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ABSTRACT 

Signal processing techniques are prevalent in a wide range of fields: control, target tracking, 
telecommunications, robotics, fault detection and diagnosis, and even stock market analysis, to name a few. 
Although first introduced in the 1950s, the most popular method used for signal processing and state 
estimation remains the Kalman filter (KF). The KF offers an optimal solution to the estimation problem 
under strict assumptions. Since this time, a number of other estimation strategies and filters were introduced 
to overcome robustness issues, such as the smooth variable structure filter (SVSF). In this paper, properties 
of the SVSF are explored in an effort to detect and diagnosis faults in an electromechanical system. The 
results are compared with the KF method, and future work is discussed. 

Keywords: Variable structure systems, estimation theory, signal processing, fault detection and diagnosis  

1. INTRODUCTION 

Control of an engineering system depends on how well the system states and parameters are known. 
Observations and measurements of the system are made through the use of sensors, however this data often 
contains unwanted signals, noise, and disturbances. Filters are used to remove unwanted components in an 
effort to provide an accurate estimate of the states [1]. Although it is well over 50 years old, the most 
common and well-studied estimation method remains the Kalman filter (KF) [2, 3]. The KF yields a 
statistically optimal solution for linear estimation problems, as defined by (1.1) and (1.2), in the presence 
of Gaussian noise where ܲሺݓ௞ሻ~ࣨሺ0, ܳ௞ሻ and ܲሺݒ௞ሻ~ࣨሺ0, ܴ௞ሻ, and under the assumption that the 
system and measurement dynamics are known. A typical model is represented by the following equations: 

௞ାଵݔ ൌ ௞ݔܣ ൅ ௞ݑܤ ൅  ௞ (1.1)ݓ

௞ାଵݖ ൌ ௞ାଵݔܥ ൅  ௞ାଵ (1.2)ݒ

where ݔ refers to the state vector, ܣ is the system matrix (dynamics), ܤ is the input gain matrix, ݑ is the 
system input, ݖ is the measurement vector, ܥ is the measurement matrix, ݓ is the system noise vector, ݒ is 
the measurement noise vector, and ݇ refers to the time step. 

It is the goal of any filter to remove the effects that the system ݓ௞ and measurement ݒ௞ noise have 
on extracting the true state values ݔ௞ from the measurements ݖ௞. The KF is formulated in a predictor-
corrector manner. The states are first estimated using the system model, termed as a priori estimates, 
meaning ‘prior to’ knowledge of the observations. A correction term is then added based on the innovation 
(also called residuals or measurement errors), thus forming the updated or a posteriori (meaning ‘subsequent 
to’ the observations) state estimates. The KF correction term or gain is derived by taking the partial 
derivative of the trace of the state error covariance matrix with respect to the gain, setting the equation to 
zero, and then solving for the gain. The optimality of the KF comes at a price of stability and robustness. 
The KF assumes that the system model is known and linear, the system and measurement noises are white, 
and the states have initial conditions with known means and variances [4, 5]. However, the previous 
assumptions do not always hold in real applications. If these assumptions are violated, the KF yields 
suboptimal results and can become unstable [6]. Furthermore, the KF is sensitive to computer precision and 
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the complexity of computations involving matrix inversions [7]. In an effort to further increase stability, 
the KF has been combined with a variety of square root algorithms and methods, such as Cholesky 
decomposition, UD-factorization, and triangularization algorithms [8, 9, 10, 11]. These methods are based 
on reformulating the KF equations by using numerically stable implementations to mathematically increase 
the arithmetic precision of the computation [7]. Increasing the arithmetic precision reduces the effects of 
round-off errors, which improves the overall numerical stability of the filter. 

Variable structure-based estimation methods have been introduced over the past few decades, and 
offer an alternative to the KF with improved robustness and stability to modeling uncertainties and 
disturbances [12]. However, it is important to note that these methods are sub-optimal in terms of estimation 
accuracy. Variable structure system theory originated from the Soviet Union in the 1940s [13, 14]. A special 
subcategory of it referred to as sliding mode control (SMC) is commonly used in control applications as it 
provides enhanced robustness and stability. In a typical sliding mode controller, a discontinuous switching 
gain is used to maintain the states along some desired trajectory [14]. The discontinuous gain is determined 
based on the distance of the states from a switching hyperplane. The gain forces the states to convergence 
onto the hyperplane, and slide along it [15]. While on the hyperplane and under ideal conditions, the state 
trajectory becomes insensitive to disturbances and uncertainties. The discontinuous switching brings an 
inherent amount of stability to the control strategy. A number of sliding mode observers and filters have 
been proposed in literature [16, 17]. 

This paper proposes the use of a variable structure-based estimation method, referred to the smooth 
variable structure filter (SVSF), in an effort to detect and identify changes or faults experienced by an 
electromechanical system. In Section 2, the basic KF and SVSF equations are presented. The proposed fault 
detection and diagnosis strategy is presented in Section 3. The electromechanical system is presented in 
Section 4, and the results are discussed in detail. The paper concludes and future work is proposed in the 
final section. 

2. ESTIMATION THEORIES 

Kalman Filter 

The KF has been broadly applied to problems covering state and parameter estimation, signal processing, 
target tracking, fault detection and diagnosis, and even financial analysis [18, 19]. The success of the KF 
comes from the optimality of the Kalman gain in minimizing the trace of the a posteriori state error 
covariance matrix [20, 21]. The trace is taken because it represents the state error vector in the estimation 
process [22]. The following five equations form the core of the KF algorithm, and are used in an iterative 
fashion. Equations (2.1) and (2.2) define the a priori state estimate ݔො௞ାଵ|௞ and the corresponding state error 
covariance matrix ௞ܲାଵ|௞, respectively. 

ො௞ାଵ|௞ݔ ൌ ො௞|௞ݔܣ ൅  ௞ (2.1)ݑܤ

௞ܲାଵ|௞ ൌ ܣ ௞ܲ|௞்ܣ ൅ ܳ௞ (2.2) 

 The Kalman gain ܭ௞ାଵ (2.3) is used to update the state estimate ݔො௞ାଵ|௞ାଵ as per (2.4). The gain 
makes use of an innovation covariance ܵ௞ାଵ, which is defined as the inverse term found in (2.3). 

௞ାଵܭ ൌ ௞ܲାଵ|௞ܥൣ்ܥ ௞ܲାଵ|௞்ܥ ൅ ܴ௞ାଵ൧
ିଵ

 (2.3) 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵݖ௞ାଵൣܭ െ  ො௞ାଵ|௞൧ (2.4)ݔܥ

 The a posteriori state error covariance matrix ௞ܲାଵ|௞ାଵ is then calculated (2.5), and is used 
iteratively, as per (2.2). 

௞ܲାଵ|௞ାଵ ൌ ሾܫ െ ሿܥ௞ାଵܭ ௞ܲାଵ|௞ሾܫ െ ሿ்ܥ௞ାଵܭ ൅ ൅1݇ܭ൅1ܴ݇൅1݇ܭ
ܶ  (2.5) 
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 A number of different methods have extended the classical KF to nonlinear systems, with the most 
popular and simplest method being the extended Kalman filter (EKF) [4, 23]. The EKF is conceptually 
similar to the KF; however, the nonlinear system is linearized according to its Jacobian. This linearization 
process introduces uncertainties that can cause numerical instability and inaccurate estimates [23]. 

Smooth Variable Structure Filter 

When given an upper bound on the level of unmodeled dynamics and noise, the SVSF is stable and robust 
to modeling uncertainties, noise, and disturbances [24, 25, 26]. The SVSF method is model-based and may 
be applied to differentiable linear or nonlinear dynamic equations [27, 28]. The basic estimation concept of 
the SVSF is shown in Fig. 1. 

 

Figure 1. Standard SVSF estimation concept [20]. 

 The SVSF estimation process is similar to the KF, with the main exception being the gain 
calculation [29]. The predicted state estimates ݔො௞ାଵ|௞	 and state error covariance ௞ܲାଵ|௞ are first calculated 
as per (2.1) and (2.2). Utilizing the predicted state estimates ݔො௞ାଵ|௞, the corresponding predicted 
measurements ̂ݖ௞ାଵ|௞	 and measurement errors ݁௭,௞ାଵ|௞ may be calculated: 

௞ାଵ|௞ݖ̂ ൌ  ො௞ାଵ|௞ (2.6)ݔܥ

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ௞ାଵ|௞ (2.7)ݖ̂

The SVSF gain is a function of: the a priori and the a posteriori measurement errors ݁௭,௞ାଵ|௞ and 
݁௭,௞|௞; the smoothing boundary layer widths ߰; and the ‘SVSF’ memory or convergence rate ߛ. The SVSF 
gain ܭ௞ାଵ is defined as follows [20, 30]: 

௞ାଵܭ ൌ ௞ܥ
ା݀݅ܽ݃ ቂቀቚ݁௭ೖశభ|ೖቚ ൅ ߛ ቚ݁௭ೖ|ೖቚቁ ∘ ݐܽݏ ቀ ത߰

ିଵ݁௭ೖశభ|ೖቁቃ ݀݅ܽ݃ ቀ݁௭ೖశభ|ೖቁ
ିଵ

 (2.8) 

where ∘ signifies Schur (or element-by-element) multiplication and the superscript ൅ refers to the 
pseudoinverse of a matrix. The saturation function of (2.8) is defined by the following: 
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ݐܽݏ ቀ ത߰ିଵ݁௭ೖశభ|ೖቁ ൌ ቐ

1, ݁௭೔,௞ାଵ|௞/߰௜ ൒ 1
݁௭೔,௞ାଵ|௞/߰௜, െ1 ൏ ݁௭೔,௞ାଵ|௞/߰௜ ൏ 1

െ1, ݁௭೔,௞ାଵ|௞/߰௜ ൑ െ1
 (2.9) 

where ത߰ିଵ is a diagonal matrix constructed from the elements of the smoothing boundary layer vector ߰: 

ത߰ିଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
1
߰ଵ

0 0

0 ⋱ 0

0 0 	
1
߰௠ے

ۑ
ۑ
ۑ
ې

 (2.10) 

 The state estimates ݔො௞ାଵ|௞ and state error covariance matrix ௞ܲାଵ|௞ are updated respectively as per 
(2.4) and (2.5). Finally, the updated measurement estimate ̂ݖ௞ାଵ|௞ାଵ and measurement errors ݁௭,௞ାଵ|௞ାଵ are 
calculated, and are used in later iterations: 

௞ାଵ|௞ାଵݖ̂ ൌ  ො௞ାଵ|௞ାଵ (2.11)ݔܥ

݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ  ௞ାଵ|௞ାଵ (2.12)ݖ̂

 The existence subspace shown in Fig. 1 represents the amount of uncertainties present in the 
estimation process, in terms of modeling errors or the presence of noise. The width of the existence space 
 is a function of the uncertain dynamics associated with the inaccuracy of the internal model of the filter ߚ
as well as the measurement model, and varies with time [30]. Typically this value is not exactly known but 
an upper bound may be selected based on a priori knowledge. When the smoothing boundary layer is 
defined larger than the existence subspace boundary, the estimated state trajectory is smoothed. However, 
when the smoothing term is too small, chattering remains due to the uncertainties being underestimated. 

3. PROPOSED FAULT DETECTION AND DIAGNOSIS STRATEGY 

The partial derivative of the a posteriori covariance (trace) with respect to the smoothing boundary layer 
term ߰௞ାଵ is the basis for obtaining a time-varying strategy for the specification of ߰ ௞ାଵ. In linear systems, 
this smoothing boundary layer yields an optimal gain (exactly the KF) [20]. Previous forms of the SVSF 
included a vector form of ߰, which had a single smoothing boundary layer term for each corresponding 
measurement error [30]. Essentially, the boundary layer terms were independent of each other such that the 
measurement errors would not mix when calculating the corresponding gain, leading to reduced estimation 
accuracy. In an effort to obtain a smoothing boundary layer equation that yielded more accurate state 
estimates, a full smoothing boundary layer matrix was proposed in [20, 31]. Hence, consider the following 
smoothing boundary layer form: 

߰ ൌ ൦

߰ଵଵ ߰ଵଶ ⋯ ߰ଵ௠
߰ଵଶ ߰ଶଶ ⋯ ߰ଶ௠
⋮ ⋮ ⋱ ⋮

߰௠ଵ ߰௠ଶ ⋯ ߰௠௠

൪ (3.1) 

 This definition includes terms that relate one smoothing boundary layer to another (i.e., off-
diagonal terms). To solve for the time-varying smoothing boundary layer based on (3.1), consider the 
following in conjunction with (2.5): 

߲൫݁ܿܽݎݐሾ ௞ܲାଵ|௞ାଵሿ൯

߲߰
ൌ 0 (3.2) 

As described in [32], a solution for the smoothing boundary layer from (3.2) is defined as follows: 
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߰௞ାଵ ൌ ൫ܧതିଵܥ௞ ௞ܲାଵ|௞ܥ௞
்ܵ௞ାଵ

ିଵ ൯
ିଵ

 (3.3) 

where ܵ௞ାଵ and ܣ are defined respectively by: 

ܵ௞ାଵ ൌ ௞ܥ ௞ܲାଵܥ௞
் ൅ ܴ௞ାଵ (3.4) 

ܧ ൌ ቀቚ݁௭ೖశభ|ೖቚ ൅ ߛ ቚ݁௭ೖ|ೖቚቁ (3.5) 

This paper proposes the use of (3.3) to determine the presence of modeling uncertainty which can 
be detected and identified as faults. For example, as discussed previously, the width of the smoothing 
boundary layer provides an indicator of performance in terms of the estimation accuracy. If the width or 
value is small, the system used by the SVSF closely matches that of the true system. Whereas if the width 
is large, the system used by the SVSF does not match the true system. If a finite number of system operations 
or models are known, then a bank of filters can be implemented and (3.3) can be used to accurately and 
quickly detect and identify the correct mode of operation. This concept is illustrated in Section 4. 

4. ELECTROMECHANICAL SYSTEM AND SIMULATION RESULTS 

Electromechanical System 

In this paper, an electromechanical system based on a type of aerospace actuator was studied [33]. An 
electrohydrostatic actuator (EHA) is typically used in the aerospace industry for aircraft maneuvering by 
controlling flight surfaces. EHAs are self-contained units comprised of their own pump, hydraulic circuit, 
and actuating cylinder [30]. The main components of an EHA include a variable speed motor, an external 
gear pump, an accumulator, inner circuitry check valves, a cylinder (or actuator), and a bi-directional 
pressure relief mechanism. A mathematical model for the EHA has been described in detail in [34, 20]. For 
the purposes of this paper, only the main state space equations will be explored. The input to the system is 
the rotational speed of the pump ߱௣, with typical units of ݏ/݀ܽݎ. In this setup, the sample rate for this 
simulation was defined as ܶ ൌ  :The state space equations are defined as follows .ݏ݉	0.1

ଵ,௞ାଵݔ  ൌ ଵ,௞ݔ ൅ ଶ,௞ݔܶ ൅  ଵ,௞ (4.1)ݓܶ

ଶ,௞ାଵݔ  ൌ ଶ,௞ݔ ൅ ଷ,௞ݔܶ ൅  ଶ,௞ (4.2)ݓܶ

 

ଵ,௞ାଵݔ ൌ ൤1 െ ܶ ൬
ܤ ଴ܸ ൅ ܮ௘ߚܯ

ܯ ଴ܸ
൰൨ ଷ,௞ݔ െ ܶ

ሺܣଶ ൅ ௘ߚሻܮܤ
ܯ ଴ܸ

ଶ,௞ݔ

െ ܶ ቈ
ଶܤ2 ଴ܸݔଶ,௞ݔଷ,௞

ܯ ଴ܸ
൅
ଶ,௞ݔଶܤ൫ܮ௘ߚ

ଶ ൅ ଴൯ܤ
ܯ ଴ܸ

቉ ,ଶݔሺ݊݃݅ݏ ݇ሻ

൅ ܶ
௘ߚ௣ܦܣ
ܯ ଴ܸ

௞ݑ ൅  ଷ,௞ݓܶ

(4.3) 

Note that ܣ (in this case) refers to the piston cross-sectional area, ܤ# represents the load friction 
present in the system, ߚ௘ is the effective bulk modulus (i.e., the ‘stiffness’ in the hydraulic circuit), ܦ௣ refers 
to the pump displacement, ܮ represents the leakage coefficient, ܯ is the load mass (i.e., weight of the 
cylinders), and ଴ܸ is the initial cylinder volume. The values used to obtain a linear normal operating model 
are summarized in the appendix. Two more models were created based on a severe friction fault (the friction 
was increased 3 times) and a severe leakage fault (the leakage coefficient was increased 4 times). The 
normal, friction fault, and leakage fault system matrices (ܣଵ, ܣଶ, and ܣଷ) are respectively defined as 
follows: 

ଵܣ  ൌ ൥
1 0.0001 0
0 1 0.0001
0 െ41.0258 0.6099

൩ (4.4) 
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ଶܣ  ൌ ൥
1 0.0001 0
0 1 0.0001
0 െ51.8627 0.2226

൩ (4.5) 

ଷܣ  ൌ ൥
1 0.0001 0
0 1 0.0001
0 െ73.5364 0.6015

൩ (4.6) 

Note that all three input gain matrices remained the same, and were calculated as follows: 

ܤ  ൌ ൥
0
0

0.0135
൩ (4.7) 

Note also that artificial system and measurement noise was added to the simulation problem to 
make it more challenging. The zero-mean Gaussian noise was generated using system and measurement 
noise covariance’s ܳ and ܴ which were diagonal matrices with elements equal to 1 ൈ 10ି଺. The desired 
position, velocity, and acceleration trajectories are shown in the following three figures. 

 

Figure 2. Desired EHA position trajectory. 
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Figure 3. Desired EHA velocity trajectory. 

 

Figure 4. Desired EHA acceleration trajectory. 

Note that for the first 4 seconds, the system behaved normally. A friction fault was injected at 4 
seconds and lasted for 4 seconds. At 8 seconds, the friction fault was remove and a 2 second leakage fault 
was implemented. 
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Figure 5. Calculated system input from PID controller. 

Estimation and Fault Detection Results 

The following three figures (Figs. 6-8) show the results of applying the KF and SVSF estimation strategies 
on the aforementioned electromechanical system. The estimation results for the KF and SVSF were nearly 
identical for the first two states. However, for the third state, the KF estimate was slightly noisier, whereas 
the SVSF smoothed out the estimated acceleration. 

Figure 9 illustrates the acceleration state boundary layer values for each mode of operation. Recall 
that the system behaved normally for the first four seconds (ܣଵ), followed by a four second friction fault 
 The magnitude of the calculated boundary layer, based .(ଷܣ) and finally a two second leakage fault ,(ଶܣ)
on the SVSF gain and state error covariance matrix, provides a method for detecting system changes. A 
small magnitude indicates that the system behaviour closely matches the model used by the SVSF. 
Therefore, the ܲ݅ݏ஺భ  term is expected to be smaller than the other two boundary layer terms for the first 
four seconds, and is verified in Fig. 9. During the next four sections, the system operates in the presence of 
a friction fault (ܣଶ), and the ܲ݅ݏ஺మ term is found to be the smallest of the three. Finally, the system operates 
with leakage (ܣଷ), and is verified since the magnitude of the ܲ݅ݏ஺య  term is the smallest. The time-varying 
boundary layer that was derived in Section 3 is shown to be a viable term for fault detection and diagnosis. 
However, this method requires that the system behaves according to a finite number of models that the user 
or engineer can describe mathematically. 

Another interesting property of the SVSF is observed when a spectrogram of the acceleration 
boundary layer values is created for each three modes of operations (Figs. 10-12). A spectrogram is a visual 
representation of the spectrum of frequencies in a signal as they vary with time or some other variable. In 
this case, the signal is based on the calculated time-varying boundary layer. Visual patterns appear in each 
figure based on the ratio of power and frequency (݀ݖܪ/ܤ	). Similar to the study of the boundary layer 
magnitudes, in this case, the smaller the ratio the better match in terms of system operation and the model 
used by the SVSF. 
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Figure 6. Estimated position trajectory using the KF and SVSF strategies. 

 

Figure 7. Estimated velocity trajectory using the KF and SVSF strategies. 
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Figure 8. Estimated acceleration trajectory using the KF and SVSF strategies. 

 

Figure 9. Acceleration state boundary layer values for each mode of operation. 
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Figure 10. Spectrogram of the acceleration boundary layer values using the normal system model. 

 

Figure 11. Spectrogram of the acceleration boundary layer values using the friction fault model. 
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Figure 12. Spectrogram of the acceleration boundary layer values using the leakage fault model. 

Figure 13 is a combination of Figs. 10-12 at low frequencies (less than 35	ݖܪ). This figure clearly 
shows the presence of faults (low vs high power and frequency ratio). Based on knowledge of the system, 
the correct operating mode can easily be identified. For example, as per ܲ݅ݏ஺భ , the system is shown to 
operate normally for four seconds, and then abnormally for the remainder of the simulation. The leakage 
fault (ܣଷ) is shown to exist between 8 and 10 seconds, as per ܲ݅ݏ஺య . 

 

Figure 13. Low frequency spectrogram of the acceleration boundary layers for all three models. 
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5. CONCLUSIONS 

Although first introduced in the 1950s, the most popular method used for signal processing and state 
estimation remains the Kalman filter (KF). The KF offers an optimal solution to the estimation problem 
under strict assumptions, however is known to be unstable due to modeling uncertainties and disturbances. 
The smooth variable structure filter (SVSF) is a sub-optimal filter but is considerably more robust than the 
KF. In this paper, properties of the SVSF were explored in an effort to detect and diagnosis faults in an 
electromechanical system. It was determined that the definition for the time-varying smoothing boundary 
layer may be used to accurately and quickly detect and identify changes in a system. Future work includes 
application of the proposed methodology to an experimental setup, and comparison of the results with other 
popular fault detection strategies. 
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