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ABSTRACT

Many mechanical and electrical systems have utilized the proportional-integral-derivative (PID) control strategy.
The concept of PID control is a classical approach but it is easy to implement and yields a very good tracking
performance. Unmanned aerial vehicles (UAVs) are currently experiencing a significant growth in popularity.
Due to the advantages of PID controllers, UAVs are implementing PID controllers for improved stability and
performance. An important consideration for the system is the selection of PID gain values in order to achieve
a safe flight and successful mission. There are a number of different algorithms that can be used for real-time
tuning of gains. This paper presents two algorithms for gain tuning, and are based on the method of steepest
descent and Newton’s minimization of an objective function. This paper compares the results of applying these
two gain tuning algorithms in conjunction with a PD controller on a quadrotor system.

Keywords: Optimization, Gain Tuning, Gradient Method, PI Control, Quadrotor

1. INTRODUCTION

Over the past decade, many researchers and institutions have focused on unmanned aerial vehicles (UAVs)
research. One of the most popular types of UAV systems is referred to as a quadrotor or quad-copter (Fig. 1).
This system is a four rotor vertical take-off and landing (VTOL) UAV. The quadrotor has advantages over both
helicopters and fixed-wing aircraft because, not only can the quadrotor lift heavier payloads, but it can also
take-off and land vertically. Moreover, a small-sized quadrotor is agile, highly maneuverable, and has a safer
flight due to the four rotor design. Due to these advantages, quadrotors have been used in a wide-variety of
missions, including: reconnaissance, search and rescue, exploration of disaster areas, and so on [1-4].

As shown in Fig. 1, a quadrotor consists of four rotors fixed to a rigid cross frame. This system has a
smaller number of control inputs than number of degrees of freedom. In this case, in order to control the under-
actuated system, four inputs related to each rotor’s angular velocity may be implemented. Many researcher
studies on quadrotors have been conducted, and there is an increasing body of control knowledge in this area.
Various quadrotor modeling approaches have been presented in [5-7] and many nonlinear control techniques were
proposed in [8-10].

One of the most popular control methods applied to UAVs is the PID controller. This is mainly due to the
fact that PID controllers are relatively easy to implement and program, fine-tune, and are conceptually simple.
Generally speaking, the proportional gain is used to improve the system rise time and response, the integral gain
is used to modify steady-state errors, and the derivative gain is used to modify any system overshoot. To start
the tuning process, one typically sets the proportional gain first. Secondly, the derivative term can be changed
to help reduce the percent overshoot in the system. Finally, if there is significant steady-state error (between
the desired state values and the actual state values), then the integral term is modified. The PID tuning is often
iterative in nature. In [11] and [12], a quadrotor with a PD and a PID controller was introduced for stabilizing the
orientation angles and altitude. A vision-based control of the quadrotor on top of a PD controller was presented
in [13]. The authors designed a PD controller and then demonstrated the application of a visual servo control of
a quadrotor in [13].
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Figure 1. A quadrotor made by DJI (F450) with propeller guards.

The PID method has the following design procedure which involves gain scheduling. A number of papers
found in the literature deal have considered this topic [14] and [15]. In [14], PID gain scheduling is developed
using fuzzy logic. This fuzzy gain scheduling scheme is demonstrated with the physical model for control of
temperature process. In [15], PID controller and gain scheduling control strategy are used for fault tolerant
control. This strategy is generally applied in the aerospace and industrial field.

In this paper, two methods of gain tuning are presented and compared. The gain tuning is used by a PD
controller for improved quadrotor performance. The algorithms generate optimal gain values to minimize the
objective function by using two types of gradient methods: the method of steepest descent, and Newton’s method.
The first-order gradient method is applied first in an effort to obtain optimal gain values. The first-order gradient
method uses only first derivatives in determining a proper gradient direction, and is therefore also referred to
as the steepest descent method. Secondly, the second-order gradient strategy will also be implemented. This
strategy, referred to as Newton’s method, uses higher derivatives to select a suitable search direction [16]. The
purpose of this paper is to identify which gain tuning technique is ideal for the PD controller applied on the
quadrotor system.

This paper is organized as follows. Section 2 introduces the quadrotor model and the PD controller which is
used in this paper. Section 3 describes the gain tuning algorithms; the steepest descent method, and Newton’s
method for optimization of the objective function. In Section 4, the application of these algorithms and the
simulation results are presented and compared. Finally, Section 5 presents concluding remarks and future work.

2. QUADROTOR MODEL AND PD CONTROLLER

In this paper, the quadrotor consists of four fixed rotors, has fixed-pitch-angle blades, and a rigid cross frame.
The quadrotor is controlled by varying thrust forces generated by each rotor. The model of the quadrotor is
shown in Fig. 2.

This system is considered an under-actuated system, has four inputs w = [u1, ug, us, u4], and six state
variables & = [z, y, z, ¢, 0, 1]. Two state variables cannot be controlled directly.

This topic is covered in more detail in Section 2. B. Along the x-axis, the quadrotor has to create a pitch
angle, 6, in order to increase the speed of rotors 1 and 3 while attempting to maintain the speeds of rotor 2 and
4. This is due to the fact that the z-translational motion is related to the tilt of the body frame with respect to
the y-axis. Similarly, the quadrotor is able to fly along the y-axis due to the rotation of the frame z-axis, which
generates a roll angle, ¢. In order to generate a yaw angle (in a counter clock-wise direction), 1, the speeds of
rotors 1 and 3 have to be increased while the speeds of rotor 2 and 4 are proportionally decreased.

It is assumed that the quadrotor is symmetric with respect to the x and y axes. Thereby, the center of gravity
aligns with the geometric center of the quadrotor. The length between each rotor and the geometric center of
the quadrotor is defined by I. The thrust forces, perpendicular to the z-y plane, are generated by the four rotors
and are defined by T; (i = 1,2,3,4).
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Figure 2. A configuration of a quadrotor model with Euler angles.

2.1 Quadrotor Model

The dynamic equations of the quadrotor model may be derived from a Lagrange approach, and is simplified as
follows:
& = uy(cos ¢sinf cos ) + sin psin ),
9 = uq(cos ¢sin O sin ) — sin ¢ cos ),

é‘ = Ugl,
é: U3l,

1)
(2)
% = uy(cos pcosh) — g, (3)
(4)
(5)
(6)

’l/):’LL47

where [z, y, 2| are positions of the quadrotor in the inertial frame; (¢, 0, 1] Euler angles represent roll, pitch,
and yaw angles, respectively; and g the acceleration of gravity.

The control inputs uy, us, usz, us are defined as follows:

1
ulza(Tl +T2+T3+T4), (7)
1
Uy = T(TZ —Ty), (8)
1
1
uz = J—(—Tl + T3), 9)
2
C
Ug = 73(T1 — T2 =+ T3 — T4), (10)

where u; is the total thrust; ug, ug, and uy are the pitch, roll; and yaw moments, respectively; J; (i = 1,2, 3)
is the moments of inertia with respect to the axes; and C' is the force-to-moment scaling factor.
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Figure 3. Structure of the quadrotor system with controller.

2.2 PD Controller

In this subsection, the PD controller for the quadrotor model is presented. The entire quadrotor control system is
illustrated in Fig. 3. Equations (1)-(6) can be divided into a fully-actuated subsystem (11) and an under-actuated
subsystem (12)-(13) as follows:

m _ [ul(cosqscose) g} 7 (11)

G Uy
Z|  |upcos®y wpsing | [cosgsind (12)
|~ |uisiny —uqcostp sin ¢ )

é _ fual
[ oL =[] (13)
In order to control the under-actuated subsystem, the x and y positions will be controlled by using ¢ and

# indirectly. These variables are closely related to each other. Hence, ¢ and 8 may be used to control x and y
inputs, and are found using (14) and (15).

¢a = sin(aé, — Be,) — cosp(aé, + Bey), (14)
04 = cosp(aéy + Beg) + siny(aéy, + fey), (15)

where o and 3 are constant values, €, := &g — &, €5 := Tq — &, é, =Yg — ¥ and e, := yq — y, . Then we can
control desired x-y plane motion by using us and ug with PD controller. Also, we can define u; and u4 to control
the z and 1 states directly. Therefore, the PD controller of the quadrotor can be written as per (16)-(19).

ur = kyp,2(2a — 2) + ka2 (20 — 2) + g, (16)
Uz = kp.g(¢a — ¢) + kas(da — 9), (17)
uz = kpo(0q — 0) + kao(64 — 0), (18)
g = kp o (Ya — ¥) + ka(a — ), (19)

where k, and kg4 are proportional and derivative gains, respectively.

3. GRADIENT METHODS

In this section, an optimization problem is considered. The best or optimal values of PD controller gains need to
be defined in an effort to improve state trajectory following (i.e., difference between the actual and desired state
values). This section describes two gradient algorithms, so that the optimized gain values for minimizing the
defined objective function can be calculated. In this paper, the objective function J defined in (20) is considered.
This J function is the sum of the square of each difference between the reference input and the actual output.

J(x(za k) = / N(@g - m)dt (20)

where function y is the system of the quadrotor related with gain k; & = [z, v, 2z, ¥], 4 = [Td, Yd» 2d, Vd)s
k= [knz, kd,z, k’p@, k’d,¢, k?p,g, kdﬂ, kp#,, kdw] and tyisa final time.
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3.1 The Method of Steepest Descent

One of the most popular gradient optimization algorithms is the method of steepest descent, whereby the gradient
direction is chosen to make the objective function fully-minimized at each step. This is an iterative algorithm
which generates a sequence of points. Each new point corresponds to decreasing the value of the objective
function [16].

The algorithm, based on this steepest descent method, can be summarized as per Fig. 4. In this procedure,
a small change of gain values are first applied, and values of J are computed with previous gain values k and
the changed gain values Ak. Note that J; denotes J(x(zq4,k;)). Secondly, a gradient of J is derived, 0J/0k,
from (21); neglecting terms of higher order. Next, gain values are obtained for the next step, thereby making
J minimized as per the computed 9J/0k and step size A. This process is repeated iteratively, and obtains
increasingly optimized gain values. Hence, this algorithm is repeated until the difference between the previous
J and current J is smaller than some desired €. Finally, the optimized gain values may be determined for the
quadrotor system by minimizing the function J.

Step 1. Define kg, x4, tf

Step 2. Compute Jo with kg, &4, ty and set 7 =0
Step 3. Etemp = (Ez + AE)

Compute Jiemp with kyepp,,y gy tr

Step 4. Obtain 0.J/0k from (21)

Jtemp =Ji+ %AE-‘F HO.T (21)

Step 5. k; 1 = k; — A5 (A >0)

Step 6. if ||J; — Ji+1]| < € then Eopt =k,
else i =i 4 1 then go to Step 3.

Figure 4. Algorithm based on the Steepest Descent Method.

In order to find the most suitable gradient, selecting a small value of Ak is required. Also, setting a small
step size, A, can avoid gain value divergence. This method do not give a global solution, so that appropriate
initial gain values are required.

3.2 Newton’s method

This subsection described Newton’s method. It is similar to the algorithm summarized in Fig. 4. Newton’s
method, however, uses first and second derivatives, whereas the steepest descent method neglects higher order
terms above the first order. Due to higher derivatives used in Newton’s method, the result of this algorithm
generally performs better than the method of steepest descent.

A differential equation of (21), with the necessary condition 0.J/0k = 0, is used to determine the second-order
gradient. Then (21) can be rewritten as follows:

aJtemp _ 8J + 82J
ok Ok

T
6#A4 +HOT=0 (22)

Next, k; 4 is calculated neglecting terms above second order minimizing J as per (23).

A T
k+MHg,j] {ggﬂ (> 0) (23

To handle the second-order gradient in this challenge, Newton’s method for nonlinear least-squares is applied.
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Figure 5. J through the 1st order gradient method.

First, consider the following problem:
n
min.y (ri(x)*) (24)
i=1
where r; : R” — R are given functions and x is the function of quadrotor dynamics related with and x4 and gain

k. In this paper, 7;(x) can be defined as x4 — ;. Then, the objective function is written as J = r7r defining
r= [7"1, Ce Tn]T.

Second, compute the j-th component of V.J(x),
oJ " 8”’
Jx) = == =23 ri(x)——. 25
VIO = 5 >_rilx) ok (25)
i=1
Denote the first-order gradient GG; by g—l:j_, such that the gradient of J can be written as

VJ(x) = 2G1(x)"r(x). (26)

Third, compute the second-order gradient of J as follows.
T _ 5\~ ((9rilx) 9ri(x) 0*ri(x)
Oz 0x; a 2; < Ox, Oz +ri(x) (8mk8xj>> (27)

In this application, the last term of (27) involves the second derivatives of the function 7, such that the term
is considered negligible. Therefore, the next step, k; 1, can be computed with the following equation, commonly
known as the Gauss-Newton method.

Bipr =k — (G1007TGL(0) T Gi(0) T (v) (28)

Finally, with this method, optimized gain values may generally be obtained through recursive iterations.

4. SIMULATION

In this section, the aforementioned algorithms are applied and simulated on a quadrotor PD controller. The
simulation results show the change of the objective function, the variation of the gain values per each iteration,
and the final trajectory of the quadrotor with optimized gain values. This data is used for comparison purposes.
The simulation parameter settings were defined as follows:
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Figure 6. K, through the 1st order gradient method.
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Figure 7. K4 through the 1st order gradient method.

k, = [45, 4.8, 95, 15, 20, 15, 15, 10],

m =1 kg,
l=0.5m,
g =9.81m/s? (29)

Zipnie = [0, 0, 0, 0]
zg=[2, =3, 4, /2 rad]
ty = 25 sec

In this simulation, the quadrotor is tasked with flying from the origin (0,0,0) to the desired point (2, -3, 4).
The objective function is calculated and used to tune the controller gains. It is assumed that measurement and
system noise exists with a mean 0 and standard deviation 0.05.

The results of the first-order gradient algorithm are depicted in Figs. 5-7. Asillustrated in Fig. 5, the variation
of the objective function converges to the minimized point after about 500 iterations. Also, the convergence of
proportional and derivative gain values to the optimized values are shown in Figs. 6 and 7, respectively. The
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Figure 8. Change of J with the 2nd order gradient method.
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Figure 9. K, through the 2nd order gradient method.

optimized gain values generated by the first-order gradient method, k were found to be [44.765 7.238 96.7445

“opt»
8.670 42.141 16.445 18.795 9.941].

The results of the second-order gradient algorithm are illustrated in Figs. 8-10. In Fig. 8, the value of
J converges to the same minimized point as the first-order gradient algorithm after about 60 iterations; it is
significantly faster. Also, the proportional and derivative gain values converged to the optimized values for a
minimal J, as shown in Figs. 9 and 10.

From these results, it is demonstrated that the convergence rate of the second-order gradient method is
faster than the first-order gradient algorithm. In other words, the second-order gradient method has superior
properties of convergence. However, the drawback for the second-order gradient method is a high computational
load required to evaluate the gradient.

It is important to note that, in some cases, both of the optimization methods may not find a global solution.
Therefore, it is sometimes required to carefully set initial values; these values can be determined during a flight
test or through system identification. This will help ensure that the gradient methods will perform correctly,
and helps to avoid local minimums, which can sometimes yield faux-minimal gain and function values.

Finally, Fig. 11 shows the trajectory state values of the quadrotor and the corresponding optimized gain
values. It is demonstrated that the desired path was followed correctly, based on a minimal J.
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Figure 11. Trajectory of Quadrotor with Initial Gain (Ko) and Optimized Gain (Kopt).

5. CONCLUSIONS

In this paper, two types of optimization algorithms were presented. These strategies were used for gain tuning of
a PD controller used by a quadrotor. The first-order gradient algorithm, which is based on the method of steepest
descent, is a tool for finding optimal gain values that minimize the objective function. It was demonstrated that
the computational load of this algorithm was not significant, however it requires a large number of iterations in
order to obtain optimal gain values. As an alternative, the second-order gradient method based on Newton’s
method was applied on the quadrotor controller. It was demonstrated that this algorithm requires significantly
fewer iterations for convergence. The results of this paper show that the second-order gradient method is suitable
for application on a quadrotor system for PD gain optimization. Future research will include application of these
methods on an experimental apparatus. Furthermore, uncertainties and external disturbances will be injected
into the system, and the results will be studied.
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