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ABSTRACT 

This paper introduces the dynamic 2nd-order Smooth 
Variable Structure Filter (Dynamic 2nd-order SVSF) method for 
the purpose of robust state estimation. Thereafter, it presents an 
application of this method for condition monitoring of an 
electro-hydrostatic actuator system. The SVSF-type filtering is 
in general designed based on the sliding mode theory; whereas 
the sliding mode variable is equal to the innovation 
(measurement error). In order to formulate the dynamic 2nd-
order SVSF, a dynamic sliding mode manifold is defined such 
that it preserves the first and second order sliding conditions. 
This causes that the measurement error and its first difference 
are pushed toward zero until reaching the existence subspace. 
Hence, this filter benefits from the robustness and chattering 
suppression properties of the second order sliding mode 
systems. These help the filter to suppress the undesirable 
chattering effects without the need for approximation or 
interpolation that however reduces accuracy and robustness of 
the SVSF-type filtering. In order to investigate the performance 
of the dynamic 2nd-order SVSF for state estimation, it applies to 
an Electro-Hydrostatic Actuator (EHA) system under the 
normal and uncertain scenarios. Simulation results are then 
compared with ones obtained by other estimation methods such 
as the Kalman filter and the 1st-order SVSF method. 

INTRODUCTION 
 State estimation is the process of extracting numeric values 

of states from inaccurate and uncertain measurements of the 
system. The main goal is minimizing the estimation error as 
well as maintaining robustness against the noise and modeling 
uncertainties [1,2]. Noise and perturbations inherently exist in 
the measurement process, and caused by instruments and 
environmental factors. System uncertainties are usually due to 
inaccuracy in modeling the process, discretization error, and 

variations of physical parameters. Rudolf Kalman introduced 
the Kalman filter in 1960 for linear filtering and prediction. It 
uses a linear dynamic model and sequential measurements of 
the system to produce state estimates by minimizing the state 
error covariance matrix. The Kalman-type filtering is primarily 
designed based on an exact knowledge of the system’s model 
with known parameters. In real applications, there may be 
considerable uncertainties about the model structure, physical 
parameters, level of noise, and initial conditions. These 
uncertainties will affect the Kalman filter performance. In order 
to overcome such potential difficulties, the robust state 
estimation is proposed. The main objective of robust estimation 
is to design a fixed filter that limits the effect of modeling 
uncertainties and noise on the filter performance. The main 
robust state estimation methods found in the literature are the 
robust Kalman (or H2) filter [3,4], and the H∞ filter [5,6]. 

The Smooth Variable Structure Filter (SVSF) has recently 
been introduced by Habibi [7], as a novel model-based robust 
state estimation method. The corrective gain of the SVSF has 
an inherent switching action that guarantees convergence of the 
state estimates to within a region of the real values. The 
switching characteristic of the SVSF is due to the variable 
structure formulation of the discontinuous gain, which provides 
robustness to bounded uncertainties. The main drawback of the 
SVSF method for state estimation is chattering that is a non-
deterministic high frequency oscillations in the state estimation 
trajectories resulting from the discontinuous action of the gain. 
Habibi applied the smoothing boundary layer (a saturation 
function) for suppressing chattering [8]. The saturation function 
interpolates the discontinuous action around the switching 
hyperplane. Outside the smoothing layer the discontinuous 
correction is fully applied to maintain stability, while inside the 
smoothing boundary layer the signum function is still applied. 
By approximating the switching function via the smoothing 
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boundary layer, however the accuracy and robustness of the 
sliding mode system would be partially lost [8]. Gadsden [9] 
developed the SVSF concept by adding a state error covariance 
variable to the SVSF formulation and later introducing the 
optimal SVSF estimation method with a time-varying 
smoothing boundary layer [9].  

The second order sliding mode concept may be used as an 
alternative to the smoothing boundary layer for chattering 
suppression. This concept leads to push the first and the second 
order time-derivatives of the sliding variable towards zero. 
Hence, along with preserving the main advantages of the 
standard sliding mode systems, it is capable of reducing the 
chattering effect considerably [8,10,11]. This paper presents the 
dynamic 2nd-order SVSF state estimation method as an 
extension to the 1st-order SFSF [7]. This method only applies to 
systems with linear state and measurement models. It is 
formulated based on a dynamic sliding mode manifold that 
preserves the first and second order sliding mode conditions 
during state estimation. The corrective gain of the dynamic 2nd-
order SVSF is derived such that it satisfies the Lyapunov’s 
second law of stability in discrete time. To verify the accuracy 
and robustness of this filter, it is applied to an EHA system for 
state estimation under the normal and uncertain conditions. 

THE DYNAMIC 2ND-ORDER SVSF METHOD 
The dynamic 2nd-order SVSF is constructed in a predictor-

corrector form (same as the Kalman filter). It has two main 
steps including the prediction and update. In the prediction 
step, the a priori state estimate 

1|ˆk kx +
 is predicted using 

knowledge of the system prior to step k. Furthermore, in the 
update step, the calculated a priori estimate is refined into the a 
posteriori state estimate 

1| 1ˆk kx + + . The corrective gain of the 2nd-

order SVSF pushes the measurement error and its first 
difference to zero in finite time. The dynamic 2nd-order SVSF 
method applies to systems with a linear state and linear 
measurement models. Assume a linear system described by a 
discrete time state-space model as follows: 

1
ˆˆ ,k k k kx F x Gu w+ = + +  (1) 

where 1n
kx ×∈ℝ  is the state vector, 1p

ku ×∈ℝ  is the control 

vector, and 1m
kz ×∈ℝ  is the measurement vector. ˆ n nF ×∈ℝ  is 

the estimated state matrix, ˆ n pG ×∈ℝ  is the estimated control 
matrix, ˆ m nH ×∈ℝ  is the estimated measurement matrix. The 
measurement model is linear as follows: 

1 1 1
ˆ ,k k kz H x v+ + += +  (2) 

where 1mz ×∈ℝ  is the measurement vector, 1mv ×∈ℝ  is the 
measurement noise, and ˆ m nH ×∈ℝ  is a positive diagonal or 
pseudo-diagonal measurement matrix.  

It is assumed that the control vector 1pu ×∈ℝ  is known and 
bounded such that: 

,| | ; 1, , .i k iu U i n≤ = …
 (3) 

It is also assumed that vectors kw  and kv  are mutually 

independent white stochastic processes. They are bounded by 

maxw  and maxv  as their upper limits such that: 

, max

, max

| | ; 1, , ,

| | ; 1, , .
i k

i k

w w i n

v v i m

≤ =
 ≤ =

…

…

 (4) 

The dynamic 2nd-order SVSF is presented as follows: 
i. Prediction of the a priori state estimate based on the 

system’s  state model as: 

1| |
ˆˆˆ ˆ .k k k k kx F x Gu+ = +  (5) 

where F̂  is an estimate of the state model F . The a priori 
measurement estimate is also calculated using the 
estimated state vector and the measurement model as: 

1| 1|
ˆˆ ˆ ,k k k kz H x+ +=  (6) 

where Ĥ  is an estimate of the measurement model H. 
ii.  Calculation of the a posteriori and a priori measurement 

error vectors, 
|

1
k k

m
ze ×∈ℝ  and 

1|

1
k k

m
ze

+

×∈ℝ  respectively as: 

| |
ˆ ˆ ,

k kz k k ke z H x= −  (7) 

1| 1 1|
ˆ ˆ .

k kz k k ke z H x
+ + += −  (8) 

iii.  Calculation of the corrective gain for the dynamic 2nd-
order SVSF 1

1
n

kK ×
+ ∈ℝ  as a function of the a priori and 

the a posteriori measurement errors as follows: 

1| | 1| 1

1
1 1 1

ˆ ( ) .
k k k k k kk z k z k zK H e e eγ γ

+ − −

−
+ + +

 = − + Λ + Λ
 

 (9) 

where ˆ m mH ×∈ℝ  is a full measurement matrix, 
( ) m m

iiDiagγ γ ×= ∈ℝ  is a diagonal matrix with positive 

entries such that 0 1iiγ< < . It represents the convergence 

rate corresponding to each entry. 
iv. Update the a priori state estimate into the a posteriori 

state estimate 
1| 1ˆk kx + +  such that: 

1| 1 1| 1ˆ ˆ .k k k k kx x K+ + + += +  (10) 
 

 
Figure 1. Main concept of the dynamic 2nd-order SVSF method 

 
The dynamic 2nd-order SVSF is formulated based on the 

dynamic sliding mode theory introduced by Sira-Ramirez [10]. 
Here, the vector of sliding variables 1mS ×∈ℝ  is defined as: 

|
,

k kk zS e=  (11) 
According to (9), the corrective gain represents a second-order 
Markov process and updated using the measurement error 
values at different time steps. The main advantage of the 
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dynamic 2nd-order SVSF over other approaches is the use of 
cut-off frequency coefficient within the corrective gin 
formulation. In this regard, a cut-off frequency coefficient is 
assigned to each measurement that filters out the unwanted 
chattering. This coefficient is formulated into the filter by 
defining a new dynamic sliding mode manifold as follows: 

k k kS CSσ = ∆ +  (12) 
where m mC ×∈ℝ  denotes the manifold’s cut-off frequency. It is 
also corresponding to the slope of the sliding manifold (12) in a 
phase plane coordinated by S  and S∆ . Since the sliding 
variable is equal to the a posteriori measurement error 

|k kk zS e= , the difference of the sliding variable will be equal to 

the measurement error difference as: 
| 1| 1k k k kk z zS e e

− −
∆ = − . Hence, 

by defining the sliding manifold as k k kS CSσ = ∆ +  and proving 

the stability of state estimates about it, it is ensured that the 
estimation error and its difference are decreasing in finite time. 
Figure 1 presents the dynamic 2nd-order SVSF concept using 
the linear sliding mode manifold. 

STABILITY PROOF FOR THE DYNAMIC 2ND-SVSF 
The Lyapunov’s second law of stability may be used to 

provide the stability proof of the dynamic 2nd-order SVSF 
under the corrective gain given by (9). 

Theorem 1: The dynamic 2nd-order SVSF method with the 
corrective gain of (9) is stable and preserves the first and 
second order sliding conditions under an ideal sliding regime.

 Proof: Assume a positive-definite Lyapunov function as: 
2

, ,k i kV σ=  (14) 
where ,

m m
i kσ ×∈ℝ is an element of the linear sliding manifold 

and defined as: , , ,i k i k ii i ks c sσ = ∆ + . In addition, ,
m m

i ks ×∈ℝ and 
1

,
m

i ks ×∆ ∈ℝ  denote elements the sliding variable vector and its 

difference, respectively. The difference of the sliding variable is 
obtained using the backward difference operator given by: 

, , , 1i k i k i ks s s −∆ = − . The dynamic 2nd-order SVSF under the gain 

(9) is stable if 1 1 0k k kV V V+ +∆ = − < . Substituting the Lyapunov 

function into the last inequality, the difference of Lyapunov 
function is calculated as: 

2 2
1 , 1 , 1 , ,( ) ( )k i k ii i k i k ii i kV s c s s c s+ + +∆ = ∆ + − ∆ +  (15) 

where , 1 , 1 ,i k i k i ks s s+ +∆ = −  
and , , , 1i k i k i ks s s −∆ = − . Substituting the 

above terms and rearranging them, 1kV +∆  is formulated as: 
2 2 2

1 , 1 , 1 , , 1

2
, , , 1

(1 ) 2(1 )

2 (1 ) 2(1 ) .

k ii i k ii i k i k i k

ii ii i k ii i k i k

V c s c s s s

c c s c s s

+ + + −

−

∆ = + − + −

− + + +
 (16) 

For more simplicity in calculations, let elements of the 
manifold’s cut-off frequency matrix be defined as: 

1
,

1ii
iic

λ =
+

 (17) 

where ( ) m m
iiDiag λ ×Λ = ∈ℝ  is also a diagonal matrix. 

Multiplying both sides of the corrective gain formulation 
(9) by Ĥ and rearranging: 

1| | 1| 11 1 1
ˆ ( ) .

k k k k k kz k k z k ze H K e eγ γ
+ − −+ + +− = + Λ − Λ  (18) 

Since the state estimates are updated using (10), namely

1| 1 1| 1ˆ ˆk k k k kx x K+ + + += + , it is possible to restated the gain as: 

1 1| 1 1|ˆ ˆ .k k k k kK x x+ + + += −  Substituting this relation into (18) yields: 

1| | 1| 11| 1 1| 1 1
ˆ ˆ ˆ( ) ( ) .

k k k k k kz k k k k k z k ze H x x e eγ γ
+ − −+ + + + +− − = + Λ − Λ  (19) 

The a priori and the a posteriori measurement errors at time 
step k are obtained from (7) and (8) as: 

1| 1 1|
ˆ ˆ

k kz k k ke z H x
+ + += − and 

1| 1 1 1| 1
ˆ ˆ

k kz k k ke z H x
+ + + + += − . Subtracting the a priori error from the 

a posteriori error leads to: 

1| 1 1| 1| 1 1|
ˆ ˆ ˆ( ).

k k k kz z k k k ke e H x x
+ + + + + +− = − −  (20) 

Let restate equality (19) based on equation (20) as follows: 

1| 1 | 1| 11 1( ) .
k k k k k kz k z k ze e eγ γ

+ + − −+ += + Λ − Λ  (21) 

Since 
|k kk zs e= , equality (21) may be expressed in terms of the 

sliding variable entries ,i ks
 
as: 

, 1 , , 1( ) .i k ii ii i k ii ii i ks s sγ λ γ λ+ −= + −  (22) 
In order to show negative definiteness of the Lyapunov 
candidate (14), let substitute equality (22) into the difference of 
the Lyapunov function (18) and expand the result as: 

2 2 2 2 2
1 , , 1

2
, , 1

( 1)(1 ) ( 1)

2( 1)(1 ) .

k ii ii i k ii i k

ii ii i k i k

V s s

s s

γ λ γ

γ λ
+ −

−

∆ = − + + −

− − +
 (23) 

Rearranging equality (23) results in: 
22

1 , , 1( 1) (1 ) .k ii ii i k i kV s sγ λ+ − ∆ = − + − 
 (24) 

Since the convergence rate matrix ( ) m m
iiDiagγ γ ×= ∈ℝ  is defined 

such that 0 1iiγ< < , it leads to 1 0kV +∆ <  that indicates stability 

of the 2nd-order SVSF under the corrective gain (9). Since the 
Lyapunov function kV  is in terms of kS  and kS∆ , it can be 

deduced from equation (24) with 1 0kV +∆ <  that convergence is 

attained for the first and second order sliding conditions.         □ 
It is important to note that due to modeling uncertainties, 

noise, and switching imperfections, however the ideal second 
order sliding motion does not occur. This results in a real 
second order sliding mode regime in which the BIBO stability 
of the dynamic 2nd-order SVSF is ensured given bounded noise 
and modeling uncertainties. Satisfaction of the Lyapunov 
function (14) leads to: 1| | | |k kσ σ+ < . Since k k kS C Sσ = ∆ + , 

where 
|k kk zS e=  and 

|k kk zS e∆ = ∆ , it is deduced that the 

measurement error and its difference are decreasing over time 
while k σσ ε> . Due to measurement noise and modeling 

uncertainties, kσ  only decreases until it reaches the existence 

subspace bounded σε . However, under an ideal sliding 

condition: 0kσ = . The corrective gain (9) is a linear 

combination of the a priori and the a posteriori measurement 
error terms. It is a second-order Markov process and causes that 
the dynamic 2nd-order SVSF updates the a posteriori error 

1| 1k kze
+ +

 based on the available information of 
|k kze

 
and 

1| 1k kze
− −

. 

Having access to higher amount of information increases 
smoothness and robustness of the filter for state estimation. 
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COMPARATIVE ANALYSIS USING AN ELECTRO-
HYDROSTATIC ACTUATOR (EHA) SYSTEM 

In order to study the performance of the dynamic 2nd-order 
SVSF for state estimation, it is applied to an EHA model (as 
presented in Figure 2). Its performance is then compared to 
other estimation methods such as the Kalman filter, and the 1st-
order SVSF. Two scenarios are considered for comparisons that 
are the normal condition with a known model but including 
white noise, and a faulty condition with a large degree of 
modeling uncertainties. The EHA system is described by a 
discrete third-order model. The three state variables include the 
actuator position 1x x= , velocity 2 1/x dx dt= , and acceleration 

2 2
3 1/x d x dt= , with position being the only measurable state [7]. 

The linear state and measurement model of the EHA are given 
by (1) and (2), respectively. Numeric values of the state, control 
and measurement matrixes are equal to [7]: 

[ ]
1 0.001 0 0

ˆˆ ˆ0 1 0.001 , 0 , 1 0 0 .

557.02 28.616 0.9418 557.02

F G H

   
   = = =
   
   − −   

 (25) 

kw  and kv denote the process uncertainties and measurement 

noise. They are multivariate white normal random vectors with 
the mean of zero and standard deviation vectors equal to [7]: 

[ ] [ ]0.05 0.1 0.1 , 0.05 .
T

std stdw v= =  (26) 

In order to apply the dynamic 2nd-order SVSF to states that 
are not measured directly, it is combined with the Luenberger’s 
observer [7]. In simulation, the corrective gain is calculated for 
the case with the convergence rate equal to [0.5]γ = . In 

simulation, it is assumed that the initial state error covariance 
for the Kalman filter and the dynamic 2nd-order SVSF are 
equal. For both strategies, the process noise, measurement noise 
and the initial error covariance are respectively obtained as: 

([1 10 100])Q diag= , and
0 20P Q= . Furthermore, 20.1R cm=  is 

obtained by calculating variance of the innovation signal for a 
time period. For the 1st-order SVSF [7], the width of the 
smoothing boundary layer is set to [ ]5 5 5

T
stdvψ = × , where 

stdv  is the standard deviation of the measurement noise. To 

compare the robustness characteristic of these three methods, a 
large degree of uncertainties is injected into the model by 
changing the state matrix after 0.5 sec of simulation to [7]: 

2

1 0.001 0
ˆ 0 1 0.001 .

240 28 0.9418

F

 
 =  
 − − 

 (27) 

The input to the EHA system is a random signal with the 
amplitude in the range of -1 to 1, superimposed on a step input 
that occurs at 0.5 sec. The initial values of states are assumed to 
be zero and the sampling time for discretization is 0.001 sec. 
Simulations are performed using the MATLAB and under the 
103 Monte-Carlo runs. Tables 1 to 3 compare a number of 
numerical performance indicators generated from the three 
estimation methods for the above mentioned normal and 
uncertain EHA models. 

In order to compare these estimators, their RMSE, as well 
as the bias and STD of their state estimation error are calculated 
and compared. The RMSE indicator is calculated as: 

2
1

ˆ( )
,

n
i ii

x x
RMSE

n
=

−
= ∑  (28) 

where ix  denotes the actual state value, ˆix  denotes the 

estimated state value, and n is the number of time steps. The 
actual state values are obtained by solving state trajectories of 
the EHA system with state matrices. Furthermore, the bias and 
the STD of the state estimation error are obtained as follows: 

( )
1

1
ˆ .

n

i i
i

Bias x x
n =

= −∑  (29) 

2
, ,

1

1
( ) .

n

x i x i
i

STD e e
n =

= −∑
 (30) 

  

Figure 2. The electro-hydrostatic actuator (EHA) prototype [7] 

 
Table 1 presents the root mean squared error (RMSE) value 

of the state estimation error 
|k kxe for both normal and uncertain 

conditions. Further to Table 1, the Kalman filter produces the 
most accurate state estimates in terms of the RMSE for the 
normal model, followed by the dynamic 2nd-order SVSF and 
the 1st-order SVSF. This is because for a known model the 
Kalman filter is optimal in terms of the RMSE. Under the 
uncertain case, the dynamic 2nd-order SVSF produces more 
accurate state estimates in terms of the RMSE. This accuracy is 
due to preserving the first and second order sliding conditions 
that increases its robustness versus modeling uncertainties. 
 

Table 1: Comparison between RMSE indices of the estimation methods 
 Kalman Filter 1st-order SVSF Dynamic 2nd-SVSF 
RMSE Normal Uncertain Normal Uncertain Normal Uncertain 

Position 0.010 0.018 0.011 0.016 0.011 0.014 

Velocity 1.046 34.660 1.061 19.507 1.055 12.494 
Accel. 160.240 2206.06 172.31 1471.53 163.91 1315.18 

 
Table 2: Comparison between Bias indices of the estimation methods 

 Kalman Filter 1st-order SVSF Dynamic 2nd-SVSF 
Bias Normal Uncertain Normal Uncertain Normal Uncertain 

Position -1.5×10-4 -7.3×10-3 -2.6×10-4 -4.5×10-4 -1.7×10-4 -2.9×10-4 

Velocity -0.0019 9.63 -0.0048 3.78 -0.0027 1.63 
Accel. 9.84 36.32 10.04 26.86 9.98 18.76 

 



 5 Copyright © 2015 by ASME 

Table 3: Comparison between STD indices of the estimation methods 
 Kalman Filter 1st-order SVSF Dynamic 2nd-SVSF 

STD Normal Uncertain Normal Uncertain Normal Uncertain 

Position 0.0963 0.30 0.0105 0.0709 0.0075 0.0358 

Velocity 1.59 30.29 1.22 17.95 1.10 12.63 
Accel. 195.55 2867.9 186.16 1823.9 161.37 1374.60 

 
Note that satisfying the second order sliding condition 

instead of using the smoothing boundary layer is the main 
reason why the dynamic 2nd-order SVSF is more accurate than 
the 1st-order SVSF for both normal and uncertain cases. In the 
1st-order SVSF chattering is alleviated by defining a smoothing 
boundary layer in a vicinity of the sliding hyperplane. In this 
context, the signum function is replaced with a smoother 
function such as the saturation function. This however 
approximates the sliding motion in a close vicinity of the 
sliding hyperplane and reduces the ultimate accuracy and 
robustness of the SVSF-type filtering. The second order sliding 
condition not only removes the need for approximation, but 
also alleviates higher degrees of chattering. 

Table 2 compares state estimates in terms of the bias (mean 
of the state estimation error) for both the normal and uncertain 
conditions. Table 3 compares the state estimates in terms of the 
STD of the state estimation error. For the normal case, the 
Kalman filter produces the smallest bias, followed by the 
dynamic 2nd-order SVSF and the 1st-order SVSF. But for the 
uncertain case, the dynamic 2nd-order SVSF generates the 
smallest bias, followed by the 1st-order SVSF and the Kalman 
filter. Following Table 3, the dynamic 2nd-order SVSF has the 
smallest values pertaining to the STD of the state estimation 
error , |x k ke . The Kalman filter has the best performance in the 

normal case with no uncertainties and Gaussian noise, followed 
by the dynamic 2nd-order SVSF. For the case with uncertainties, 
the dynamic 2nd-order SVSF has the best performance, 
followed by the 1st-order SVSF. 
 

 
Figure 3. State estimation using three estimators for normal EHA system 

 
Figure 3 presents the actual and estimated state trajectories 
using the Kalman filter and the dynamic 2nd-order SVSF for the 

EHA under the normal condition. Figure 4 compares these 
trajectories using the Kalman filter and the dynamic 2nd-order 
SVSF for the EHA with modeling uncertainties. The position’s 
estimation error signals obtained from the dynamic 2nd-order 
SVSF and the Kalman filter are presented in Figure 5. It is 
deduced from Figure 5 that the dynamic 2nd-order SVSF 
produces the smoothest state estimates with the smallest 
variation for both normal and uncertain cases. 
 

 
Figure 4. State estimation using three estimators for uncertain EHA system 
 

 

 
Figure 5. Position estimation error by Kalman filter and dynamic 2nd-SVSF 

 
Figure 6 presents the phase portrait of the measurement 

error and its first difference for the normal and uncertain EHA 
systems using the dynamic 2nd-order SVSF. As demonstrated, in 
both cases the measurement error and its difference are 
decreasing in time until they reach the existence subspace. 
Figure 7 also presents profiles of the sliding variable s and the 
dynamic sliding manifold σ for both the normal and uncertain 
cases. In both cases, σ is decreasing in time until it reaches the 
existence subspace such that | | σσ ε≤ . Figures 6 and 7 illustrate 

convergence of the dynamic 2nd-order SVSF under the dynamic 
sliding manifold given bounded noise and uncertainties. 
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Figure 6. Phase portrait of the position error and its first difference generated 

by the dynamic 2nd-SVSF method 
 

 

 
Figure 7. Profiles of the sliding mode variable and the dynamic sliding 

manifold generated by the dynamic 2nd-SVSF method 

CONCLUSION 
This paper introduces the dynamic 2nd-order SVSF state 

estimation method based on defining a linear dynamic sliding 
mode manifold. This manifold is defined in terms of the sliding 
variable and its first difference, where the sliding variable 
represents the a posteriori measurement error (innovation). 
Hence, by reaching the dynamic sliding manifold, the first and 
the second order sliding mode conditions are satisfied. The 
corrective gain of the dynamic 2nd-order SVSF is obtained such 
that it ensures reaching the sliding mode manifold in a finite 
time. The Lyapunov’s second law of stability is then used in 
order to prove the stability and convergence of the dynamic 2nd-
order SVSF method under the proposed corrective gain. The 
linear sliding manifold introduces a cut-off frequency 

coefficient matrix into the filter formulation that alleviates the 
undesirable chattering effect. In order to compare accuracy, 
robustness, and smoothness of the dynamic 2nd-order SVSF 
method, it applies to an EHA system under the normal and 
faulty scenarios. Simulation results are then compared with 
other state estimation methods such as the Kalman filter and the 
1st-order SVSF method in terms of RMSE, Bias, and standard 
Deviation of the estimation error. Simulation results 
demonstrate that under the normal condition, the Kalman filter 
produces the most accurate state estimates with smallest 
RMSE. Besides, under the uncertain condition, the dynamic 
2nd-order SVSF produces the most accurate estimates with 
smallest STD and bias, followed by the 1st-order SVSF. This 
confirms the superior performance of the dynamic 2nd-order 
SVSF for state estimation under uncertain faulty situations. 
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