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Abstract— This paper presents an adaptive integral sliding
mode controller for longitudinal rotation control of a tilt-rotor
aircraft (TRA). The movable mass, which slides along the wing
of the TRA, is considered an unknown disturbance in this paper.
The simplified dynamics of the TRA is proposed for the control
of the longitudinal rotation during its landing, and application
of the adaptive integral sliding mode controller is presented.
In the design process of the controller, we applied a sliding
surface including an integral term for reinforcing the control
performance of the system. This paper compares the results
of applying a PID controller and the adaptive integral sliding
mode controller with the proposed sliding surface for improved
robustness and stability to unknown disturbance.

I. INTRODUCTION

Vertical take-off and landing (VTOL) aircraft have been
used in various fields for both military and civilian applica-
tions, including reconnaissance, transportation, rescue, and
recovery. A tilt-rotor aircraft (TRA), a type of VTOL aircraft,
is actively utilized. The main characteristic of the TRA is that
it generates lift and propulsion by rotors mounted on rotating
engines at the ends of a fixed wing. This main characteristic
leads the TRA to have advantages over both helicopters and
fixed-wing aircraft because, not only can the TRA achieve
long flight distances with relatively high speeds, it can also
take-off and land vertically. However, one disadvantage is
highly coupled nonlinearities, which causes degradation in
stability. Hence, to solve this problem, various nonlinear
control techniques have been applied and researched [1],
[2]. Tilt-rotor unmanned aerial vehicles (TRUAVs) bave been
developed further as per [3]-[6].

R. T. Rysdyk et al. presented nonlinear adaptive flight
control techniques using artificial neural networks (ANNs)
for the TRA in [1] and [2]. In addition, ANNs were applied
to the model inversion control technique for overcoming the
drawback of dynamic model inversion control; however, this
process is sensitive to modeling errors. The proposed control
architecture minimized the requirement of the conventional
control method which is extensive gain scheduling, and also
adapted well to uncertainties in the control inputs and state
variables.

A controller based on back-stepping was presented for an
autonomous flight of the TRUAV by F. Kendoul et al. [3].
The proposed TRUAV model allowed the rotors to tilt in not
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Fig. 1. A tiltrotor aircraft, V-22 Osprey [16].

only the lateral axis, but also the longitudinal axis of the
rotor. The tilting of the rotor yielded an increase in the pitch
stability. Furthermore, this paper applied the back-stepping
strategy for the controller.

In [4], an autopilot design of the TRUAV was presented
using particle swarm optimization methods. The proposed
control technique solved problems that are caused by vari-
ous dynamic characteristics and system nonlinearities. This
control design achieved the required stability margin in every
flight mode that was tested.

A dynamic model and nonlinear control scheme was
presented for autonomous TRUAV hovering in [5]. The con-
troller was designed from decoupled dynamics and was based
on Lyapunov stability theory and considered a bounded,
smooth function. TRUAV model and attitude control was
presented by C. Papachristors et al. [6]. For attitude control,
a PID controller was applied to the system with a simple
model obtained through first-order linearization.

For the control of nonlinear TRUAV system, various
controllers have been introduced [1]-[6]. In this paper, we
consider a sliding mode controller (SMC) which is a nonlin-
ear and robust controller. It attempts to change the control
signal in order for the system to reach a stable origin in
an exponential fashion, despite the existence of bounded
uncertainties such as external disturbances, modeling errors,
and sensor noise [7]-[8]. For these advantages, SMC has been
applied to various robotic systems, such as robotic manip-
ulators and ground/aerial vehicles [9]-[15]. Applications of



SMCs on quadrotors are presented in [11]-[13].
Furthermore, we also consider sliding surface with an

integral term, which is proposed for improved control perfor-
mance. This is called as an integral SMC, and was proposed
in [17]. The integral SMC guarantees robustness through an
entire response of the system starting from the initial time
instance. Because the order of the motion equation in integral
sliding mode is equal to the order of the original system.

In this paper, the longitudinal control of a TRA with an
unknown disturbance is considered. To control the roll angle
during landing with an unknown disturbance caused by a
movable mass, we propose an adaptive integral SMC for the
TRA, derived by Lyapunov stability theory with an integral
term in a sliding surface.

The rest of the paper is organized as follows. Section II
introduces the TRA system model and the simplified longi-
tudinal dynamics with an unknown disturbance. Section III
describes the sliding surface with the integral term, and the
adaptive integral sliding mode controller for the TRA with
unknown disturbances. In Section IV, the simulation results
of the proposed controller are presented and compared with
the PID controller. Section V presents concluding remarks
and future experimental work.

II. DYNAMIC MODEL

The dynamics of the TRA for designing the controller are
introduced in this section. The TRA, which has two tilt-able
rotors fixed on a rigid wing frame, is considered as shown
in Fig. 2. In this paper, the dynamics are simplified such that
the rotors are able to rotate around the lateral axis only, and
the flight control surfaces of the fixed-wing aircraft are not
considered. Future work will study these additional effects.

A. Full Dynamics

Consider the fixed inertia frame I, body frame B and each
rotor frame In (n = 1,2), as shown in Fig. 2. The I is defined
by axes Ix, Iy and Iz.

The coordinates of the TRA are defined as x =
[x,y,z,φ ,θ ,ψ] ∈ R6 where ξ = (x,y,z) ∈ R3 represents the
position of the center of the mass and η = (φ ,θ ,ψ) ∈ R3

represents the roll, pitch, and yaw angle, respectively.

Fig. 2. A tiltrotor aircraft coordinate system.

The B is located at the center of mass and the Rn is
attached to the end of the wing. The distance between textitB
and Rn is denoted by l, half the length of the wing span.

The rotation of the body in the inertia frame can be given
by rotational matrix R0 using Z-Y-X Euler angles,

R0 =

cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ

 , (1)

where c and s denote cosine and sine functions, respectively.
Also, the rotational matrices of the rotors in the body frame
are presented as

Rn =

cαn 0 sαn
0 1 0

sαn 0 cαn

 , (2)

where αn denotes tilt angles of rotors around Rny.
The dynamic equations of the TRA model can be derived

from an Newton-Euler approach, and is simplified as fol-
lows:

ξ̇ = v

v̇ =
1
M
(

2

∑
n=1

TnR0Rne3)−ge3

Ṙ0 = R0ω̇

Jbω̇ =−ω× Jbω−
2

∑
n=1

Jr(ω× e3)Ωn + τa,

(3)

where Ωn denotes the speed of each rotor, Tn is the thrust
of each rotor. [Jb,Jr] presents body and rotor inertia, respec-
tively. e3 = [0,0,1]T , and τa denotes the torque on the body
of the TRA, M is the mass of the TRA, and g denotes gravity.
The rotational matrices R0 and Rn can be simplified as one
rotational matrix, R0,n, then the second dynamic equation of
(3) can be rewritten as follows:

v̇ =
1
M
(

2

∑
n=1

TnR0,ne3)−ge3. (4)

Since TRA uses the same tilting angles in practice, assume
that α1 is equal to α2. Therefore, the forces, Fa, and torques,
τa, applied on the body of the TRA can be written as (5)
and (6), respectively. This yields:

Fa = T1R0,1e3 +T2R0,2e3−ge3

= (T1 +T2)R0,1e3−ge3

= (T1 +T2)

 cθcψsα1 + cφsθcψcα1 + sφsψcα1
cθsψsα1 ++cφsθsψcα1− sφcψcα1

cφcθcα1− sθsα1−g/(T1 +T2)

 ,

(5)

τa =

l(T2cα2−T1cα1)
0

l(T1sα1−T2sα2)


=

l(T2−T1)cα1
0

l(T1−T2)sα1

 .

(6)



Hence, the full dynamics of the TRA can be rewritten with
defined input terms (7), as shown in (8)-(13).

u1 = T1 +T2

u2 =
l(T1−T2)

Jb

(7)

ẍ = u1(cosψsinα1 + sinφsinψcosα1) (8)

ÿ = u1(sinψsinα1− sinφcosψcosα1) (9)

z̈ = u1cosφcosα1−g (10)

φ̈ =−u2cosα1 (11)

θ̈ = 0 (12)

ψ̈ = u2sinα1. (13)

Note again that these dynamics are derived without con-
sideration of the wing control surfaces; with fixed-pitch tilt
rotors only. Hence, (12) is not controllable in this setup. This
indicates that θ does not affect any state variables, and we
assume the initial θ is zero so that we can derive the full
dynamics of the TRA with this assumption. Furthermore, to
solve the problem proposed in this paper, it is assumed that
the TRA is controlled with an αn of zero degrees during
landing.

B. Longitudinal Dynamics with an Unknown Disturbance

In this paper, longitudinal rotation control of a TRA
is considered with an unknown disturbance caused by a
movable mass during its landing. Assume that there is a
movable mass that translates along the longitudinal axis. One
can extract and simplify φ dynamics adding the unknown
disturbance term as represented in (14), and a shown in Fig.
3. lm is the distance between the center of the mass of the
system and the position of the movable mass.

φ̈ =
l
Jx
(T2cosα2−T1cosα1)+ fr(φ), (14)

where the term fr(φ) is an unknown disturbance due to a
movable mass.

Next, define a control input term (15) with the same
tilt angles α1 and α2 assumed above. The final simplified
equation of motion can be rewritten as (16).

u =
(T2−T1)cosα1

Jx
(15)

φ̈ = lu+ fr(φ). (16)

Fig. 3. A tiltrotor aircraft coordinate system.

III. ADAPTIVE INTEGRAL SLIDING MODE
CONTROLLER

In order to overcome the unknown disturbance, an adaptive
integral sliding mode controller is presented in this section.
This strategy is based on [17]. In order to improve the control
performance, an integral sliding surface is used instead of a
PD-type sliding surface. The addition of the I helps reduce
steady-state error.

First, we define the suitable sliding surface, s. The general
sliding surface is defined as

s(t) = ė(t)+ ke(t), (17)

where k is a positive constant and e(t) = φ(t)− φd(t), in
which φd denotes the desired state variable.

Consider an integral term such that the new sliding surface
can be written as per (18).

s(t) = k1e(t)+ ė(t)+ k2

∫ t

0
e(τ)dτ− ė(0)− k1e(0), (18)

where k1 and k2 denotes the controller parameters.
According to SMC theory, the sliding surface should equal

zero with the designed controller input, making the trajectory
of the system stay on s [7]. In order to accomplish this task,
a Lyapunov function is selected as [14]

L =
1
2

sT s+
1
2

f̃r
T f̃r, (19)

where f̂r(φ) denotes the estimated value of fr(φ), and f̃r(φ)
is the definition of the error between the true and estimated
values, that is, f̃r(φ) := fr(φ) − f̂r(φ). From the above
function, the time derivative of the Lyapunov function can
be defined as follows:

L̇ = sṡ+ f̃r
˙̃fr

= s(k1ė+ ë+ k2e)+ f̃r( ḟr− ˙̂fr)

≤ 0.

(20)

Here, assume that the mass on the system moves slowly
due to surface friction resulting in a slow change of fr(φ),
thereby assuming that ḟr ≈ 0. That is, ˙̃fr(φ)≈− ˙̂fr(φ). Then,
(20) can be rewritten as

L̇ = s(k1ė+ ë+ k2e)+ f̃r(φ)(− ˙̂fr(φ))

= s{k2e+ lu+ fr(φ)− φ̈d + k1ė}− f̃r(φ)
˙̂fr(φ)

≤ 0.

(21)



Fig. 4. PID controller results (Case 1). (a) The history of θ , (b) the history
of u.

To guarantee the stability of system equilibrium, (21) must
be negative semi-definite as per Lyapunov theory [8]. Hence,
the input term u is defined as

u =
1
l
{−k2e− f̂r(φ)+ φ̈d− k1ė−Csgn(s)}, (22)

where C is a positive input gain. Then (21) becomes

L̇ = f̃r(φ)(s− ˙̂fr(φ))−Cs2 ≤ 0. (23)

When ˙̂fr(φ) is updated as k1e(t) + ė(t) + k2
∫ t

0 e(τ)dτ −
ė(0)− k1e(0), the time derivative of Lyapunov function is
reduced to

L̇ =−Cs2 ≤ 0. (24)

Therefore, the system can reach the sliding surface (s = 0)
in a finite period of time with the control input (22).

In order to avoid the effects of chattering caused by the
switching term in the control input, a saturation function
is implemented, as shown in (25); instead of sgn(s) in this
paper.

sat(s(t),Γ) =


s(t)
Γ

if |s(t)|< Γ

sgn(s(t)) otherwise ,
(25)

Fig. 5. Results of the proposed controller (Case 1). (a) The history of θ ,
(b) the history of u.

where Γ is the boundary layer of saturation function (user
defined parameter).

IV. SIMULATION
In this section, the proposed controller is applied and

simulated on the TRUAV system. Two cases were simulated
for controlling φ . The first case considers constant reference
signals, and the second case considers a cosine function refer-
ence. To compare the performance of the proposed controller,
a PID controller was tested under the same conditions. The
results illustrate the state variable changes, control input,
and error with sensor noise. In this simulation, sensor noise
was used with a mean and standard deviation of 0 deg and
0.115 deg, respectively. The physical limitation of the output
was set at ±30 rad/sec2. Relevant simulation parameters are
defined as follows:

l = 0.5 m, lm,init =−0.1 m

m = 3 kg, g = 9.81 m/s2

φinit = 10 deg

Jb = 1.25 Ns2/rad

kP = 250, kI = 50, kD = 140
k1 = 15, k2 = 40, C = 15
Γ = 0.5

(26)



Fig. 6. PID controller results (Case 2). (a) The history of θ , (b) the history
of u.

We assume that φ affects the movement of the mass,
loaded in the TRA. Hence, the location of the movable mass
can be written as shown in (27).

lm(t) = lm,init +
∫ t

0

∫ t

0
(gsin(φ(τ))−µgcos(φ(τ))) dτ dτ,

(27)

where lm,init denotes the initial distance between the conter
of the mass of the system and the position of the movable
mass, and µ is a friction coefficient. From (27), we can write
fr(φ) in the logitudinal dynamics of a TRA as (28).

fr(φ(t)) =
lm(t)
Jm

mgcos(φ(t)) , (28)

where Jm represents mass inertia. Note that the estimation of
an unknown disturbance, f̂r(φ(t)), is updated from ˙̂fr(φ) =
k1e(t)+ ė(t)+ k2

∫ t
0 e(τ)dτ − ė(0)− k1e(0) for the proposed

controller.

A. Case 1

In this case, the reference input is set to −5 deg, the initial
position of the mass lm,init is −0.1 m, and the initial roll angle
φinit is −10 deg, which is off the initial reference input.
The results of this case are shown in Figs. 4 and 5. Both
controllers performed well and generated acceptable outputs.

Fig. 7. The results of the proposed controller. (Case 2) (a) : The history
of θ , (b) : the history of u.

However, as per Fig. 4(a), the PID controller demonstrated
overshoot of about 60% at about 3-5 seconds. This is due
to the fact that the PID controller does not accurately
respond to the effect of the movable mass. The additional
control action is required in order to stay within a region
of the reference trajectory until the mass stops moving.
However, the proposed integral sliding mode controller was
able to overcome the effects of the unknown disturbance,
and generated a suitable control input at each moment
as shown in Fig. 5. The results of this simulation show
better tracking performance when compared with the PID
controller. Furthermore, trends of the control inputs illustrate
that the PID controller generated large input values, thus
requiring more energy; whereas the proposed integral sliding
mode controller had smaller input values.

B. Case 2

In the second case, similar initial parameters were used,
however the reference input was in the shape of a cosine
function. As illustrated in Fig. 6, the results obtained by
the PID controller yielded overshoot of about 35% when
tracking the reference values. The unwanted overshoot was
caused by the moving mass which interjects an unknown
disturbance into the control system. In contrast, the proposed
integral sliding mode controller operated successfully despite
the unknown perturbation as shown in Fig. 7. In Fig. 6(b)



Fig. 8. The histories of errors (eφ = φ − φd ). (a) The blue dashed line
and the red solid line represent eφ from the PID controller and from the
proposed controller, respectively, in the first case. (b) The same data in the
second case.

and Fig. 7(b), the control inputs are depicted. The proposed
controller generated a more efficient and smaller control
input signal than the PID controller in this case as well.

C. RMSE

The error values from all of the simulations are depicted in
Fig. 8. The root-mean-square errors (RMSE) of each result
are calculated as shown in Table I. Note that the units are
in degrees. From these results, it is demonstrated that the
proposed controller yielded better tracking accuracy when
compared with the PID controller, in both cases.

TABLE I
RMSE OF EACH SIMULATION

Case 1 Case 2
PID controller 0.0332 0.0207
Proposed SMC 0.0230 0.0048

V. CONCLUSIONS AND FUTURE WORK

This paper proposed an adaptive integral sliding mode
controller for the control of tilt-rotor unmanned aerial vehicle
longitudinal rotation. The simplified longitudinal rotation
dynamics was proposed with an unknown disturbance caused

by a movable system mass. The proposed controller was
applied to the system. In the sliding surface, the integral
term was added for improvement of the control perfor-
mance, whereas a general sliding surface is considered a
proportional-derivative-type. Simulation results demonstrate
that the proposed controller yields good tracking perfor-
mance, and is more robust and faster than the PID con-
troller. Future studies will look at implementing the control
methodologies in the laboratory environment. Furthermore,
this paper will be expanded significantly to include full
control of TRUAVs with various nonlinear control strategies
under multiple scenarios.
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