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ABSTRACT

This paper presents a new approach for the roliatt sf
charge (SOC) estimation of Lithium-ion (Li-ion) betes. In
this approach, the novel dynamit®-arder smooth variable
structure filter (dynamic P-order SVSF) applies to a Li-ion
battery and generates robust SOC estimation urmdmriain
conditions. The dynamic"2order SVSF is a model-based
robust state estimation method that benefits frame t
robustness and chattering suppression of secorat-sliding
mode systems. To study the performance of Li-ictebias, it
is necessary to accurately estimate their SOCfasciion of
the operating time. The SOC estimation may be negjgat
affected by some factors including modeling impetites,
parametric uncertainties, and measurement noiseaed to
the battery setup. To overcome or at least redifeete of
such factors on the SOC estimation, the robust stttmation
is recommended that is insensitive to a wider raofgeoise
and uncertainties. In this study, the robust chargstic of the
dynamic 2%order SVSF method helps to accurately estimate
the SOC of a Li-ion battery cell under uncertair aroisy
conditions. The Li-ion cell is modeled using a sienfirst-
order R-RC equivalent circuit model. The SOC estioma
results are then compared to ones obtained byxtemded
Kalman filter (EKF) as a sub-optimal state estimato
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INTRODUCTION

The Li-ion batteries have been extensively useelactric
vehicles because of their high energy density, lling
safety, lack of hysteresis, and slow loss of chargen not in
use. In order to improve their performance andedase their
safety and efficiency, accurate management, mongpand
control are required. For the battery managemesiesy, it is
necessary to accurately estimate the SOC of therpas a
function of the operating time. The SOC presengsdirrent
battery capacity as a percentage of the maximuracaigp It
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has the same role as a fuel gage used in vehidlbsan
internal combustion engine. However note that itespf the
fuel gage that directly measures the amount of ifual fuel
tank, the SOC cannot be measured. The SOC neelds to
estimated using state and parameter estimationotetthat
extract the real-time value of the SOC based orintiieect,
inaccurate and uncertain sensor measurements [1].

The SOC estimation may be affected by some factors
including modeling imperfections, parametric unagties,
and measurement noise. Noise and perturbationseinthe
exist in the measurement process, and caused toyrirents
and environmental factors. System uncertaintiesuarally
due to inaccuracy in modeling the process, distattin error,
and small variations of physical parameters fro@rthominal
values.The Kalman filter is the most well-known method for
state estimation that provides optimal state esémay
minimizing the state error covariance [2]. The madmcern
with the Kalman filter is that it is mainly desighbased on an
exact knowledge of the system’s model with known
parameters. In real applications, however, therey rba
considerable uncertainties about the model stracphysical
parameters, level of noise, and initial conditiohese
uncertainties may significantly degrade the Kalnfidter’'s
performance. To overcome or at least alleviateeffects of
such factor on the SOC estimation, robust staienason is
proposed in which the main objective is to desidix dilter
that is insensitive to a wider range of noise amubaling
uncertainties. The main robust state estimatioraous found
in the literature are the robust Kalman kbj filter [3], the H..
filter [4], and the smooth variable structure fil{&VSF) [5].

This paper presents a new approach for the robD&t S
estimation of Li-ion batteries using the novel dyma 2
order SVSF method [6]. The dynami®-®drder SVSF is a new
model-based robust state estimation method thatfiiefrom
the robustness and chattering suppression chasdicteof the
second-order sliding mode systems. This methodsésl un
this study in order to estimate the SOC of an erpantal Li-
ion battery cell under uncertain and noisy condgiorl he Li-
ion battery cell is modeled using a first-order R-8guivalent
circuit model. The SOC estimation results are ttempared
to ones obtained by the EKF method.



THE DYNAMIC 2"P-ORDER SVSF METHOD [6]

The dynamic %-order SVSF is formulated in a predictor-
corrector form. It has two main steps including pinediction
and update. In the prediction step, #yriori state estimate is
predicted using knowledge of the system prior épkt In the
update step, the calculatagbriori estimate is refined into the
a posteriori state estimate. The corrective gain of the dynamic
2"%-order SVSF pushes the innovation sequence arfitsts
difference to zero in a finite time. This methodpbgs to
systems with a linear state and a linear measuremedel.

In order to describe this method, assume a stdcheatem
with a linear state model as:

Xy a1 = FXj +GU, +W,, (1)
wherex, OR™is the state vectar, OrP?is the control vector,
andz, OrR™?is the measurement vector. The measurement
model is also linear and given by:

ZI<+1:ka+l+Vk+1i (2)
wherez OR™? is the measurement vecterpR™ is the
measurement noise, aAdIR™" is a measurement matrix.

The dynamic Z-order SVSF is presented as follows [6]:
i. Prediction of thea priori state estimate based on the
system’s state model as:

)ek+1k = F )ekk +Guk . (3)
where F is an estimate of the state model. Thea
priori state estimate is calculated using the preveus
posteriori state estimate;?I<Ik . Thea priori estimate of

the measurement vector is calculated using the

k +1k
estimated state vector and the measurement madel as
(4)
whereH is an estimate of the measurement matiel

ii. Calculation of the posteriori anda priori measurement
error, e, OR™* ande, [OR™ respectively as:
Kk K+1k

(5)
e

Zy 41k (6)

Calculation of the corrective gain for the dynarié-
order SVSFk, ,0r™ as a function of tha priori and

thea posteriori measurement errors as follows:

K =H e, ~0+ A, +VNG8, ) @)
where y = piag(y, ) OrR™™ is a diagonal matrix with
positive entries such thak ), <1. It represents the

convergence rate corresponding to each entry.
Update thea priori state estimate into thee posteriori

state estimatex, ,,, ., such that:

Zyak = H Xy

e

2 = 2k~ H Xy
=2y~ H Xy

(8)
In the dynamic Z-order SVSF method, the vector of
sliding variabless OrR™ is defined as [6]:
S, =e, , 9)
Following (7), the corrective gain represents aoedeorder
Markov process and updated using the measurememt er

Xicprr = Xz T Ky r

Zyk

values at different time steps. The main advantaig¢he
dynamic 2%-order SVSF over other approaches is the use of a
cut-off frequency coefficient within the correctivgain
formulation. The cut-off frequency coefficient issigned to
each measurement that filters out unwanted chagieffects.
This coefficient is formulated into the filter bgfihing a new
dynamic sliding mode manifold that is given by:

o, =AS, +CS, (10)
where c OR™™ denotes the manifold’s cut-off frequency.
Since the sliding variable is equal & =e, . the difference

of the sliding variable is obtained bys, =e

—-e .
Zy Zy-1k-1
Hence, by defining the sliding manifold ag, =AS, +CS,
and proving the filter stability about it, it is @ured that the

measurement error and its difference are decreéasinnge.

THE LI-ION BATTERY MODELING

The experimental setup of the Li-ion battery isigesd and
built in the Centre for Mechatronics and Hybrid firclogies
at McMaster University. The dynamics of the battee}l is

simply modeled using a first-order R-RC equivaleintuit

model. The first-order R-RC model is the simplaptiealent

circuit model in which the battery dynamics are eled using
three elements including: 1) the open circuit \gptdOCV),

2) Internal resistance, and 3) capacitors [7]. Fadushows a
first-order R-RC model that is used in this studyrodeling

the Li-ion battery cell.

<
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Figure 1. The first-order R-RC model of a ba-tteey c

The first-order R-RC model in the state space fi®fi]:
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Yk =OCV (7)) - Riy =V, (12)

where Vv, is the voltage across the capaaitarz, is the state
of charge(C is the battery nominal capacity is the battery
ohmic resistance, anglis the cell Columbic efficiency. In
addition,R,C, represents the polarization time constant, and
OCV(z)represents the open circuit voltage as a function o

the state of charge. The first-order R-RC modelthasstate
variables that are the state of chazgand the voltage, . The

input to the system is the currgnt and the outpuy is the
terminal voltage/; . In this study, values of the physical
parameters including, R, C,are obtained using the Genetic



algorithm optimization technique. TIZCV is also formulated
as a §-order polynomial function of thBOC. Note that its ten
coefficients are calculated by firstly averaging @cVv(z,)

curve for charging and discharging and then appnating it
using a 9-order polynomial function. Figure 2 presents a
typical OCV(z ) of the under studied Li-ion polymer cell

during a charging cycle.
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Figure 2. Experimental profile of OCV in terms @G
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Velocity Profiles for UDDS, US06, and HWFET Cycles
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Figure 4. Velocity profiles for the UDDS (upper)S06
(middle), and HWFET (lower) Cycles [8]

Figure 5. All-electric mid-size sedan simulationdabin
Simscape (Adopted from [9])

The parametric vector that needs to be optimizéwuhe

Time (Hour)

Figure 3. Profiles of the input current calculabedn a UDDS

cycle and the measured terminal voltage as theoaghlut

Genetic algorithm i9=[R,R;,C,]. Modeling and estimation

tasks are performed using the MATLAB-SIMULINK real-
time environment. Figure 6 shows a block-diagrarthefLi-
ion battery model in SIMULINK. Table 1 also present

Figure 3 presents profiles of the input curiigrgnd the
output terminal voltag®; . The input profile is directly

converted from a velocity profile of a mix of threenchmark
driving schedules, namely: an Urban Dynamometevibyi
Schedule (UDDS), a light duty drive cycle for higheed and
high load (US06), and a Highway Fuel Economy Test
(HWFET) [8]. The UDDS driving cycle is used to deke
city driving conditions, and used to replicate theerage
speed, idle time, and number of stops for an aeeidarth
American driver. The US06 cycle is a high accelerat
aggressive driving cycle, and the HWFET describighviiay
driving conditions with speeds below 60 miles/h{f]t The
three above mentioned driving cycles are shownigurg 4.
The pack current profiles from these driving cyces scaled
down to the cell-level while ignoring cell-to-célhlancing.

In order to generate the current profile from tledogity
profile, a mid-size battery electric vehicle (BEWodel as
shown in Figure 5 was modified from an existing gb
vehicle model [9]. The BEV model consists of ailith-ion
battery pack, a vehicle speed controller, vehicimaghic
model, DC electric motor, and DC-DC converter. Thedel
was developed in Simulink using Simscape library
components. The driving range of the BEV is apprately
200 km per full charge.

numeric values of the physical and optimized patame
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Figure 6. The Li-ion battery model in SIMULINK

Table 1: Numeric values of physical and optimizadgmeters

Parameter Numeric Value
Nominal capacityC 19440 (A.s)
Cell Columbic efficiencyy 1
Modeling capacityC: 3860.14 (A.s)
Modeling resistancé?. 0.0049 )
Internal Resistanc® 0.0096 )
Initial state of charge 80 %

Sampling timet 0.1 (s)




SOC ESTIMATION USING THE DYNAMIC 2\P- SVSF

In this section, the dynamid@order SVSF and the extended
Kalman filter (EKF) methods are applied for the SOC
estimation based on the provided Li-ion model ahd t
captured input-output UDDS data where there exisenand
modeling uncertainties. The SOC estimation resatésthen
compared with the actual SOC data generated froen th
experimental setup model. Comparison are maderinstef
the root mean square error (RMSE). Figure 7 presehtock-
diagram of the dynamic"2order SVSF method built in
SIMULINK. For the dynamic ®-order SVSF method, the
convergence ratge is set to 0.5, and the cut-off frequency
matrix 4 is designed to be a diagonal matrix with elements
equal to 0.4. For the EKF, the process noise camaeQ and
the measurement noise covariaitare respectively set to:

10° 0 0
Q=0 10 0 R=[ 3 10'] (13)
0 0 5x10

Figure 8 compares the SOC estimation profile usiey
dynamic 29-order SVSF method with the actual profile. Table
2 also compares the RMSE values obtained by the &t
the dynamic Z-order SVSF method. It demonstrates the
higher accuracy of the dynamitddrder SVSF over the EKF
method under an uncertain experimental condition.

btk 1)

btk [ 1
z

Xna(1K) N Xhale1ke1)
. B

OCV Calculation

SOC-hat(k+]k+1)

SoCacrTlke1),
OCV Calcuation!

ek
YRR ettty

R
a1l
xehat(ee1k)

ke 1K)
2nd-order SVSF Gain

yHats1k)
Ri

VIGK)

)
=0

OCV Calculation2

sehat(dk)

T T T T T
—— SOC estimation via the dynamic 2nd-SVSF
Actual SOC from the experimental setup | |

10

. L . L . . .
0 0.5 1 1.5 2 25 3 35 4 4.5
Time (Hour)

Figure 8. Actual and estimated SOC estimation [E®fi

Table 2: RMSE values obtained by different estingto

Estimator RM SE for SOC Estimation
Extended Kalman filter 0.24
Dynamic 2%-order SVSF 0.20

CONCLUSIONS

This paper introduces a new SOC estimation methad t
benefits from the dynamic"@order SVSF as a robust state
estimation technique. This method applies to aregrental
Li-ion battery setup and the SOC estimation resaflesthen
compared with ones obtained by the EKF method.ifipet-
output data set is provided from a mix of real-worl
benchmark driving cycle. Estimation results showt tthe
SOC estimation obtained by the dynamié-@&der SVSF
precisely follows the actual SOC profile. The dyhar@-
order SVSF also produces a more accurate SOC éstwith

a smaller RMSE in comparison to the EKF SOC estmat

REFERENCES

1. Farag, M. S., Ahmed, R., Gadsden, S. A., Habihiagd
Tjong, J., 2012, “A comparative study of Li-ion teay
models and nonlinear dual estimation strategiesSEE
2012 Transportation Electrification Conference and
Expo (ITEC), Dearborn, Ml, USA, pp. 1-8.

2. Grewal, M. S., and Andrews, A. P., 200&alman
Filtering: Theory and Practice Using MATLAB, 2nd ed.,
John Wiley& Sons, Inc.

3. Xie, L., Soh, C., and Souza, C. E., 1994, "Robuwahiéan
filtering for uncertain discrete-time systemslEE
Transaction on Automatic Control, 39(6), pp.1310-1314.

4. Zames, G., 1981, “Feedback and optimal sensitivity:
model reference transformations, multiplicative
seminorms and approximate inversd€€EE Transactions
on Automatic Control, 26(2), pp. 301-320.

5. Habibi, S., 2007, “Smooth variable structure filfer
Proceedings of the |EEE, 95(5), pp. 1026-1059.

6. Afshari, H. H., and Habibi, S., 2014, “Dynamit®-drder
smooth variable structure filter based on a dynamic
sliding mode manifold”]EEE Transactions on Control
Systems Technology, (Submitted)

7. Plett, G. L., 2004, "Extended Kalman filtering fmattery
management systems of LiPB-based HEV battery packs:
part 2: modeling and identificationJournal of Power
Sources, 134(2), pp. 262-276.

8. "http://www.epa.gov/nvfelltesting/dynamometer.htm," U.S.
EPA. [Online].

9. S. Miller, “Hybrid-Electric Vehicle Model in Simuik”
http://www.mathworks.com/matlabcentral/fileexchat2@41-
hybrid-electric-vehicle-model-in-simulink 10 Aug 2010
(Updated 17 Apr 2014) [Online].




