
The a priori estimates are then fused together statistically as 
shown in figure 2 [8, 19, 22, 23, 47, 48, 49, 50, 51, 52], to 
create an improved a priori estimate vector. The same steps are 
used in the update stage, after replacing the system’s model by 
the measurement’s model in the propagation level, to obtain the 
a posteriori estimate vector and its covariance matrix as shown 
in figure 3.  

Table 1: Differences between several SPKFs, and QKFs, [10, 
11, 38] 
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(a)               (b) 

Fig 1: (a) Sigma Points, (b) 2-point Quadrature Points of a 
system with n=2 [44]. 

 

  

 

Fig 2 (a) The actual system states and their nonlinear 

measurement (b) The QKF/SPKF’s estimates, [19]. 

 

 
Fig 3: The Sigma/Quadrature-Point Kalman Filter, [11] 

In this work, comparisons between different QKFs were 
established. The performance was measured by the Root Mean 
Square Error (RMSE), simulation time, stability, robustness, 
and the complexity of the estimation method. For completeness 
of work, the results of the QKFs were also compared to the 
simulated UKF and CKF results.   

𝑘 = 𝑘 + 1 
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III. RESULTS & DISCUSSION 

A. Robotic Arm Dynamics Model 

   The algorithms described in section II were tested on a 

system that was obtained in [1, 2, 3] using Simulink-

MATLAB. The system is an industrial robotic arm that 

consists of a prismatic joint and three revolute joints as shown 

in figure 7 and 8. The dynamics model can be found in [1, 2, 

3] where the states are [𝑑 𝑑̇ 𝜃1 𝜃̇1 𝜃2 𝜃̇2 𝜃3 𝜃̇3], and the values 

of the variables are listed in table 2.  

 

Fig.4: Industrial 4-DOF Robotic Arm [1, 2, 3] 

 

Fig.5: Top and side views of the Robotic Arm [1] 

B. Results 

The system was simulated given the three following 

scenarios: 1) no uncertainty has been injected to the filter 

model and noise levels are significantly small (Noise-to-

Signal-Ratio (𝑁𝑆𝑅) ≤ 5%), 2) no uncertainty has been 

injected to the filter model and noise levels are significantly 

large (𝑁𝑆𝑅 ≥ 10%), and 3) huge uncertainty (equal to 50% of 

system model) has been injected and noise levels are medium 

(4% ≤ 𝑁𝑆𝑅 ≤ 9%). The root mean square errors (RMSE) for 

these experiments are presented in tables 3, 4 and 5, 

respectively.  

 

Table 2: The values of robotic arm’s parameters [32] 

𝑚1 21.5 kg 𝑎1 0.25 m 𝐼1 1.04 kg.m2 

𝑚2 16 kg 𝑎2 1.2 m 𝐼2 13 kg.m2 

𝑚3 8.5 kg 𝑎3 0.8 m 𝐼3 3.12 kg.m2 

𝑚4 7.9 kg 𝑎4 1.2 m 𝐼4 1 kg.m2 

𝑚5 6.3 kg 𝑎5 0 m 𝐼5 0.84 kg.m2 

 

The results of the scenario 2 simulations are shown in 

figures 6-9 while the results of the scenario 3 simulations are 

provided in figures 10-13. 

 

Table 3: The RMSE for scenario 1. 

× 10−6 UKF CKF SeQKF ThQKF FoQKF 

𝑑 (𝑚) 6 6 6 6 6 

𝑑̇ (𝑚/𝑠) 4000 4000 4000 4000 4000 

𝜃1 (𝑟𝑎𝑑) 2 2 2 2 2 

𝜃̇1 (𝑟𝑎𝑑/𝑠) 500 500 500 700 1000 

𝜃2 (𝑟𝑎𝑑) 2 2 2 2 2 

𝜃̇2 (𝑟𝑎𝑑/𝑠) 700 700 700 300 300 

𝜃3 (𝑟𝑎𝑑) 2 2 2 2 2 

𝜃̇3 (𝑟𝑎𝑑/𝑠) 400 400 400 500 500 

 

Table 4: The RMSE for scenario 2. 

× 10−4 UKF CKF SeQKF ThQKF FoQKF 

𝑑 (𝑚) 7 7 7 7 7 

𝑑̇ (𝑚/𝑠) 4000 4000 4000 4000 4000 

𝜃1 (𝑟𝑎𝑑) 2 2 2 2 2 

𝜃̇1 (𝑟𝑎𝑑/𝑠) 70 70 70 70 70 

𝜃2 (𝑟𝑎𝑑) 2 2 2 2 2 

𝜃̇2 (𝑟𝑎𝑑/𝑠) 60 60 60 60 60 

𝜃3 (𝑟𝑎𝑑) 2 2 2 2 2 

𝜃̇3 (𝑟𝑎𝑑/𝑠) 50 50 50 50 50 

 

 



Table 5: The RMSE for scenario 3. 

× 10−4 UKF CKF SeQKF ThQKF FoQKF 

𝑑 (𝑚) 2 2 2 2 2 

𝑑̇ (𝑚/𝑠) 8000 8000 8000 8000 8000 

𝜃1 (𝑟𝑎𝑑) 0.2 0.2 0.2 0.3 0.3 

𝜃̇1 (𝑟𝑎𝑑/𝑠) 50 50 40 70 50 

𝜃2 (𝑟𝑎𝑑) 0.2 0.2 0.3 0.2 0.2 

𝜃̇2 (𝑟𝑎𝑑/𝑠) 100 100 80 90 90 

𝜃3 (𝑟𝑎𝑑) 0.2 0.2 0.2 0.2 0.2 

𝜃̇3 (𝑟𝑎𝑑/𝑠) 100 100 90 100 100 

 
Fig 6: The error in estimating 𝑑̇ for scenario 2. 

 

 
Fig 7: The error in estimating 𝜃̇1 for scenario 2. 

 
Fig 8: The error in estimating 𝜃̇2 for scenario 2. 

 
Fig 9: The error in estimating 𝜃̇3 for scenario 2. 

 
Fig 10: The error in estimating 𝑑̇ for scenario 3. 

 
Fig 11: The error in estimating 𝜃̇1 for scenario 3. 

 
Fig 12: The error in estimating 𝜃̇2 for scenario 3. 



 
Fig 13: The error in estimating 𝜃̇3 for scenario 3. 

 

C. Discussion 

The results of tables 3, 4 and 5 and figures 6-12 show that 

the UKF and CKF are identical in performance. Both have the 

same stability, RMSE, computation time and complexity. The 

2-point QKF (SeQKF) shows a performance that is similar to 

UKF and CKF. It has almost the same RMSE, however, it 

needs more computation time as UKF/CKF depends on 2𝑛 +
1 points and SeQKF needs 2𝑛 points. The system consists of 

eight states; 𝑑, 𝑑̇, 𝜃1, 𝜃̇1, 𝜃1, 𝜃̇2, 𝜃2 and 𝜃̇3, and therefore the 

UKF/CKF required 17 points while the SeQKF required 256 

points. Using modern computers (with high performance I7 

processer and 8 GB RAM) these numbers will not have a 

noticeable effect on the performance given a sampling time of 

1 ms. The time required to evaluate the code is still acceptable, 

however, if a processor with low specification is used, then the 

use of SeQKF will be questionable. The SeQKF shows more 

robustness to uncertainty than the UKF and CKF. After 

increasing the modeling uncertainties, the UKF and CKF are 

the first to become unstable, while the SeQKF is the last.  

The 3-point QKF (ThQKF) and the 4-point QKF 

(FoQKF) have a performance that is similar to UKF and CKF, 

and need more computation time compared to the previous 

filters. The ThQKF needs to compute the estimates using 6561 

points while the FoQKF required 65536 points. This suggests 

that the ThQKF and FoQKF are more complicated and require 

more computation time. In actuality, the ThQKF and FoQKF 

needed 5-15 seconds to compute each (1 ms) time step. Due to 

the high computation time, the ThQKF and FoQKF are not 

suitable for online applications. Given increased uncertainties, 

the ThQKF and FoQKF outperform the other filters; however, 

they can suddenly become unstable and reach a point of 

instability sooner than the SeQKF. Among the QKFs used 

here, the FoQKF is first to become unstable, then the ThQKF, 

then the SeQKF. Due to the large number of points, the 

covariance matrix quickly approaches zero. This explains why 

the QKFs having the highest number of points are the first to 

become unstable. Conversely, the UKF and CKF tend towards 

instability as the covariance matrix approaches infinity.  

By considering all factors, the SeQKF has the best 

performance among the tested filters. It is the most stable, and 

has a high degree of robustness with respect to uncertainties 

and noise. The UKF and CKF are the fastest algorithms, 

however, they are the first to become unstable. When applying 

estimation and filtering to robotic applications, it is 

undesirable to implement higher QKFs due to the long 

computation times and numerical instabilities associated with 

3 and 4-point QKF. The 2-point QKF can capture the true 

mean and variance with acceptable computation times while 

maintaining stability and robustness. 

By increasing the noise levels, all filters experienced very 

similar reductions in performance. Overall, the UKF and CKF 

are more sensitive to noise compared to QKF, which offers 

greater resilience when using a larger number of quadrature 

points. 

IV. CONCLUSION 

 
In this work, three estimation techniques— namely 2-point, 

3-point and 4-point QKFs—were simulated to estimate the 
states of an industrial robotic arm of type PRRR. The results of 
the 2, 3, and 4 point QKF simulations were then compared to 
each other and the UKF and CKF simulations to determine the 
benefits of using QKF or SPKF techniques. The results 
demonstrated that the QKF methods were more stable and 
robust when compared to the UKF and CKF. When the system 
and measurement noise levels were increased, the performance 
became similar among all of the filters. This indicates that 
adding more quadrature points allows the filter to be less 
sensitive to noise. The 2-point QKF (SeQKF) showed superior 
performance when modeling error of the estimated states and 
would therefore be the optimal choice when compared to the 
other filters. 
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