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Abstract—The Kalman filter (KF) has drastically changed and 
formed the field of state and parameter estimation theory and has 
impacted a number of applications: spacecraft, GPS, fault 
detection and diagnosis, stock market analysis, cell phones, 
autonomous vehicles, to name only a few. A statistically optimal 
solution for known linear systems is provided by the KF, in the 
presence of Gaussian white noise. However, the optimality of the 
KF affects numerical stability and robustness. A number of linear 
and nonlinear forms of the KF have been introduced to overcome 
numerical, stability, and nonlinearity issues. In recent years, 
intelligent or cognitive-based KFs have been proposed. Intelligent 
filters generally include adaptive gains and feedback for improved 
estimation accuracy and robustness. These types of filters are 
typically more robustness to modeling uncertainties and 
disturbances. This paper provides a comparison of two popular 
KF methods: fuzzy-based and machine learning-based. These 
strategies are applied on a flight surface system and the estimation 
results are compared and discussed. Future trends in intelligent 
estimation theory are also considered. 
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I.  INTRODUCTION 

Estimation theory is a subfield of signal processing and 
statistics, and often finds applications in mechanical and 
electrical engineering. Estimation strategies are used to find 
state or parameter values of interest, which affects system 
output. These estimates are used typically in the presence of 
uncertain or inaccurate measurements. Estimation strategies 
can be used for a number of purposes: air traffic controllers, 
statistical inference, studies of planet orbits, message retrieval 
from signals, signal and image processing, and in control 
systems [1]. Successful system control depends on the 
knowledge of the parameters or states of interest. Consider a 
linear system, where the states of interest are position, velocity, 
and acceleration (i.e., kinematic states). The state dynamics 

may be represented mathematically by a linear state space 
representation as per the following: 

ାଵݔ ൌ ݔܣ  ݑܤ    (1.1)ݓ

where ݔ: system states, ܣ: linear system matrix, ܤ: input gain 
matrix, ݑ: system input, and ݓ: system noise. Elements from 
the state vector need to be measured in order to understand the 
system behaviour. Sensors placed within the system are used to 
measure the states. As per the following linear measurement 
equation, a relationship exists between the states and the 
measurements: 

ାଵݖ ൌ ାଵݔܥ   ାଵ (1.2)ݒ

where ݖ: measurements, ܥ: linear measurement matrix, and 
 : measurement noise in the sensors. Note that the noiseݒ
(system and measurement) are defined statistically as white 
Gaussian noise (zero mean and covariance’s ܳ and ܴ), 
respectively as per the following: 

,ሻ~ࣨሺ0ݓሺ ܳሻ (1.3) 

,ሻ~ࣨሺ0ݒሺ ܴሻ (1.4) 

A filter is used in engineering to extract knowledge of the 
true states, and to form state estimates. The system 
measurements typically contain noise. Since estimation 
strategies remove unwanted noise from signals, the name ‘filter’ 
is used. As per equations (1.1) and (1.2), the linear system and 
measurement dynamics are model based. Estimation strategies 
may also be applied to nonlinear systems and measurements: 

ାଵݔ ൌ ݂ሺݔ, ሻݑ    (1.5)ݓ

ାଵݖ ൌ ݄ሺݔାଵሻ   ାଵ (1.6)ݒ

 



where ݂ and ݄ refer respectively to the nonlinear system and 
measurement models. Introduced in the 1960s, the most popular 
and utilized estimation method remains the Kalman filter (KF) 
[2, 3]. A statistically optimal solution is provided by the KF for 
linear estimation problems. NASA utilized the KF strategy for 
lunar observations and the Apollo missions, and quickly 
became known as the ‘workhorse’ of estimation problems [4, 
5]. 

The KF is formulated in a predictor-corrector manner, and 
is implemented recursively at each time step. Prediction stage: 
using the system model, the states are estimated. These states 
are referred to as a priori estimates, which means ‘prior to’ 
knowledge of the measurements. Update stage: based on the 
innovation (or measurement error), the states are updated. 
These states are referred to as updated or a posteriori state 
estimates, which means ‘subsequent to’ the observations. A 
large number of problems have used the KF algorithm: signal 
processing, state and parameter estimation, fault detection and 
diagnosis, target tracking, and financial markets [6, 7]. 

The KF popularity and success is based on the optimality 
of the gain derivation. The KF gain minimizes the trace of the 
updated state error covariance. The trace is used since it 
represents the error in the state estimates [8]. The most popular 
and nonlinear form of the KF is the extended Kalman filter 
(EKF) [4, 9]. The EKF process is very similar to the KF; 
however, it requires linearization of the nonlinearities by first-
order Taylor series expansion. The KF optimality directly 
affects filter robustness and stability. The three main KF 
assumptions are as follows: system model is linear and l, the 
states have initial known values and conditions, and the system 
and measurement noises are zero mean Gaussian (or ‘white’) 
[4, 1]. In most estimation and control problems, these 
assumptions are typically not met, which leads to suboptimal 
results and KF instability [10]. Another form of the KF was 
introduced by Kalman and Bucy, and is a continuous-time 
version [11]. 

The core of the KF algorithm is based on equations (1.7) 
through (1.11). Equation (1.7) is the a priori state (or predicted) 
estimate, and equation (1.8) is the a priori state error covariance 
matrix. 

ොାଵ|ݔ ൌ ො|ݔܣ    (1.7)ݑܤ

ܲାଵ| ൌ ܣ ܲ|்ܣ  ܳ (1.8) 

The KF gain ܭାଵ is calculated as per (1.9), and is used to 
update the state estimate ݔොାଵ|ାଵ as per (1.10). The Kalman 
utilizes an innovation covariance matrix ܵାଵ. The innovation 
covariance matrix is defined as the inverse term in (1.9). 

ାଵܭ ൌ ܲାଵ|்ܥ൫ܥ ܲାଵ|்ܥ  ܴାଵ൯
ିଵ

 (1.9) 

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ  ାଵݖାଵ൫ܭ െ  ොାଵ|൯ (1.10)ݔܥ

The a posteriori (or updated) state error covariance matrix 
represented by ܲାଵ|ାଵ is calculated as per (1.11), and is 
iteratively used as per (1.8). 

ܲାଵ|ାଵ ൌ ሺܫ െ ሻܥାଵܭ ܲାଵ|ሺܫ െ ሻ்ܥାଵܭ

 ାଵܭାଵܴାଵܭ
்  

(1.11) 

Different forms and derivations of the KF have been 
studied throughout the literature, with summaries available in 
[2, 3, 8]. As mentioned, if the KF assumptions are not 
maintained, estimation results provided by the KF become 
suboptimal and can be numerically unstable [10]. In addition, 
the strategy may be sensitive to numerical precision and the 
computations issues when handling matrix inversions [12]. A 
number of methodologies have been presented in the literature 
to improve the KF stability, robustness, and efficiency, as well 
as the KF’s nonlinear variants [13, 14, 15]. 

This paper provides a comparison of two popular 
‘intelligent’ KF methods: fuzzy-based and machine learning-
based. These strategies are applied on a flight surface system 
(actuator) and the corresponding results are compared and 
discussed. These algorithms can be applied to robotic systems 
and sensors. Future trends in intelligent estimation theory are 
also considered. Section 2 summarizes the two intelligent KF 
methods. Before concluding the paper, Section 3 describes the 
simulation setup and results. 

II. INTELLIGENT KALMAN FILTERS 

A. Fuzzy-Based KFs 

Fuzzy logic, in contrast to Boolean logic, allows for 
varying degrees of truthfulness between 0 and 1, rather than 
absolute truth and falsity. In order to design a fuzzy controller, 
membership functions must be developed for the system input 
and output, coupled with a set of rules to handle the inputs and 
determine what output is appropriate for the current state of the 
system [16].  

A fuzzy system has three parts: fuzzification, rule 
evaluation, and defuzzification. A set of crisp inputs, for 
example sensor input data, is transformed into a set of fuzzy 
inputs through fuzzification. A set of input membership 
functions, which encompass the relationship between all 
possibly input values, is used to convert these sensor input 
values to a fuzzy input value ranging between 0 and 1. 
Developing appropriate membership functions for the input set 
is important; using too few can lead to slow system response 
and using too many can cause instability in the system. After 
the crisp inputs are converted to fuzzy inputs, these values are 
fed through a set of rules developed for the system. These rules 
are used to calculate the system output based on measurement 
data or the sensor input data in the form of an IF-THEN 
statement, which relates the output (dependent) variables to the 
input (independent) variables. Based on the fuzzy input values, 
the rules are evaluated and the rule that is most true is used to 
determine the fuzzy outputs. Finally, the fuzzy outputs are 
converted into crisp outputs through defuzzification, which 
requires a second set of membership functions, converting the 
fuzzy outputs between 0 and 1 to meaningful output values. 



B. Machine Learning-Based KFs 

The most popular intelligent KF is based on machine 
learning or artificial neural networks (ANNs). As the name 
suggests, ANNs are self-learning such that internal system 
parameters adapt and change a time [17]. With the advent of 
faster computer processors, ANNs have become extremely 
popular, and are used in a variety of applications: internet search 
engines, data mining, face recognition, and fault detection and 
identification, to name a few [18, 19]. There are a number of 
different types of ANNs, with the most popular being based on 
back propagation (BP), multilayers, and gradient algorithms. 

In multilayer perceptron training literature, back 
propagation (BP) is the most commonly used strategy [20]. It is 
based on the first-order stochastic gradient descent. BP adjusts 
weights in an effort to minimize the output error in a supervised 
manner, and this is done iteratively. The BP strategy uses a 
constant learning rate, such that the rate of convergence (to a 
final solution) is slow. A number of strategies have been studied 
and introduced to improve training performance, speed of 
convergence, and the overall mapping accuracy [7]. The most 
common techniques are the quasi-Newton and Levenburg-
Marquardt methods. These strategies demonstrate better 
performance in terms of accuracy because they make use of 
second-order information as opposed to only first-order. 

One of the most popular ANN strategy is a multilayer feed 
forward network. It consists of a set of inputs that represent the 
input layer, and a set of one or more hidden layers (i.e., the 
output layer). Figure 1 illustrates the basic feed forward 
structure. All of the nodes are interconnected by weighted links, 
and are used to compute a weighted sum. A bias (i.e., offset) is 
added to the sum followed by an activation function. The 
corresponding input signal propagates in a forward direction 
through the network (layer by layer). Essentially, this network 
structure represents a mapping of the system inputs to the 
desired system outputs. 

 

Figure 1.   A feed-forward multilayer perceptron network [18]. 

Let ݇ represent the number of total layers (which includes 
both the output and input layers). Nodeሺ݊, ݅ሻ represents the 	݅௧ 

node in the ݊௧ layer. ܰ െ 1 is the number of total nodes in the 
݊௧ layer. The operation of nodeሺ݊  1, ݅ሻ is shown as per Fig. 
2 and is described as follows: 

ݔ
ାଵሺݐሻ ൌ ߮ቌ ,ݓ



ேିଵ

ୀଵ

ݔ
ሺݐሻ  ܾ

ାଵቍ (2.1) 

where ݔ
ሺݐሻ: output of nodeሺ݊, ݆ሻ	for the ݐ training pattern, 

,ݓ
 : link weight from nodeሺ݊, ݆ሻ to the	nodeሺ݊  1, ݅ሻ, ܾ

: 
node offset (bias) for nodeሺ݊, ݅ሻ. Also, note that the function 
߮ሺ. ሻ is a nonlinear sigmoid activation function defined by the 
following: 

߮ሺݓሻ ൌ
1

1  ݁ି௪
					ܽ  0, െ∞ ൏ ݓ ൏ ∞ (2.2) 

 

Figure 2.   Node ሺ݊  1, ݅ሻ representation [18]. 

As per Fig. 2, the node bias is a weighted link based on the 
last input ܰ to nodeሺ݊  1, ݅ሻ, as per the following: 

ேݔ
 ሺݐሻ ൌ 1,			1  ݊  ݇ 

,ேݓ
 ൌ ܾ

ାଵ,			1  ݊  ݇ െ 1 
(2.3) 

Based on (2.2) and (2.3), (2.1) can be rewritten as follows: 

ݔ	
ାଵሺݐሻ ൌ ߮൮ݓ,



ே

ୀଵ

ݔ
ሺݐሻ൲ (2.4) 

In 1989, Singhal and Wu presented an EKF-based neural 
network training strategy [21]. Compared to other popular or 
conventional first-order gradient algorithms, such as BP, the 
EKF offers a powerful training capability [7]. As described in 
the literature, the EKF has been applied for training of both 
feed-forward [22] and recurrent networks [23, 24]. Note that 
this was in a global form (GEKF) as well as in a decoupled form 
(DEKF). The EKF performance is similar to a second-order 
derivative (batch-based method), however it avoids local 
minima by utilizing second-order information found in the state 
error covariance [7]. The EKF is an efficient alternative to other 
second-order methods for neural network training. Important 
applications for ANNs are in the area of fault detection and 
diagnosis [17]. This is due to a number of reasons: self-learning, 
adapting algorithm, effective online strategy, relatively good 
noise rejection, and good approximations to nonlinearities [19]. 
It is important to note that ANNs typically do not provide 
knowledge of a system model, but effectively map system 
inputs to outputs based on large sets of data [25]. 



III. FLIGHT SURFACE ACTUATOR RESULTS 

In this paper, a flight surface actuator based on an 
electrohydrostatic system (EHA) was studied. The EHA is a 
self-contained unit that utilizes a hydraulic pump, circuit, and 
actuating cylinder or device [26]. The main system components 
include the following: accumulator, check valves, cylinder or 
actuator, external gear pump, variable speed motor, and 
pressure relief mechanisms [27]. Modeling of the flight surface 
system has been described mathematically and systemically in 
[28, 29]. For this paper, the kinematic state space equations (3.1 
through 3.3) will be considered. The system input is the 
rotational pump speed ߱, with units of ݏ/݀ܽݎ. In this 
presented simulation, the sample rate was set to ܶ ൌ  .ݏ݉	0.1
The system equations (kinematic states) are defined as follows: 

ଵ,ାଵݔ ൌ ଵ,ݔ  ଶ,ݔܶ   ଵ, (3.1)ݓܶ

ଶ,ାଵݔ ൌ ଶ,ݔ  ଷ,ݔܶ   ଶ, (3.2)ݓܶ

ଷ,ାଵݔ

ൌ 1 െ ܶ ൬
ܤ ܸ  ܮߚܯ

ܯ ܸ
൰൨ ଷ,ݔ

െ ܶ
ሺܣଶ  ߚሻܮܤ

ܯ ܸ
ଶ,ݔ

െ ܶ ቈ
ଶܤ2 ܸݔଶ,ݔଷ,

ܯ ܸ


ଶ,ݔଶܤ൫ܮߚ

ଶ  ൯ܤ
ܯ ܸ

 ,ଶݔሺ݊݃݅ݏ ݇ሻ

 ܶ
ߚܦܣ
ܯ ܸ

ݑ   ଷ,ݓܶ

(3.3) 

Based on [28, 29], ܣ: piston cross-sectional area, ܤ#: 
friction load in the system, ߚ: effective bulk modulus (i.e., 
hydraulic ‘stiffness’ in the circuit), ܦ: pump displacement, ܮ: 
leakage coefficient, ܯ: load mass, and ܸ: initial cylinder 
volume. In addition to normal operation, two models were 
created. One model was based on a severe friction fault (i.e., the 
friction coefficients or terms were increased 3 times). Another 
model was based on a severe leakage fault (i.e., the leakage 
coefficients or terms were increased 4 times). The following 
system matrices represent the normal system mode of 
operation, friction fault, and leakage fault, respectively: 

ଵܨ ൌ 
1 0.0001 0
0 1 0.0001
0 െ41.0258 0.6099

൩ (3.4) 

ଶܨ ൌ 
1 0.0001 0
0 1 0.0001
0 െ51.8627 0.2226

൩ (3.5) 

ଷܨ ൌ 
1 0.0001 0
0 1 0.0001
0 െ73.5364 0.6015

൩ (3.6) 

For this simulation, the same input gain matrices were 
applied. The input gain matrix used is defined as follows: 

ܩ  ൌ 
0
0

0.0135
൩ (3.7) 

In an effort to make the simulated problem more 
challenging, system and measurement noises were added. The 
added noise statistical characteristics are as follows: zero mean, 
Gaussian-distributed (white) covariance. The measurement and 
system noise covariance’s ܳ  and ܴ  were diagonal matrices with 
elements of 1 ൈ 10ି. In addition, to test and compare the 
intelligent KF methods, a modelling error or uncertainties of 
20% was included. The following three figures show the 
desired kinematic trajectories: position, velocity, and 
acceleration. For the first 1.5 seconds of the simulation, the 
system model used was ‘normal’. At 1.5 seconds, a friction fault 
was injected. At 3 seconds, the system experienced a leakage 
fault. After another 1.5 seconds, a friction fault was injected 
again (note: the leakage fault was removed). During the last two 
seconds, the system operated normally. 

 

Figure 3.   Desired flight surface position trajectory. 

 

Figure 4.   Desired flight surface velocity trajectory. 



 

Figure 5.   Desired flight surface acceleration trajectory. 

The error results for the first five seconds of the simulation 
are shown in the next three figures. It was found that the fuzzy-
based and ANN-based KFs yielded better results than the 
standard KF, which was to be expected given the strict 
assumptions of the KF. The fuzzy and ANN methods yielded 
the same results for the first state, however slightly deviated for 
the second and third states. Interestingly, the fuzzy-based KF 
yielded the best acceleration estimate and was the least sensitive 
to modeling errors and uncertainties. The results of the ANN 
method could be improved further by varying or optimizing the 
number of hidden layers and operating nodes. 

 

Figure 6.   Position state error for KF-based methods. 

 

 

Figure 7.   Velocity state error for KF-based methods. 

 
Figure 8.   Acceleration state error for KF-based methods. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper provided an overview and basic study of two 
intelligent Kalman filters (KFs). The standard KF, fuzzy-based 
KF, and artificial neural network (ANN) trained-KF were 
applied on a flight surface actuator. It was demonstrated that the 
intelligent-based KFs yielded accurate results in terms of 
estimation error, and were less sensitive to modeling 
uncertainties and changes. The intelligent KFs are often used in 
robotic systems and sensors. Future research will be more 
comprehensive and provide a more in-depth study. The authors 
will also look at comparing ‘deep learning’ strategies with the 
KF and other state and parameter estimation methods. The 
methodologies will be applied to a robotic system that is 
currently being built for experimentation. 
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