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ABSTRACT 

This paper presents a new approach for the robust state of 
charge (SOC) estimation of Lithium-ion (Li-ion) batteries. In 
this approach, the novel dynamic 2nd-order smooth variable 
structure filter (dynamic 2nd-order SVSF) applies to a Li-ion 
battery and generates robust SOC estimation under uncertain 
conditions. The dynamic 2nd-order SVSF is a model-based 
robust state estimation method that benefits from the 
robustness and chattering suppression of second-order sliding 
mode systems. To study the performance of Li-ion batteries, it 
is necessary to accurately estimate their SOC as a function of 
the operating time. The SOC estimation may be negatively 
affected by some factors including modeling imperfections, 
parametric uncertainties, and measurement noise relevant to 
the battery setup. To overcome or at least reduce effects of 
such factors on the SOC estimation, the robust state estimation 
is recommended that is insensitive to a wider range of noise 
and uncertainties. In this study, the robust characteristic of the 
dynamic 2nd-order SVSF method helps to accurately estimate 
the SOC of a Li-ion battery cell under uncertain and noisy 
conditions. The Li-ion cell is modeled using a simple first-
order R-RC equivalent circuit model. The SOC estimation 
results are then compared to ones obtained by the extended 
Kalman filter (EKF) as a sub-optimal state estimator. 
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INTRODUCTION 

The Li-ion batteries have been extensively used in electric 
vehicles because of their high energy density, durability, 
safety, lack of hysteresis, and slow loss of charge when not in 
use. In order to improve their performance and increase their 
safety and efficiency, accurate management, monitoring, and 
control are required. For the battery management system, it is 
necessary to accurately estimate the SOC of the battery as a 
function of the operating time. The SOC presents the current 
battery capacity as a percentage of the maximum capacity. It 

has the same role as a fuel gage used in vehicles with an 
internal combustion engine. However note that in spite of the 
fuel gage that directly measures the amount of fuel in a fuel 
tank, the SOC cannot be measured. The SOC needs to be 
estimated using state and parameter estimation methods that 
extract the real-time value of the SOC based on the indirect, 
inaccurate and uncertain sensor measurements [1]. 

The SOC estimation may be affected by some factors 
including modeling imperfections, parametric uncertainties, 
and measurement noise. Noise and perturbations inherently 
exist in the measurement process, and caused by instruments 
and environmental factors. System uncertainties are usually 
due to inaccuracy in modeling the process, discretization error, 
and small variations of physical parameters from their nominal 
values. The Kalman filter is the most well-known method for 
state estimation that provides optimal state estimates by 
minimizing the state error covariance [2]. The main concern 
with the Kalman filter is that it is mainly designed based on an 
exact knowledge of the system’s model with known 
parameters. In real applications, however, there may be 
considerable uncertainties about the model structure, physical 
parameters, level of noise, and initial conditions. These 
uncertainties may significantly degrade the Kalman filter’s 
performance. To overcome or at least alleviate the effects of 
such factor on the SOC estimation, robust state estimation is 
proposed in which the main objective is to design a fix filter 
that is insensitive to a wider range of noise and modeling 
uncertainties. The main robust state estimation methods found 
in the literature are the robust Kalman (or H2) filter [3], the H∞ 
filter [4], and the smooth variable structure filter (SVSF) [5]. 

This paper presents a new approach for the robust SOC 
estimation of Li-ion batteries using the novel dynamic 2nd-
order SVSF method [6]. The dynamic 2nd-order SVSF is a new 
model-based robust state estimation method that benefits from 
the robustness and chattering suppression characteristics of the 
second-order sliding mode systems. This method is used in 
this study in order to estimate the SOC of an experimental Li-
ion battery cell under uncertain and noisy conditions. The Li-
ion battery cell is modeled using a first-order R-RC equivalent 
circuit model. The SOC estimation results are then compared 
to ones obtained by the EKF method. 



 

THE DYNAMIC 2ND-ORDER SVSF METHOD [6] 

The dynamic 2nd-order SVSF is formulated in a predictor-
corrector form. It has two main steps including the prediction 
and update. In the prediction step, the a priori state estimate is 
predicted using knowledge of the system prior to step k. In the 
update step, the calculated a priori estimate is refined into the 
a posteriori state estimate. The corrective gain of the dynamic 
2nd-order SVSF pushes the innovation sequence and its first 
difference to zero in a finite time. This method applies to 
systems with a linear state and a linear measurement model. 
In order to describe this method, assume a stochastic system 
with a linear state model as: 

1
ˆˆ ,k k k kx F x Gu w+ = + +  (1) 

where 1n
kx ×∈ℝ is the state vector, 1p

ku ×∈ℝ is the control vector, 

and 1m
kz ×∈ℝ is the measurement vector. The measurement 

model is also linear and given by: 

1 1 1
ˆ ,k k kz H x v+ + += +  (2) 

where 1mz ×∈ℝ is the measurement vector, 1mv ×∈ℝ is the 
measurement noise, andˆ m nH ×∈ℝ is a measurement matrix. 

The dynamic 2nd-order SVSF is presented as follows [6]: 
i. Prediction of the a priori state estimate based on the 

system’s state model as: 
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ˆˆˆ ˆ .k k k k kx F x Gu+ = +  (3) 

where F̂  is an estimate of the state model F . The a 
priori state estimate is calculated using the previous a 
posteriori state estimate |ˆ k kx . The a priori estimate of 

the measurement vector 
1|ˆk kz +  

is calculated using the 

estimated state vector and the measurement model as: 
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whereĤ is an estimate of the measurement model H. 
ii.  Calculation of the a posteriori and a priori measurement 

error, 
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iii.  Calculation of the corrective gain for the dynamic 2nd-
order SVSF 1

1
n

kK ×
+ ∈ℝ  as a function of the a priori and 

the a posteriori measurement errors as follows: 
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where ( ) m m
iiDiagγ γ ×= ∈ℝ is a diagonal matrix with 

positive entries such that0 1iiγ< < . It represents the 

convergence rate corresponding to each entry. 
iv. Update the a priori state estimate into the a posteriori 

state estimate 
1| 1ˆk kx + +  such that: 

1| 1 1| 1ˆ ˆ .k k k k kx x K+ + + += +  (8) 
In the dynamic 2nd-order SVSF method, the vector of 

sliding variables 1mS ×∈ℝ  is defined as [6]: 

|
,

k kk zS e=  (9) 
Following (7), the corrective gain represents a second-order 
Markov process and updated using the measurement error 

values at different time steps. The main advantage of the 
dynamic 2nd-order SVSF over other approaches is the use of a 
cut-off frequency coefficient within the corrective gain 
formulation. The cut-off frequency coefficient is assigned to 
each measurement that filters out unwanted chattering effects. 
This coefficient is formulated into the filter by defining a new 
dynamic sliding mode manifold that is given by: 

k k kS CSσ = ∆ +  (10) 
where m mC ×∈ℝ  denotes the manifold’s cut-off frequency. 
Since the sliding variable is equal to 

|k kk zS e= , the difference 

of the sliding variable is obtained by:
| 1| 1k k k kk z zS e e

− −
∆ = − . 

Hence, by defining the sliding manifold as k k kS CSσ = ∆ +  
and proving the filter stability about it, it is ensured that the 
measurement error and its difference are decreasing in time. 

THE LI-ION BATTERY MODELING 

The experimental setup of the Li-ion battery is designed and 
built in the Centre for Mechatronics and Hybrid Technologies 
at McMaster University. The dynamics of the battery cell is 
simply modeled using a first-order R-RC equivalent circuit 
model. The first-order R-RC model is the simplest equivalent 
circuit model in which the battery dynamics are modeled using 
three elements including: 1) the open circuit voltage (OCV), 
2) Internal resistance, and 3) capacitors [7]. Figure 1 shows a 
first-order R-RC model that is used in this study for modeling 
the Li-ion battery cell. 
 

 
Figure 1. The first-order R-RC model of a battery cell 

 
The first-order R-RC model in the state space from is [7]: 
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( ) ,k k k ky OCV z Ri V= − −  (12) 
where kV  is the voltage across the capacitor1C , kz is the state 

of charge,C is the battery nominal capacity, R is the battery 
ohmic resistance, andiη is the cell Columbic efficiency. In 

addition, 1 1R C represents the polarization time constant, and

( )kOCV z represents the open circuit voltage as a function of 

the state of charge. The first-order R-RC model has two state 
variables that are the state of chargekz and the voltagekV . The 

input to the system is the currentki , and the output y is the 

terminal voltage TV . In this study, values of the physical 

parameters including 1 1, ,R R C are obtained using the Genetic 



 

algorithm optimization technique. The OCV is also formulated 
as a 9th-order polynomial function of the SOC. Note that its ten 
coefficients are calculated by firstly averaging the ( )kOCV z

curve for charging and discharging and then approximating it 
using a 9th-order polynomial function. Figure 2 presents a 
typical ( )kOCV z of the under studied Li-ion polymer cell 

during a charging cycle. 
 

 
Figure 2. Experimental profile of OCV in terms of SoC 

 

 
Figure 3. Profiles of the input current calculated from a UDDS 

cycle and the measured terminal voltage as the cell output 
 

Figure 3 presents profiles of the input currentki and the 

output terminal voltageTV . The input profile is directly 

converted from a velocity profile of a mix of three benchmark 
driving schedules, namely: an Urban Dynamometer Driving 
Schedule (UDDS), a light duty drive cycle for high speed and 
high load (US06), and a Highway Fuel Economy Test 
(HWFET) [8]. The UDDS driving cycle is used to describe 
city driving conditions, and used to replicate the average 
speed, idle time, and number of stops for an average North 
American driver. The US06 cycle is a high acceleration, 
aggressive driving cycle, and the HWFET describes highway 
driving conditions with speeds below 60 miles/hour [8]. The 
three above mentioned driving cycles are shown in Figure 4. 
The pack current profiles from these driving cycles are scaled 
down to the cell-level while ignoring cell-to-cell balancing.  

In order to generate the current profile from the velocity 
profile, a mid-size battery electric vehicle (BEV) model as 
shown in Figure 5 was modified from an existing hybrid 
vehicle model [9]. The BEV model consists of a lithium-ion 
battery pack, a vehicle speed controller, vehicle dynamic 
model, DC electric motor, and DC-DC converter. The model 
was developed in Simulink using Simscape library 
components. The driving range of the BEV is approximately 
200 km per full charge. 

 
Figure 4. Velocity profiles for the UDDS (upper), US06 

(middle), and HWFET (lower) Cycles [8] 
 

 
Figure 5. All-electric mid-size sedan simulation model in 

Simscape (Adopted from [9]) 
 

The parametric vector that needs to be optimized using the 
Genetic algorithm is: 1 1[R,R ,C ]θ = . Modeling and estimation 

tasks are performed using the MATLAB-SIMULINK real-
time environment. Figure 6 shows a block-diagram of the Li-
ion battery model in SIMULINK. Table 1 also presents 
numeric values of the physical and optimized parameters. 
 

 
Figure 6. The Li-ion battery model in SIMULINK 

 
Table 1: Numeric values of physical and optimized parameters 

Parameter Numeric Value 
Nominal capacity, C 19440 (A.s) 
Cell Columbic efficiency, ƞ 1 
Modeling capacity, C1 3860.14 (A.s) 
Modeling resistance, R1 0.0049 (Ω) 
Internal Resistance, R 0.0096 (Ω) 
Initial state of charge 80 % 
Sampling time, ∆t 0.1 (s) 
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Velocity Prof ile - US06
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SOC ESTIMATION USING THE DYNAMIC 2ND- SVSF 

In this section, the dynamic 2nd-order SVSF and the extended 
Kalman filter (EKF) methods are applied for the SOC 
estimation based on the provided Li-ion model and the 
captured input-output UDDS data where there exist noise and 
modeling uncertainties. The SOC estimation results are then 
compared with the actual SOC data generated from the 
experimental setup model. Comparison are made in terms of 
the root mean square error (RMSE). Figure 7 presents a block-
diagram of the dynamic 2nd-order SVSF method built in 
SIMULINK. For the dynamic 2nd-order SVSF method, the 
convergence rate γ is set to 0.5, and the cut-off frequency 
matrix Λ is designed to be a diagonal matrix with elements 
equal to 0.4. For the EKF, the process noise covariance Q and 
the measurement noise covariance R are respectively set to: 

3

4 1
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0 0 5 10
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 = = ×   
 

×  

 (13) 

Figure 8 compares the SOC estimation profile using the 
dynamic 2nd-order SVSF method with the actual profile. Table 
2 also compares the RMSE values obtained by the EKF and 
the dynamic 2nd-order SVSF method. It demonstrates the 
higher accuracy of the dynamic 2nd-order SVSF over the EKF 
method under an uncertain experimental condition. 
 

 
Figure 7. The dynamic 2nd-order SVSF in SIMULINK 

  

 
Figure 8. Actual and estimated SOC estimation profiles 

Table 2: RMSE values obtained by different estimators 
Estimator RMSE for SOC Estimation 

Extended Kalman filter 0.24 
Dynamic 2nd-order SVSF 0.20 

CONCLUSIONS 

This paper introduces a new SOC estimation method that 
benefits from the dynamic 2nd-order SVSF as a robust state 
estimation technique. This method applies to an experimental 
Li-ion battery setup and the SOC estimation results are then 
compared with ones obtained by the EKF method. The input-
output data set is provided from a mix of real-world, 
benchmark driving cycle. Estimation results show that the 
SOC estimation obtained by the dynamic 2nd-order SVSF 
precisely follows the actual SOC profile. The dynamic 2nd-
order SVSF also produces a more accurate SOC estimate with 
a smaller RMSE in comparison to the EKF SOC estimate. 
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