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Abstract – Accurate and robust control methodologies are critical 
to the reliable and safe operation of engineering systems. Sliding 
mode control (SMC) is a form of variable structure control and is 
regarded as one of the most effective nonlinear robust control 
approaches. The control law is designed so that the system state 
trajectories are forced towards the sliding surface and stays 
within a region of it. The switching gain in the control signal 
brings an inherent amount of stability to the control process. 
However, the controller is only as effective as the knowledge of 
critical system states and parameters. Estimation strategies, such 
as the Kalman filter or the smooth variable structure filter 
(SVSF), may be employed to improve the quality of the state 
estimates used by control methods. A recently developed SVSF 
formulation, referred to as the second-order SVSF, offers 
robustness and chattering suppression properties of second-order 
sliding mode systems. It produces robust state estimation by 
preserving the first- and second-order sliding conditions such that 
the measurement error and its first difference are pushed towards 
zero. This paper aims to combine the SMC with the second-order 
SVSF in an effort to develop and offer an improved control 
strategy. It is proposed that this controller will offer an 
improvement in terms of controller accuracy without affecting its 
inherent stability and robustness. An electrohydrostatic actuator 
will be used for proof of concept, and future work will extend the 
application to automotive powertrains. 

1. A BRIEF INTRODUCTION 

The reliable and safe control of systems is an important area 
of research for engineers and scientists. Fault detection and 
diagnosis (or identification) strategies are methodologies used 
to improve the reliability of systems and reduce risks of failure. 
Typically, these strategies may be classified as model-based or 
signal-based [1]. 

Model-based systems, as the name suggests, utilize physical, 
mathematical, and identifed parameters to develop models of 
the system. These models are used to determine operating 
modes, whether a system is behaving normally or under the 
presence of a fault. A number of model-based methods, such 
as the multiple-model (MM) method, are adaptive strategies 
that use a Bayesian framework. They have been implemented 
in various forms [2], including the following: static MM [3], 
dynamic MM [4], generalized pseudo-Bayesian (GPB) [5, 6, 
7, 8], and the interacting multiple model (IMM) [4, 9, 10]. 

As described in [11], a number of MM strategies have been 
implemented for the purposes of fault detection and diagnosis 
[12, 13, 14]. The most popular form of MM strategies remains 
the interacting form (IMM) [15]. Recently, a new form has 
been proposed, which makes use of the IMM estimator for 

fault detection and identification and the maximum likelihood 
estimator (MLE) for estimating the extent of the failure [16]. 

Signal-based fault detection strategies utilize sensors and 
measurements to extract information on the state of the system. 
A simple strategy is to determine baseline data and signal 
patterns for distinct operating modes. A popualr signal-based 
method, known as an artifical neural network (ANN), has been 
implemented by a number of researchers [17]. ANNs utilize 
large sets of data to train a mathematical model of a system 
(under different operating modes) and then is used to test or is 
applied on the system. 

Both model-based and signal-based methods generally make 
use of sensors and measurements. Estimation strategies are 
used to extract true state values of the system from 
measurements. The most popular method is the Kalman filter 
(KF) [1]. However, it has a few disadvantages, with the main 
issue being lack of robustness to modeling uncertainties. 
Variable structure-based estimation methods have been 
introduced and used in an effort to improve robustness and 
stability [1]. 

The paper is organized as follows. Two estimation strategies 
are presented in Section 2: the standard smooth variable 
structure filter (SVSF), and the second-order SVSF. The 
proposed control strategy is then presented in Section 3, and is 
conceptually similar to [18], however this paper uses the 
recently introduced second-order SVSF. In Section 4, a 
simulation example and results are presented as a proof of 
concept. The paper is then conclued and future work is 
discussed. 

2. STRUCTURE-BASED ESTIMATION STRATEGIES 

A. Smooth Variable Structure Filter 
The first-order smooth variable structure filter (1st-order 

SVSF) is a model-based robust state estimation method 
introduced by Habibi in 2007 [9] and introduced using the 
sliding mode concept. It was presented in a predictor-corrector 
form and benefits from a discontinuous gain action that 
enforces the state estimates towards their true values. The 
discontinuous corrective action of the 1st-order SVSF 
preserves the first-order sliding mode condition and hence, 
provides robustness to bounded noise and modeling 
uncertainties. In order to formulate this filter, consider a linear 
system described by a discrete time state-space model as 
follows: 

௞ାଵݔ ൌ ௞ݔܨ ൅ ௞ݑܩ ൅  ௞ (1)ݓ
where ݔ௞, ݑ௞, and ݓ௞ respectively denote the state vector, the 
control vector, and the measurement noise. Furthermore, ܨ and 



 represent the system and input matrices, respectively. The ܩ
measurement model is also linear and given by: 

௞ାଵݖ ൌ ௞ାଵݔܪ ൅  ௞ାଵ (2)ݒ
where ݖ௞, ݒ௞, and ܪ respectively denote the measurement 
vector, the measurement noise, and a positive diagonal or 
pseudo-diagonal measurement matrix. The 1st-order SVSF 
method consists of two main steps: prediction and update steps. 
In the prediction step, the a priori state estimate ݔො௞ାଵ|௞ is 
predicted using the system prior knowledge to step ݇. In the 
update step, the obtained a priori estimate is updated into the a 
posteriori state estimate ݔො௞ାଵ|௞ାଵ. In this context, the vector of 
sliding variables ܵ௞ is firstly suggested as [1]: 

ܵ௞ ൌ ௞ݖ െ  ො௞|௞ (3)ݔ෡ܪ
The 1st-order SVSF consists of four main steps as follows.  

i) Predict the a priori state estimate as per [1]: 
ො௞ାଵ|௞ݔ ൌ ො௞|௞ݔ෠ܨ ൅  ௞ (4)ݑ෠ܩ

where ܨ෠ denotes the estimated state model or system matrix. 
The a priori measurement estimate is also obtained using the 
estimated state vector and the measurement model as [1]: 

௞ାଵ|௞ݖ̂ ൌ  ො௞ାଵ|௞ (5)ݔ෡ܪ
where ܪ෡ is an estimate of the measurement model ܪ. 
ii) Calculate the a posteriori and a priori innovation sequence 
vectors, ݁௭,௞|௞ and ݁௭,௞ାଵ|௞, respectively as follows [1]: 

݁௭,௞|௞ ൌ ௞ݖ െ  ො௞|௞ (6)ݔ෡ܪ
݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ො௞ାଵ|௞ (7)ݔ෡ܪ

iii) Calculate the corrective gain ܭ௞ାଵ, which is obtained as a 
function of the a priori and the a posteriori innovation 
sequences as per [1]: 

௞ାଵܭ ൌ ା൫ห݁௭,௞ାଵ|௞หܪ ൅ ห݁௭,௞|௞ห൯ߛ
∘  ൫߰ା݁௭,௞ାଵ|௞൯ݐܽݏ

(8) 

where ߛ is a diagonal matrix with positive elements that 
contain the convergence rate, ∘ denotes the Schur product, ൅ 
denotes the pseudo-inverse operator, and ߰ is the smoothing 
boundary layer width matrix. The saturation function is 
defined by [1]: 

൫߰ା݁௭,௞ାଵ|௞൯ݐܽݏ

ൌ ቐ

1 ݁௭೔,௞ାଵ|௞/߰௜ ൒ 1
݁௭೔,௞ାଵ|௞/߰௜ െ1 ൏ ݁௭೔,௞ାଵ|௞/߰௜ ൏ 1

െ1 ݁௭೔,௞ାଵ|௞/߰௜ ൑ െ1
 

(9) 

iv) Update the a priori state estimate into the a posteriori state 
estimate ݔො௞ାଵ|௞ାଵ such that [2]: 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ (10)ܭ
As per [9], the SVSF gain is a function of a priori (predicted) 

and previous a posteriori (updated) measurement errors, SVSF 
‘memory’ ߛ, and a smoothing boundary layer term ߰. The 
smoothing boundary layer term is used to reduce or smooth the 
chattering magnitude caused by the switching term (8). 

As per [10, 11, 12], the SVSF estimation process is further 
illustrated in Figs. 1-3. To reiterate, the existence subspace 
represents the amount of uncertainties present in the estimation 
process [12]. This value is defined in terms of modeling errors 
and noise. It is often tuned by trial and error based on designer 
knowledge (e.g., estimated amount of system or measurement 
noise). The width of the existence space ߚ is a function of the 
uncertain dynamics associated with the inaccuracy of the 

internal model of the filter as well as the measurement model, 
and may vary with time [9]. In most cases, this value is not 
known exactly, but an upper bound may be selected based on 
designer knowledge. 

 
Figure 1. SVSF estimation concept as per [1]. 
 

 
Figure 2. Smoothed trajectory ሺ߰ ൒  .ሻ [19]ߚ

 

 
Figure 3. Presence of chattering effect ሺ߰ ൏  .ሻ [11]ߚ



B. Dynamic Second-Order SVSF 
The dynamic 2nd-order SVSF is a novel model-based state 

estimation method that is formulated in a predictor-corrector 
form and benefits from the robustness and chattering 
suppression of the second-order sliding mode systems. The 
corrective gain of the dynamic 2nd-order SVSF steers the 
innovation sequence (the measurement error) and its first 
difference towards zero in a finite time. The dynamic 2nd-
order SVSF method applies to systems with a linear state and 
linear measurement models. It is important to note that the 
corrective gain of the dynamic 2nd-order SVSF is formulated 
using the dynamic sliding mode theorem. Similar to the 1st-
order SVSF method, the dynamic 2nd-order SVSF applies in 
the prediction and update steps. 

The calculation process of the dynamic 2nd-order SVSF 
method is similar to the 1st-order SVSF method. The only 
difference is related to the corrective gain calculation. In this 
context, the corrective gain ܭ௞ାଵ of the dynamic 2nd-order 
SVSF method is obtained as a function of the a priori and the 
a posteriori innovation sequences as [2]: 

௞ାଵܭ ൌ ෡ିଵ൫݁௭,௞ାଵ|௞ܪ െ ሺߛ ൅ ௞ାଵሻ݁௭,௞|௞ߣ
൅  ௞ାଵ݁௭,௞ିଵ|௞ିଵ൯ߣߛ

(11) 

where ܪ෡ is a full measurement matrix, ߛ is a diagonal matrix 
with positive entries of value less than 1 and greater than 0. It 
represents the convergence rate corresponding to each entry. 
Following (11), it is deduced that the corrective gain represents 
a second-order Markov process. It is calculated using the 
innovation sequence values at different time steps. 

An advantage of the dynamic 2nd-order SVSF is that it 
introduces a cut-off frequency coefficient within the corrective 
gin formulation. This can adjust the filter’s bandwidth in order 
to remove any effects of chattering, as opposed to using a 
saturation functino. In order to formulate this coefficient into 
the filter’s gain, a dynamic sliding mode manifold is 
introduced as follows: 

௞ߪ ൌ Δܵ௞ ൅  ௞ (12)ܵܥ
where ܥ denotes the manifold’s cut-off frequency. Since the 
sliding variable is defined as the a posteriori innovation 
sequence ܵ ௞ ൌ ݁௭,௞|௞, the difference of the sliding variable will 
present the difference of the innovation sequence as Δܵ௞ ൌ
݁௭,௞|௞ െ ݁௭,௞ିଵ|௞ିଵ. In this context, by considering the sliding 
manifold as ߪ௞ ൌ Δܵ௞ ൅  ௞ and presenting the stability ofܵܥ
state estimates about it, it is ensured that the innovation 
sequence and its difference are decreasing in finite time. 

3. PROPOSED CONTROL STRATEGY 

The nonlinear control strategy that is used in this paper is the 
sliding mode controller (SMC). The KF-based and second-
order SVSF estimation strategies are combined with the SMC 
in an effort to offer improved tracking performance. The 
estimation methods feed accurate state values into the SMC 
method. The SMC then provides control signals to be used by 
the system to obtain a desired trajectory tracking or 
performance. Therefore, it is important to feed accurate state 
estimates into the controller for improved tracking accuracy. 

SMC is known for its ability to provide robustness and 
stability in the presence of uncertainties. Misawa proposed a 

discrete sliding mode control method for nonlinear systems 
with uncertainties that do not satisfy the matching condition 
[20]. Later in [21], this design was extended for linear systems 
and was reported to provide good results. As per [22], the 
uncertainties ݓ in a system are assumed to be bound such that: 

ߛ ൒  (13) |ݓܥ|
The objective is to force the system to follow a desired 

trajectory ݔௗ, and can be restated as driving the tracking error 
(݁௞ ൌ ௗ,௞ݔ െ  ௞) as close as possible to zero. A slidingݔ
manifold is defined as: 

ߑ ൌ ሼ݁௞|ݏ௞ ൌ ௞݁ܥ ൌ 0ሽ (14) 
where ܥ is the sliding surface parameter vector, and with a 
smoothing boundary layer defined by: 

ߖ ൌ ሼ݁௞||ݏ௞| ൌ |௞݁ܥ| ൑ ߰ሽ (15) 
In this paper, and as presented in [22], the control strategy 

will be based on Misawa’s SMC control structure [20, 21]. The 
control input may be defined as follows [20, 21]: 

௞ݑ ൌ ௘௤,௞ݑ െ ൫ܩܥ෠൯
ିଵ
௞ݏ

൅ ൫ܩܥ෠൯
ିଵ
ݐܽݏ௖ܭ ൬

௞ݏ
߰
൰ 

(16) 

where ݑ௘௤ refers to the equivalent control component, and the 
remainder is the switching control component. The following 
is also defined: 

௘௤,௞ݑ ൌ ൫ܩܥ෠൯
ିଵ
ௗ,௞ାଵݔ൫ܥ െ  ௞൯ (17)ݔ෠ܨ

௖ܭ ൌ ߛ ൅ 2߳,  ߰ ൒ ߛ ൅ ߳ (18) 

ݐܽݏ ൬
௞ݏ
߰
൰ ൌ ൞

൅1	݂݅	ݏ ൐ ߰
ݏ
߰
|ݏ|	݂݅	 ൑ ߰

െ1	݂݅	ݏ ൏ ߰

 (19) 

where ߳ is an arbitrary positive constant. However, a major 
drawback in Misawa’s SMC derivation is the assumption that 
the uncertainties ݓ are bounded by a constant [20, 21]. This 
assumption is not realistic since ݓ is inherently dependent on 
the system states. In this case, a new gain calculation is 
required, where a variable gain may be used to compensate for 
the uncertainties. A variable gain and boundary layer were 
introduced in [18], and are defined as follows [22]: 
௖ܭ ൌ |෨௠௔௫|݁௞ܨܥ ൅ ௗ,௞หݔ෨௠௔௫หܨܥ ൅ ௠௔௫ݑ෨௠௔௫ܩܥ

൅ ௠௔௫ݒܥ ൅ 2߳ 
(20) 

߰ ൌ |෨௠௔௫|݁௞ܨܥ ൅ ௗ,௞หݔ෨௠௔௫หܨܥ ൅ ௠௔௫ݑ෨௠௔௫ܩܥ
൅ ௠௔௫ݒܥ ൅ ߳ 

(21) 

where ܨ෨௠௔௫ and ܩ෨௠௔௫ are the upper bounds on the uncertainties 
in the system matrix and the input matrix respectively, ݑ௠௔௫ is 
the maximum allowable input, and ݒ௠௔௫ is the maximum noise 
amplitude. The system may be forced to follow some desired 
trajectory by implementing (16) through (21) [22]. 

4. COMPUTER SIMULATION AND RESULTS 

A. Simulation Setup 
The system used for proof of concept is an electrohydrostatic 

actuator (EHA). In theory, any system could have been used, 
however previous work in [18] was leveraged for comparison 
purposes. The system presented here is as illustrated and 
presented in [18]. 

An EHA is an emerging type of actuator typically used in 
the aerospace industry. EHAs are self-contained units 



comprised of their own pump, hydraulic circuit, and actuating 
cylinder [23]. The main components of an EHA include a 
variable speed motor, an external gear pump, an accumulator, 
inner circuitry check valves, a cylinder (or actuator), and a bi-
directional pressure relief mechanism. A mathematical model 
for the EHA has been described in detail in [18, 1]. For the 
purposes of this paper, only the main state space equations will 
be explored. The input to the system is the rotational speed of 
the pump ߱௣, with typical units of ݏ/݀ܽݎ. In this setup, the 
sample rate for this simulation was defined as ܶ ൌ  The .ݏ݉	0.1
state space equations are defined as follows [18]: 

ଵ,௞ାଵݔ  ൌ ଵ,௞ݔ ൅ ଶ,௞ݔܶ ൅  ଵ,௞ (22)ݓܶ
ଶ,௞ାଵݔ  ൌ ଶ,௞ݔ ൅ ଷ,௞ݔܶ ൅  ଶ,௞ (23)ݓܶ

 

ଵ,௞ାଵݔ

ൌ ൤1 െ ܶ ൬
ܤ ଴ܸ ൅ ܮ௘ߚܯ

ܯ ଴ܸ
൰൨ ଷ,௞ݔ

െ ܶ
ሺܣଶ ൅ ௘ߚሻܮܤ

ܯ ଴ܸ
ଶ,௞ݔ

െ ܶ ቈ
ଶܤ2 ଴ܸݔଶ,௞ݔଷ,௞

ܯ ଴ܸ

൅
ଶ,௞ݔଶܤ൫ܮ௘ߚ

ଶ ൅ ଴൯ܤ
ܯ ଴ܸ

቉ ,ଶݔሺ݊݃݅ݏ ݇ሻ

൅ ܶ
௘ߚ௣ܦܣ
ܯ ଴ܸ

௞ݑ ൅  ଷ,௞ݓܶ

(24) 

Note that ܣ refers to the piston cross-sectional area, ܤ# 
represents the load friction present in the system, ߚ௘ is the 
effective bulk modulus (i.e., the ‘stiffness’ in the hydraulic 
circuit), ܦ௣ refers to the pump displacement, ܮ represents the 
leakage coefficient, ܯ is the load mass (i.e., weight of the 
cylinders), and ଴ܸ is the initial cylinder volume. The values 
used to obtain a linear normal operating model are summarized 
in [18]. 

Two more models were created based on a severe friction 
fault (the friction was increased 3 times) and a severe leakage 
fault (the leakage coefficient was increased 4 times). The 
normal, friction fault, and leakage fault system matrices are 
respectively defined as follows: 

ଵܨ  ൌ ൥
1 0.0001 0
0 1 0.0001
0 െ41.0258 0.6099

൩ (25) 

ଶܨ  ൌ ൥
1 0.0001 0
0 1 0.0001
0 െ51.8627 0.2226

൩ (26) 

ଷܨ  ൌ ൥
1 0.0001 0
0 1 0.0001
0 െ73.5364 0.6015

൩ (27) 

Note that all three input gain matrices remained the same, 
and were calculated as follows: 

ܩ  ൌ ൥
0
0

0.0135
൩ (28) 

The important SMC parameters were defined by: 
ܥ  ൌ ሾ2500 100 1ሿ (29) 

෨௠௔௫ܨ  ൌ ൥
0 0 0
0 0 0
0 8.6695 0.3099

൩ (30) 

Note also that artificial system and measurement noise was 
added to the simulation problem to make it more challenging. 
The zero-mean Gaussian noise was generated using system and 
measurement noise covariance’s ܳ and ܴ  which were diagonal 
matrices with elements equal to 1 ൈ 10ି଺. Furthermore, even 
when the system was operating ‘normally’, there was still a 
modelling error of 20% added for the controller to overcome. 
The desired position, velocity, and acceleration trajectories are 
shown in the following three figures. 

 

 
Figure 4. Desired EHA position trajectory [18]. 

 

 
Figure 5. Desired EHA velocity trajectory [18]. 

 

 
Figure 6. Desired EHA acceleration trajectory [18]. 

 



Note that for the first 1.5 second, the system behaved 
normally. A friction fault was injected at 1.5 seconds and 
lasted for 1.5 seconds. At 3 seconds, a 1.5 second leakage fault 
was implemented. At 4.5 seconds, the leakage fault was 
removed and a friction fault was injected again. The system 
operated normally during the last two seconds. 
 
B. Simulation Results 

The results of applying the so-called SMC-2nd SVSF 
controller are illustrated in this section. The following three 
figures represent the trajectory tracking (position, velocity, and 
acceleration) errors for the standard SMC and the controller 
introduced in this paper. 
 

 
Figure 7. Position tracking error for SMC and SMC-2nd SVSF. 

 

 
Figure 8. Velocity tracking error for SMC and SMC-2nd SVSF. 

 
As shown in Figs. 7-9, and similar to the results presented in 

[18], the SMC-2ndSVSF strategy is able to overcome the 
modelling uncertainties, and improves the trajectory tracking 
accuracy by nearly two times when compared with the 
standard SMC. Furthermore, the introduction of system 
changes (i.e., faults) causes the tracking error to spike. The 
magnitude of this error is considerably smaller with the 
proposed strategy, which makes for a smoother controller 
motion in the presence of faults. 
 

 
Figure 9. Acceleration tracking error for SMC and SMC-2nd SVSF. 

 

5. CONCLUSIONS AND FUTURE WORK 

This paper combined the sliding mode control (SMC) 
strategy with the second-order smooth variabe structure filter 
(SVSF) in an effort to develop and offer an improved control 
strategy. The second-order SVSF is a recently developed 
estimation strategy that offers robustness and chattering 
suppression properties of second-order sliding mode systems. 
It produces robust state estimation by preserving the first- and 
second-order sliding conditions such that the measurement 
error and its first difference are pushed towards zero. As a 
proof of concept, the so-called SMC-2nd SVSF strategy was 
applied to an electrohydrostatic actuator. The controller 
demonstrated improvement in terms of tracking accuracy 
without affecting its inherent stability and robustness. Future 
work will extend the application to automotive powertrains for 
improved control and overall performance, and will also 
develop mathematical proof through the separation principle. 
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