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Abstract—The smooth variable structure filter (SVSF) is a 
relatively new state and parameter estimation technique. 
Introduced in 2007, it is based on the sliding mode concept, and is 
formulated in a predictor-corrector fashion. The main advantages 
of the SVSF, over other estimation methods, are robustness to 
modeling errors and uncertainties, and its ability to detect system 
changes. Recent developments have looked at improving the SVSF 
from its original form. This review paper provides an overview of 
the SVSF, and summarizes the main advances in its theory. 

I. INTRODUCTION 

State and parameter estimation theory is an important branch 
of control theory and sciences. The ability to know the states of a 
system with confidence is critical for accurate control. A popular 
contributor was Andrei Kolmogorov, who helped formulate the 
mathematical basis of probability and random processes [1, 2]. 
His work, along with Norbert Wiener, founded the basics of 
estimation; including the theory of prediction, filtering, and 
smoothing [2]. The concept of prediction refers to estimation 
methods that use measurements or observations prior to the time 
that the state of the system is to be estimated, or ݐ௢௕௦ ൏  .௘௦௧ [3]ݐ
Filters use measurements up to and including the time of interest, 
or ݐ௢௕௦ ൑  ௘௦௧. Finally, smoothers make use of measurementsݐ
beyond the desired time of interest, such that the estimate is 
refined further, or ݐ௢௕௦ ൐  .௘௦௧ [3]ݐ

As presented in [2], Wiener worked on developing an 
automatic controller for directing antiaircraft fire during the 
1940s [1]. His work ultimately led to the derivation of an optimal 
estimator, based on the continuous-time framework [4]. 
Meanwhile, Kolmogorov independently derived an optimal linear 
predictor for discrete-time systems [3, 5]. The work that they 
performed would later be referred to as the Wiener-Kolmogorov 
filter, a predecessor to the popular Kalman filter (KF) [6]. The KF 
was introduced in the 1960’s, and is–without a doubt–the most 
popular contribution to the estimation field [7, 8]. It quickly 
became the ‘workhorse’ of estimation, yielding solutions to many 
controls and engineering problems [3]. The KF yields a 
statistically optimal solution for linear estimation problems, and 
is formulated in a predictor-corrector fashion. The states (or 
parameters of interest) are first estimated using the system model 
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and input, termed as a priori estimates. This means ‘prior to’ 
knowledge of the observations or measurements. A correction 
term is then used to adjust the a priori estimate based on the 
innovation term (also called residuals or measurement errors). 
This creates the updated or a posteriori state estimates, which 
means ‘subsequent to’ or based on the observations and 
measurements [2]. 

As presented in [2], the optimality of the KF comes at a price 
of stability and robustness. The KF assumes that the system 
model is known and linear, the system and measurement noises 
are white, and the states have initial conditions with known means 
and variances [3, 6]. However, the previous assumptions do not 
always hold in real applications, and often the KF will become 
suboptimal and unstable [2]. The smooth variable structure filter 
(SVSF) was developed in an effort to overcome the instability 
issues. The predecessors of the SVSF are presented in the next 
section, followed by the main SVSF summary and equations. 
Recent advances are then highlighted, and the review paper is 
concluded with future research directions. 

II. PREDECESSORS TO THE SVSF 

A. The Variable Structure Filter 

The variable structure filter (VSF) was first presented in 2002, 
and is the predecessor to the smooth variable structure filter 
(SVSF) [9, 10]. Note that the discussion in this section is similar 
to that presented in [2]. It was a new model-based strategy that 
used concepts closely related to variable structure control. 
Variable structure control (VSC) theory can guarantee stability 
given some bounded parametric uncertainty [11, 12, 13]. The 
most popular form of VSC is that of sliding mode control (SMC), 
which utilizes a discontinuous switching plane along some 
desired trajectory [14, 15, 16, 17]. This plane is often referred to 
as the sliding surface, in which the objective is to keep the state 
values along this surface in order to minimize the trajectory 
errors. Ideally, if the state value is off or away from the surface, a 
switching gain would be used to push the state towards the sliding 
surface, creating a robust and stable control strategy [2]. Once on 
the surface, the states slide along the surface in what is called the 
sliding mode [17]. 
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 Sliding mode concepts have been used for state estimation, 
and are referred to as sliding mode observers (SMO) or estimators 
(SME) [18]. Although the VSF uses a discontinuous component 
to correct estimates like other sliding mode strategies, it differs in 
its formulation [9]. The VSF uses a predictor-corrector strategy 
similar to the KF. Given some knowledge of the system prior to 
time ݇, it calculates an a priori (or predicted) state estimate 
 ො௞ାଵ|௞. This state estimate is then updated based on availableݔ
measurements of the system, thus formulating an a posteriori state 
estimate ݔො௞ାଵ|௞ାଵ. Consider the linear system and measurement 
equations of (2.1.1) and (2.1.2). The VSF estimation process is 
summarized as follows [9]. The a priori state estimate is first 
calculated using the previous time step’s a posteriori state 
estimate and the estimated system model: 

ො௞ାଵ|௞ݔ ൌ ො௞|௞ݔመܣ ൅  ௞ (2.1.1)ݑ෠ܤ

A gain vector ܭ௞ାଵ
௏ௌி is used to formulate an a posteriori state 

estimate, as follows: 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵܭ
௏ௌி (2.1.2) 

Where the gain vector ܭ௞ାଵ
௏ௌி  is calculated as a function of the 

estimated system and measurement matrices ܣመ and ܥመ, a constant 
diagonal gain matrix ߓ with elements ߓ௜௜ ൒ 1, and an upper bound 
for both the system and measurement noises ெܹ௔௫ and ெܸ௔௫ [9]: 

௞ାଵܭ
௏ௌி

ൌ መାܥመିଵܣ ቆቚหܥመܣመห
஺௕௦

ቄߓหܥመห
஺௕௦

ห݁௭,௞ାଵ|௞ห஺௕௦ ൅ หܣመିଵܥመାߦሚெ௔௫ݖ௞ାଵห஺௕௦

൅ ቂหܥመାห
஺௕௦

൅ หܣመିଵܥመାห
஺௕௦

൫ߦሚெ௔௫ ൅ ൯ቃܫ ெܸ௔௫ ൅ หܣመିଵܥመାߜሚெ௔௫ݑ௞ห஺௕௦

൅ ቂหܣመିଵห
஺௕௦

൅ หܣመିଵܥመାܥሚெ௔௫ห஺௕௦ቃ ெܹ௔௫ቅቚ
஺௕௦

∘  ൫݁௭,௞ାଵ|௞൯ቇ݊݃݅ݏ

(2.1.3) 

Note that the modeling error is denoted by ~, ܫ refers to an 
identity matrix, and the subscript Max signifies an upper bound. 
Furthermore, consider that ߦ ൌ መߦ ,ାܥܣܥ ൌ ሚߦ ,መାܥመܣመܥ ൌ ߦ െ  ,መߦ
ߜ ൌ መߜ ,ܤܥ ൌ ෠ܤመܥ , and ߜሚ ൌ ߜ െ  ሚெ௔௫ܥ ሚெ௔௫, andߜ , ሚெ௔௫ߦ	,መ. Finallyߜ
are upper bounds on modeling uncertainties ߜ ,ߦ, and ܥ, 
respectively. The a priori measurement error vector ݁௭,௞ାଵ|௞ is 
defined as follows: 

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ො௞ାଵ|௞ (2.1.4)ݔܥ

Furthermore, ݊݃݅ݏ൫݁௭,௞ାଵ|௞൯ represents a vector, with 
elements defined by: 

൫݁௭,௞ାଵ|௞൯݊݃݅ݏ ൌ ቎
൫݁௭భ,௞ାଵ|௞൯݊݃݅ݏ

⋮
൫݁௭೘,௞ାଵ|௞൯݊݃݅ݏ

቏ (2.1.5) 

Note that in general a	݊݃݅ݏሺ݁ሻ function is defined by: 

ሺ݁ሻ݊݃݅ݏ ൌ ൝
൅1 ݁ ൐ 0
0 ݂݅ ݁ ൌ 0
െ1 ݁ ൏ 0

 (2.1.6) 

Furthermore, note that ∘ refers to the Schur product, such that: 

ܽ ∘ ܾ ൌ ൥
ܽଵܾଵ
ܽଶܾଶ
ܽଷܾଷ

൩ (2.1.7) 

Where ܽ and ܾ are column vectors with three elements each. 
Note that the VSF gain results in high frequency switching which 
limits the performance, as well as introduces chattering in the 
estimated states [9]. These results may be undesirable when 
smooth estimates are required. The chattering may be minimized 

and reduced by the introduction of a smoothing boundary layer 
߰ [9, 16]. It is important to note that outside this boundary layer, 
the sign function is maintained to ensure robustness and stability. 
Inside this boundary layer, the VSF gain is interpolated to obtain 
a smooth function [9]. Hence, consider the following change to 
the VSF gain: 

൫݁௭,௞ାଵ|௞൯݊݃݅ݏ → ݐܽݏ ൬
݁௭೔,௞ାଵ|௞
߰௜

൰ (2.1.8) 

Where the saturation function is defined by: 

ݐܽݏ ൬
݁௭೔,௞ାଵ|௞
߰௜

൰ ൌ

ە
ۖ
۔

ۖ
ۓ ൅1

݁௭೔,௞ାଵ|௞
߰௜

൒ 1

݁௭೔,௞ାଵ|௞
߰௜

݂݅ െ1 ൏
݁௭೔,௞ାଵ|௞
߰௜

൏ 1

െ1
݁௭೔,௞ାଵ|௞
߰௜

൑ െ1

 (2.1.9) 

As described in [9], for the purposes of stability, the VSF gain 
needs to be large enough to overcome the presence of 
uncertainties. There is a relationship between the magnitude of 
the VSF gain and the level of uncertainty. Furthermore, the 
smoothing boundary layer ߰ width also needs to be sufficiently 
large, such that it encompasses the maximum VSF gain values 
present in the estimation process [9]. The width of this boundary 
layer also determines the average level of estimation accuracy. 
The larger the smoothing boundary layer width, the less accurate 
the estimate (i.e., more uncertainties present) [9]. This makes 
sense intuitively, since the presence of fewer uncertainties leads 
to a more accurate estimate. The boundary layer width is a 
function of the upper bounds associated with the uncertainties 
present in the estimation process (i.e., modeling errors, and the 
system and measurement noises) [9]: 

߰
ൌ หܥመାܣመିଵห

஺௕௦
หܣመܥመห

஺௕௦
ቄหܣመିଵܥመାߦሚெ௔௫ݖெ௔௫ห஺௕௦

൅ ቂหܥመାห
஺௕௦

൅ หܣመିଵܥመାห
஺௕௦

൫ߦመ ൅ ሚெ௔௫ߦ ൅ ൯ቃܫ ெܸ௔௫

൅ หܣመିଵܥመାߜሚெ௔௫ݑெ௔௫ห஺௕௦ ൅ ቂหܣመିଵห
஺௕௦

൅ หܣመିଵܥመାܥሚெ௔௫ห஺௕௦ቃ ெܹ௔௫ቅ 

(2.1.10) 

The VSF offers a number of advantages. If the upper bounds 
of the system uncertainties and noise levels are well-defined, the 
VSF gain may be easily calculated as per (3.1.3) [19]. 
Furthermore, the VSF gain provides a robust estimation strategy, 
and has demonstrated stability to modeling uncertainties [9, 10]. 
However, the VSF strategy does have a few disadvantages. The 
strategy may only be applied to linear systems, and yields non-
optimal estimation results. Furthermore, the estimate may 
experience chattering, which may be undesirable, depending on 
the application [9]. Another important disadvantage is its rather 
large, and complicated, gain calculation. 

B. The Extended VSF 

In 2006, a modified form of the VSF was introduced, referred 
to as the extended variable structure filter (EVSF) [20]. As 
presented in [2], the EVSF method may be applied to nonlinear 
systems and measurements defined by (2.2.1) and (2.2.2) 
respectively. 

௞ାଵݔ ൌ ݂ሺݔ௞, ௞ሻݑ ൅ ௞ (2.2.1)ݓ

௞ାଵݖ ൌ ݄ሺݔ௞ାଵሻ ൅ ௞ାଵ (2.2.2)ݒ

The EVSF is formulated in a predictor-corrector fashion, and 
is conceptually similar to the VSF [20]. The state estimate is first 
predicted by using the estimated nonlinear system model, as 
follows: 
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ො௞ାଵ|௞ݔ ൌ መ݂൫ݔො௞|௞,  ௞൯ (2.2.3)ݑ

The estimate ݔො௞ାଵ|௞ is obtained by using the previous state 
estimate ݔො௞|௞, or the initial conditions ݔ଴ at the start of the 
estimation process. The a priori state estimates are then used to 
calculate the a priori measurement estimates ̂ݖ௞ାଵ|௞, as follows: 

௞ାଵ|௞ݖ̂ ൌ ෠݄൫ݔො௞ାଵ|௞൯ (2.2.4) 

An EVSF corrective gain ܭ௞ାଵ
ா௏ௌி is then calculated, and used 

to refine the a posteriori state estimate as follows [20]: 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵܭ
ா௏ௌி (2.2.5) 

The EVSF strategy is similar to the extended Kalman filter 
(EKF), in the sense that it makes use of the linearized system and 
measurement functions, as follows: 

෠௞ܨ ൌ
߲ መ݂

ݔ߲
ቤ
௫ොೖ|ೖ,௨ೖ

 (2.2.6) 

෡௞ାଵܪ ൌ
߲ ෠݄

ݔ߲
ቤ
௫ොೖశభ|ೖ

 (2.2.7) 

The linearization is performed in order to derive the EVSF 
corrective gain used in (2.2.8). The EVSF corrective gain is 
defined as follows [20]: 

௞ାଵܭ
ா௏ௌி

ൌ ෠௞ܨ
ାܪ෡௞ାଵ

ା ൬หܪ෡௞ାଵ,ெ௔௫ห஺௕௦หܨ
෠௞,ெ௔௫ห஺௕௦ ቄߓหܪ

෡
௞ାଵ,ெ௔௫
ା ห

஺௕௦
ห݁௭,௞ାଵ|௞ห஺௕௦

൅ หܨ෠௞,ெ௔௫
ିଵ ห

஺௕௦
ቂห݂ሺݔ௞, ௞ሻݑ െ መ݂൫ݔො௞|௞, ௞൯ห஺௕௦ݑ ൅ ெܹ௔௫

൅ หܪ෡௞ାଵ,ெ௔௫
ା ห

஺௕௦ ெܸ௔௫ቃቅ ∘  ൫݁௭,௞ାଵ|௞൯൰݊݃݅ݏ

(2.2.8) 

Note that it is assumed the system under consideration is 
observable, and has a system output matrix that is positive and 
constant in its linearized form such that ܪ௞ାଵ ൌ  ௞ [20]. Theܪ
corrective gain (2.2.8) is conceptually similar to that presented for 
the VSF (2.1.3), however can be applied for nonlinear systems. 
The EVSF and VSF strategies have similar advantages and 
disadvantages [19]. However, one notable disadvantage for the 
EVSF method is that it requires linearization at each time step in 
order to calculate the EVSF gain. This results in an increase in 
numerical effort, as well as reduces the overall estimation 
accuracy due to the truncation of higher-order terms (i.e., Taylor 
series approximation) [20]. 

III. THE SMOOTH VARIABLE STRUCTURE FILTER 

A revised form of the VSF, referred to as the smooth variable 
structure filter (SVSF), was presented in 2007 [21]. The SVSF 
strategy is also a predictor-corrector estimator based on sliding 
mode concepts, and can be applied on both linear or nonlinear 
systems and measurements. As shown in the following figure, 
and similar to the VSF, it utilizes a switching gain to converge the 
estimates to within a boundary of the true state values (i.e., 
existence subspace) [21]. The SVSF has been shown to be stable 
and robust to modeling uncertainties and noise, when given an 
upper bound on the level of un-modeled dynamics and noise [21, 
9]. The origin of the SVSF name comes from the requirement that 
the system is differentiable (or ‘smooth’) [21, 19]. Furthermore, 
it is assumed that the system under consideration is observable 
[21, 22]. 

Consider the following process for the SVSF estimation 
strategy, as applied to a nonlinear system with a linear 

measurement equation. The predicted state estimates ݔො௞ାଵ|௞ are 
first calculated as follows: 

ො௞ାଵ|௞ݔ ൌ መ݂൫ݔො௞|௞,  ௞൯ (3.1)ݑ

Utilizing the predicted state estimates ݔො௞ାଵ|௞, the 
corresponding predicted measurements ̂ݖ௞ାଵ|௞ and measurement 
error vector ݁௭,௞ାଵ|௞ may be calculated: 

௞ାଵ|௞ݖ̂ ൌ  ො௞ାଵ|௞ (3.2)ݔܥ

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ௞ାଵ|௞ (3.3)ݖ̂

 

 

Fig. 1. SVSF estimation concept [2]. 

Next, the SVSF gain is calculated as follows [21]: 

௞ାଵܭ
ௌ௏ௌி ൌ ାܥ ቀห݁௭,௞ାଵ|௞ห஺௕௦ ൅ ห݁௭,௞|௞ห஺௕௦ቁߛ ∘ ݐܽݏ ൬

݁௭,௞ାଵ|௞
߰

൰ (3.4) 

The SVSF gain is a function of: the a priori and a posteriori 
measurement error vectors ݁௭,௞ାଵ|௞ and ݁௭,௞|௞; the smoothing 
boundary layer widths ߰; the SVSF ‘memory’ or convergence 
rate ߛ with elements 0 ൏ ௜௜ߛ ൑ 1; and the linear measurement 
matrix ܥ. The SVSF gain is used to refine the state estimates as 
follows: 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵܭ
ௌ௏ௌி (3.5) 

Next, the updated measurement estimates ̂ݖ௞ାଵ|௞ାଵ and 
corresponding errors ݁௭,௞ାଵ|௞ାଵ are calculated: 

௞ାଵ|௞ାଵݖ̂ ൌ  ො௞ାଵ|௞ାଵ (3.6)ݔܥ

݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ  ௞ାଵ|௞ାଵ (3.7)ݖ̂

The SVSF process may be summarized by (3.1) through (3.7), 
and is repeated iteratively. According to [21], the estimation 
process is stable and converges to the existence subspace if the 
following condition is satisfied: 

ห݁௞|௞ห஺௕௦ ൐ ห݁௞ାଵ|௞ାଵห஺௕௦ (3.8) 

Note that |݁|஺௕௦ is the absolute of the vector ݁, and is equal to 
|݁|஺௕௦ ൌ ݁ ⋅  ,ሺ݁ሻ. The proof, as described in [21] and [19]݊݃݅ݏ
yields the derivation of the SVSF gain from (3.8). The stability 
proof provided in [19] is very clear, and the interested reader is 
recommended to review it. 
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Fig. 2. Smoothed estimated trajectory ሺ߰ ൒  .ሻ [21]ߚ

The SVSF results in the state estimates converging to within 
a region of the state trajectory, referred to as the existence 
subspace. Thereafter, it switches back and forth across the state 
trajectory, as shown earlier in Fig. 1. The existence subspace 
shown in Figs. 1-3 represents the amount of uncertainties present 
in the estimation process, in terms of modeling errors or the 
presence of noise. The width of the existence space ߚ is a function 
of the uncertain dynamics associated with the inaccuracy of the 
internal model of the filter as well as the measurement model, and 
varies with time [21]. Typically this value is not exactly known 
but an upper bound may be selected based on a priori knowledge. 

 

Fig. 3. Presence of chattering effectሺ߰ ൏  .ሻ  [21]ߚ

Once within the existence boundary subspace, the estimated 
states are forced (by the SVSF gain) to switch back and forth 
along the true state trajectory. As mentioned earlier, high-
frequency switching caused by the SVSF gain is referred to as 
chattering, and in most cases, is undesirable for obtaining 
accurate estimates [21]. 

However, the effects of chattering may be minimized by the 
introduction of a smoothing boundary layer ߰. The selection of 
the smoothing boundary layer width reflects the level of 
uncertainties in the filter and the disturbances (i.e., system and 
measurement noise, and unmodeled dynamics). The effect of the 
smoothing boundary layer is shown in Figs. 2 and 3. When the 
smoothing boundary layer is defined larger than the existence 
subspace boundary, the estimated state trajectory is smoothed. 
However, when the smoothing term is too small, chattering 
remains due to the uncertainties being underestimated. Similar to 
the VSF strategy, the smoothing boundary layer ߰ modifies the 
SVSF gain as follows [21]: 

௞ାଵܭ
ௌ௏ௌி ൌ ାܥ ቀห݁௭,௞ାଵ|௞ห஺௕௦ ൅ ห݁௭,௞|௞ห஺௕௦ቁߛ ∘  ൫݁௭,௞ାଵ|௞/߰൯ (3.9)ݐܽݏ

The SVSF gain is considerably less complex than its 
predecessor (VSF), which allows it to be implemented more 
easily (mathematically and conceptually). Furthermore, the 
SVSF estimation process is inherently robust and stable to 
modeling uncertainties due to the switching effect of the gain. 
This makes for a powerful estimation strategy, particularly when 
the system is not well known. Note that for systems that have 
fewer measurements than states, a ‘reduced order’ approach is 
taken to formulate a full measurement matrix [21, 23]. Essentially 
‘artificial measurements’ are created and used throughout the 
estimation process. 

 

IV. ADVANCES TO THE SVSF 

The most relevant advances made to the SVSF since 2007 are 
summarized in this section. 

A. Covariance Formulation 

In its current form, the SVSF does not have or make use of a 
state error covariance matrix [2, 21]. A state error covariance is 
defined as the expectation of the error squared. It may be used for 
a variety of reasons: to determine an optimal value of the gain 
(i.e., such as in the case of the KF); for the implementation of 
multiple model (MM) methods; or to create other forms such as 
the information filter formulation (i.e., using the inverse of the 
covariance) [3]. The covariance form of the SVSF presented here 
was first described in [2] and [24]. A number of complex 
solutions were first proposed in [2]; however, in an effort to 
simplify the covariance derivation, a new SVSF update equation 
and gain was proposed [25]: 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞ (4.1.1)ܭ

௞ାଵܭ ൌ ା݀݅ܽ݃ܥ ൤ቀห݁௭,௞ାଵ|௞ห஺௕௦ ൅ ห݁௭,௞|௞ห஺௕௦ቁߛ ∘ ݐܽݏ ൬
݁௭,௞ାଵ|௞
߰

൰൨ ൣ݀݅ܽ݃൫݁௭,௞ାଵ|௞൯൧
ିଵ

(4.1.2) 

Rewriting the update equation (4.1.1) and the SVSF gain 
(4.1.2) greatly simplifies the SVSF covariance solution without 
changing its proof of stability. However, for numerical stability, 
it is important to ensure that one does not divide by zero in (4.1.2). 
This can be accomplished using a simple if statement with a very 
small threshold (i.e., 1 ൈ 10ିଵଶ). The revised SVSF estimation 
strategy for linear systems and measurements is proposed as 
follows [2]. There are two stages: prediction and update. The first 
step is to predict the state estimates (4.1.3), calculate the a priori 
state error covariance (4.1.4), and find the corresponding 
estimation error (4.1.5). 

ො௞ାଵ|௞ݔ ൌ ො௞|௞ݔመܣ ൅  ௞ (4.1.3)ݑ෠ܤ

௞ܲାଵ|௞ ൌ መܣ ௞ܲ|௞ܣመ் ൅ ܳ௞ (4.1.4) 

݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ  ො௞ାଵ|௞ (4.1.5)ݔܥ

As described in [2], the next step involves calculating the 
corresponding SVSF gain (4.1.6), updating the state estimate 
(4.1.7), finding the a posteriori state error covariance (4.1.8), and 
determining the a posteriori measurement error (4.1.9) which is 
to be used in the next iteration (recursively). 

௞ାଵܭ ൌ ା݀݅ܽ݃ܥ ൤ቀห݁௭,௞ାଵ|௞ห஺௕௦ ൅ ห݁௭,௞|௞ห஺௕௦ቁߛ ∘ ݐܽݏ ൬
݁௭,௞ାଵ|௞
߰

൰൨ ൣ݀݅ܽ݃൫݁௭,௞ାଵ|௞൯൧
ିଵ

(4.1.6) 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞ (4.1.7)ܭ

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ሻܥ௞ାଵܭ ௞ܲାଵ|௞ሺܫ െ ሻ்ܥ௞ାଵܭ ൅ ௞ାଵܭ௞ାଵܴ௞ାଵܭ
் (4.1.8)
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 ݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ  ො௞ାଵ|௞ାଵ (4.1.9)ݔܥ

The revised SVSF estimation strategy for linear systems may 
be summarized by (4.1.3) through (4.1.9). Nonlinear forms were 
also first presented in [2], and were derived similar to the 
extended (EKF), unscented (UKF), and cubature Kalman filters 
(CKF). It is interesting to point out that the calculation of 
௞ܲାଵ|௞ାଵ, as above, has no effect on the SVSF gain ܭ௞ାଵ. 

However, the SVSF gain does affect the final value of ௞ܲାଵ|௞ାଵ. 
The introduction of the SVSF form with a covariance derivation 
further advances the development of the filter. 

B. Time-Varying Smoothing Boundary Layer 

The smoothing boundary layer ߰ plays an important role in 
defining the level of uncertainties and modeling errors present in 
the estimation process. Therefore, obtaining an optimal value 
(which varies with time) proved to be an interesting task. A time-
varying smoothing boundary layer was first presented in [2, 25], 
and the results are similarly presented here. 

The partial derivative of the a posteriori covariance (trace) 
with respect to the smoothing boundary layer term ߰ is the basis 
for obtaining a strategy for the specification of ߰. The approach 
taken is similar to determining an optimal gain for the KF. The 
following derivation is applicable to any measurement case 
provided that the measurement matrix is completely observable. 
For the case when there are fewer measurements than states, one 
needs to implement a reduced order form of the SVSF as shown 
in [2] and [21]. This allows the creation of a full measurement 
matrix, typically in the form of an identity. For the case when 
there are more measurements than states, the system output can 
be multiplied by the inverse of the measurement matrix, thus 
mapping the measurements to the states. One could then use a full 
measurement matrix (i.e., identity) in the estimation process [2]. 

Previous forms of the SVSF included a vector form of ߰, 
which had a single smoothing boundary layer term for each 
corresponding measurement error [21]. Essentially, the boundary 
layer terms were independent of each other such that the 
measurement errors would only directly be used for calculating 
its corresponding gain. The coupling effects are not explicitly 
considered thus preventing an optimal derivation. A ‘near-
optimal’ formulation of the SVSF could be created using a vector 
form of ߰, however this would lead to a minimization of only the 
diagonal elements of the state error covariance matrix [26]. In [2] 
and [21], in an effort to obtain a smoothing boundary layer 
equation that yields optimal state estimates for linear systems 
(like the KF), a full smoothing boundary layer matrix is proposed. 
Hence, the full matrix form of the smoothing boundary layer was 
proposed: 

߰ ൌ ൦

߰ଵଵ ߰ଵଶ ⋯ ߰ଵ௠
߰ଵଶ ߰ଶଶ ⋯ ߰ଶ௠
⋮ ⋮ ⋱ ⋮

߰௠ଵ ߰௠ଶ ⋯ ߰௠௠

൪ (4.2.1) 

Note that the off-diagonal terms of (4.2.1) are zero for the 
standard SVSF (presented in [21]), whereas this is not the case 
for the algorithm presented in [2, 25]. This definition includes 
terms that relate one smoothing boundary layer to another (i.e., 
off-diagonal terms). To solve for a time-varying smoothing 
boundary layer (VBL) based on (4.2.1), consider: 

߲൫݁ܿܽݎݐሾ ௞ܲାଵ|௞ାଵሿ൯

߲߰
ൌ 0 (4.2.2) 

To solve (4.2.2), first consider the following modification of 
the SVSF gain defined earlier by (4.1.6). Note that the gain 
structure remains the same as follows: 

௞ାଵܭ ൌ ሻܣଵ൛݀݅ܽ݃ሺିܥ ∙ ൫߰ିଵ݀݅ܽ݃ൣ݁௭,௞ାଵ|௞൧൯ൟൣ݀݅ܽ݃൫݁௭,௞ାଵ|௞൯൧ݐܽݏ
ିଵ (4.2.3)

Where ܣ is a ‘vector of errors’, defined as follows: 

ܣ ൌ ቀห݁௭,௞ାଵ|௞ห஺௕௦ ൅  ห݁௭,௞|௞ห஺௕௦ቁ (4.2.4)ߛ

Solving (4.2.2) based on (4.1.8) and (4.2.3) yields the 
following equation for the time-varying smoothing boundary 
layer [2, 25]: 

߰௞ାଵ ൌ ൫̅ିܣଵܥ ௞ܲାଵ|௞்ܵܥ௞ାଵ
ିଵ ൯

ିଵ
 (4.2.5) 

As described in [2, 25], the proposed smoothing boundary 
layer equation (4.2.5) is found to be a function of the a priori state 
error covariance ௞ܲାଵ|௞, measurement covariance ܵ௞ାଵ, 
measurement matrix ܥ, a priori and previous a posteriori 
measurement error vectors (݁௭,௞ାଵ|௞ and ݁௭,௞|௞), and the 
convergence rate or SVSF ‘memory’ ߛ. It appears that the width 
of the smoothing boundary layer is therefore directly related to 
the level of modeling uncertainties (by virtue of the errors), as 
well as the estimated system and measurement noise (captured by 
௞ܲାଵ|௞ and ܵ௞ାଵ). 

C. Chattering Information 

An important phenomenon caused by the SVSF gain (as 
shown in Fig. 3) is referred to as chattering. Chattering, in terms 
of sliding mode control (SMC), is typically defined as high-
frequency switching about a sliding mode or trajectory of interest. 
It was discovered that the magnitude of this chattering contains 
relevant and useful information on the system [19]. For example, 
as described in [19], the chattering can be used to indicate the 
source and amplitude of modeling errors. This provided an 
opportunity to combine the SVSF using the chattering method 
with other filtering strategies [19]. 

D. Combinations of the SVSF with Filters 

As per the results shown earlier and in [2, 25], it appears that 
the VBL for the SVSF yields the KF solution (gain) for linear 
systems. In this case, robustness to modeling uncertainties using 
the SVSF strategy with a VBL is lost. It is hence beneficial to 
propose a combined strategy where an accurate estimate is 
maintained (e.g., KF-based gain) while ensuring the estimate 
remains stable (i.e., SVSF gain) [2, 25]. 

The basic strategy for combining filters is as follows, and is 
presented as shown in [2, 25]. This strategy is implemented by 
imposing a saturation limit on the time-varying smoothing 
boundary layer as follows. Outside the limit the robustness and 
stability of the SVSF is maintained, while inside the boundary 
layer the optimal gain is applied. Consider the following sets of 
figures to help describe the overall implementation of the 
combined SVSF strategy. 
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Fig. 4. Well-defined system case for combining filters [2, 25]. 

As described in [2, 25], Fig. 4 illustrates the case when a limit 
is imposed on the smoothing boundary layer width (a 
conservative value) and the VBL (4.2.5) follows within this limit. 
In the standard SVSF, the smoothing boundary layer width is 
made equal to the limit; such that the difference between the limit 
and the VBL quantifies the loss in optimality [21]. Essentially, in 
this case, a KF-based gain (KF, EKF, UKF, or CKF) should be 
used to obtain the best estimation result [25, 27, 28, 29, 30]. 
Another way to simplify and understand this process is to 
consider the SVSF-VBL as using a time-varying boundary layer 
with saturated limits to ensure stability. 

 

Fig. 5. Poorly-defined system case [2, 25]. 

As described in [2, 25], Fig. 5 illustrates the case when the 
VBL is larger than the limit imposed on the smoothing boundary 
layer. This typically occurs when there is modeling uncertainty 
(which leads to a loss in optimality) or when the limit on the 
smoothing boundary layer is underestimated. This strategy is 
useful for applications such as fault detection. The width of the 
smoothing boundary layer is directly related to the level of 
modeling uncertainties, as well as the estimated system and 
measurement noise (captured by ௞ܲାଵ|௞ and ܵ௞ାଵ) [2, 25]. 
Therefore, the VBL creates another indicator of performance for 
the SVSF: the widths may be used to determine the presence of 
modeling uncertainties, as well as detect any changes in the 
system [2, 25]. 

Essentially, in a well-defined case, the gain used to correct the 
estimate may be calculated by the KF (linear) or EKF, UKF, CKF 
(nonlinear). When the VBL goes beyond the limits, the 
smoothing boundary layer width requires saturation and the 
SVSF gain may be employed. This provides a relatively easy 
mechanism for combining the SVSF with other KF-based filters 
[2, 25]. 

E. Multiple-Model Formulation 

Most systems actually behave according to a number of 
different models (modes, or operating regimes). As described in 

[2], it is desirable to implement adaptive estimation algorithms, 
which ‘adapt’ themselves to certain types of uncertainties or 
models in an effort to minimize the state estimation error [3]. One 
type of adaptive estimation technique includes the ‘multiple 
model’ (MM) algorithm [31]; which include the following: static 
MM [32], dynamic MM [3], generalized pseudo-Bayesian (GPB) 
[33, 34, 35, 36], and the interacting multiple model (IMM) [3, 37, 
38]. For the MM methods, a Bayesian framework is used (i.e., 
probability based). Essentially, based on some prior probabilities 
of each model being correct (i.e., the system is behaving 
according a finite number of modes), the corresponding updated 
probabilities are calculated [3]. 

The IMM method is one of the most popular MM strategies, 
as it is able to make use of more information and is relatively 
computationally efficient [2]. The IMM typically makes use of 
KF estimators that run in parallel. However, recent studies looked 
at combining the SVSF with the IMM [39, 40, 41]. This was made 
possible due to the covariance derivation of the SVSF. Since the 
SVSF is suboptimal albeit stable, it is intuitive to utilize the IMM 
strategy which increases the overall estimation accuracy [2]. An 
overview of the IMM-SVSF strategy may be found in the 
following figure. 

 

Fig. 6. IMM-SVSF estimation concept [2]. 

As described in [2], the SVSF estimation strategy may be 
applied on a finite number of models. As an example, the above 
figure shows two models. The IMM-SVSF estimator consists of 
five main steps: calculation of the mixing probabilities, mixing 
stage, mode-matched filtering via the SVSF, mode probability 
update, and state estimate and covariance combination. 

The first step involves calculating the mixing probabilities 
݅ ௜|௝,௞|௞ (i.e., the probability of the system currently in modeߤ , and 
switching to mode ݆ at the next step). In addition to the mixing 
probabilities, the previous mode-matched states ݔො௜,௞|௞ and 
covariance’s ௜ܲ,௞|௞ are also used to calculate the mixed initial 
conditions (states and covariance) for the filter matched to ܯ௝ 
(which consists of ܣ௝ and ܤ௝). A number of SVSF filters are then 
run in parallel, and the innovation error and covariance are used 
to calculation a corresponding mode-matched likelihood function 
 ௝,௞ାଵ. Utilizing the mode-matched likelihood functions, the߉
mode probability ߤ௝,௞ may be updated [3]. 

The IMM-SVSF has been applied on target tracking 
examples, as well as fault detection and diagnosis problems. The 
results demonstrated an improved tracking performance when 
compared with the popular IMM-KF and IMM-EKF forms. 
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 Furthermore, in terms of fault detection, the IMM-SVSF strategy 
generally outperformed the IMM-KF in terms of estimation 
accuracy and mode probability determination. The ‘false 
detection’ probability was found to be lower for the IMM-SVSF 
than the IMM-KF strategy (i.e., detecting a fault when the EHA 
system was operating normally) [2]. 

F. Fault Detection and Diagnosis Techniques 

Techniques in the area of fault detection and diagnosis are 
typically considered to be model-based or signal-based. As 
previously stated, the IMM-SVSF has been developed and 
successfully applied for fault detection problems. In terms of 
signal-based approaches, the SVSF has been combined with 
artificial neural networks (ANNs) [42, 43, 44]. ANN strategies 
are mathematical models inspired by biological systems. 
Essentially, they are used to find and model complex 
relationships between an input and some desired output. A hidden 
layer (or multiple) lay between the input and the output. Weights 
are used to give importance to different connections. These 
weights may be approximated using KF-based methods, or more 
recently, the SVSF method [42]. The results indicate that the NN-
SVSF method provides a more accurate representation of the 
hidden layers, and yields a very powerful fault detection strategy 
[42, 43, 44]. 

V. CONCLUSIONS 

The smooth variable structure filter (SVSF) is a relatively new 
predictor-corrector estimator, based on the sliding mode concept. 
Since its introduction in 2007, a significant amount of research 
has been performed. This review paper provided a very brief 
overview of the SVSF, and highlighted its main advances in 
theory and applications. Future research is concentrated in the 
area of predictive fault diagnosis and information extraction from 
the unique SVSF chattering signal. 

NOTES FROM THE AUTHORS 

The purpose of this paper was to provide an overview of the 
main advances in the SVSF estimator, and provide a source for 
readers to cross-reference. The readers are recommended to 
review the references for more detailed information on the SVSF 
and its latest developments. 

APPENDIX 

The following is a list of the main nomenclature used 
throughout the paper. 

TABLE I.  LIST OF IMPORTANT NOMENCLATURE AND PARAMETERS 

Parameter Definition 
݂ Nonlinear system function 

݄ Nonlinear measurement function 

 State vector or values ݔ

 Measurement (system output) vector or values ݖ

 System noise vector ݓ

 Measurement noise vector ݒ

 Linear system transition matrix ܣ

 Linear input gain matrix ܤ

 Linear measurement (output) matrix ܥ

 SVSF error vector (or matrix) ܧ

 Filter gain matrix ܭ

ܲ State error covariance matrix 

ܳ System noise covariance matrix 

ܴ Measurement noise covariance matrix 

ܵ Innovation (measurement error) covariance matrix 

݁௭ Measurement (output) error vector 

 SVSF ‘memory’ or convergence rate ߛ

߰ SVSF smoothing boundary layer 

݀݅ܽ݃ሾܽሿ ݎ݋ തܽ Diagonal of some vector or matrix ܽ 

 ሺሻ Saturation functionݐܽݏ

|ܽ| Absolute value of ܽ 

ܶ Transpose of a vector (if superscript) or sample rate 

൅ Pseudoinverse of some non-square matrix 

∘ 
Denotes a Schur product (element-by-element 

multiplication) 

~ Denotes error or difference 

^ Estimated vector or values 
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