Proceedings of the ASME 2015 International Desigh Engineering Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, Massachusetts, USA

DETC2015-47436

CONDITION MONITORING OF AN ELECTRO-HYDROSTATIC ACTUATOR USING
THE DYNAMIC 2NP-ORDER SMOOTH VARIABLE STRUCTURE FILTER

Hamed Hossein Afshari
McMaster University, Mechanical Engineering,
Hamilton, Ontario, Canada

Saeid Habibi
McMaster University, Mechanical Engineering,
Hamilton, Ontario, Canada

ABSTRACT

This paper introduces the dynamid®-arder Smooth
Variable Structure Filter (Dynamid®order SVSF) method for
the purpose of robust state estimation. Thereaftpresents an
application of this method for condition monitoringf an
electro-hydrostatic actuator system. The SVSF-filfering is
in general designed based on the sliding mode yhedrereas
the sliding mode variable is equal to the innovatio
(measurement error). In order to formulate the dyina2'-
order SVSF, a dynamic sliding mode manifold is edi such
that it preserves the first and second order glidianditions.
This causes that the measurement error and itsdfiiference
are pushed toward zero until reaching the existesutespace.
Hence, this filter benefits from the robustness ahdttering
suppression properties of the second order slidingde
systems. These help the filter to suppress the ginadde
chattering effects without the need for approxiomatior
interpolation that however reduces accuracy andgtless of
the SVSF-type filtering. In order to investigate therformance
of the dynamic ®-order SVSF for state estimation, it applies to
an Electro-Hydrostatic Actuator (EHA) system undie
normal and uncertain scenarios. Simulation resates then
compared with ones obtained by other estimatiorhats such
as the Kalman filter and thé-brder SVSF method.

INTRODUCTION

State estimation is the process of extracting nicnwalues
of states from inaccurate and uncertain measuremanthe
system. The main goal is minimizing the estimat@ror as
well as maintaining robustness against the noisenaodeling
uncertainties [1,2]. Noise and perturbations inh#tyeexist in
the measurement process, and caused by instrunzsents
environmental factors. System uncertainties arallysdue to
inaccuracy in modeling the process, discretizatoror, and
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variations of physical parameters. Rudolf Kalmatroduced
the Kalman filter in 1960 for linear filtering amtediction. It
uses a linear dynamic model and sequential measutsnof
the system to produce state estimates by minimitiegstate
error covariance matrix. The Kalman-type filteriisgprimarily
designed based on an exact knowledge of the systemmdel
with known parameters. In real applications, themay be
considerable uncertainties about the model stractohnysical
parameters, level of noise, and initial conditionEhese
uncertainties will affect the Kalman filter perfoamce. In order
to overcome such potential difficulties, the robustate
estimation is proposed. The main objective of rolegtimation
is to design a fixed filter that limits the effeof modeling
uncertainties and noise on the filter performaritee main
robust state estimation methods found in the liteeaare the
robust Kalman (oHy) filter [3,4], and theH.. filter [5,6].

The Smooth Variable Structure Filter (SVSF) haently
been introduced by Habibi [7], as a novel modekbasobust
state estimation method. The corrective gain of SMSF has
an inherent switching action that guarantees cgerere of the
state estimates to within a region of the real esluThe
switching characteristic of the SVSF is due to theiable
structure formulation of the discontinuous gainjchhprovides
robustness to bounded uncertainties. The main drelkvbf the
SVSF method for state estimation is chattering thet non-
deterministic high frequency oscillations in thatstestimation
trajectories resulting from the discontinuous attid the gain.
Habibi applied the smoothing boundary layer (a redion
function) for suppressing chattering [8]. The satian function
interpolates the discontinuous action around thetckimg
hyperplane. Outside the smoothing layer the discoaus
correction is fully applied to maintain stabilityhile inside the
smoothing boundary layer the signum function i8 applied.
By approximating the switching function via the wotiing
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boundary layer, however the accuracy and robustoéske
sliding mode system would be partially lost [8].dSden [9]
developed the SVSF concept by adding a state eor@riance
variable to the SVSF formulation and later introidgcthe
optimal SVSF estimation method with a time-varying
smoothing boundary layer [9].

The second order sliding mode concept may be usetha
alternative to the smoothing boundary layer for tighang
suppression. This concept leads to push the fidttlae second
order time-derivatives of the sliding variable todsa zero.
Hence, along with preserving the main advantageshef
standard sliding mode systems, it is capable oficieg the
chattering effect considerably [8,10,11]. This papesents the
dynamic 2%order SVSF state estimation method as an
extension to thestorder SFSF [7]. This method only applies to
systems with linear state and measurement modelss |
formulated based on a dynamic sliding mode manitbial
preserves the first and second order sliding mazteitions
during state estimation. The corrective gain ofdggamic 2%
order SVSF is derived such that it satisfies thapunov's
second law of stability in discrete time. To verifye accuracy
and robustness of this filter, it is applied toEHA system for
state estimation under the normal and uncertaiditions.

THE DYNAMIC 2NP-ORDER SVSF METHOD

The dynamic 2-order SVSF is constructed in a predictor-
corrector form (same as the Kalman filter). It ha® main
steps including the prediction and update. In thedjgtion
step, thea priori state estimate)zkﬂk is predicted using

knowledge of the system prior to stkpFurthermore, in the
update step, the calculatagbriori estimate is refined into the

posteriori state estimate, ., .,. The corrective gain of the'®

order SVSF pushes the measurement error and its fir

difference to zero in finite time. The dynamitd-2rder SVSF

method applies to systems with a linear state andat

measurement models. Assume a linear system deddopa

discrete time state-space model as follows:
Xy = FX, +GU, W, ,

1)

where x, OR™ is the state vectory, OrRP? is the control
vector, andz, OR™! is the measurement vectar. OR™" is

the estimated state matrixg OrR™P is the estimated control
matrix, H OR™" is the estimated measurement matrix. The
measurement model is linear as follows:

Zk+1:ka+1+Vk+1i (2)
where zOR™ is the measurement vectoy,0R™ is the
measurement noise, and OrR™" is a positive diagonal or
pseudo-diagonal measurement matrix.

It is assumed that the control vectonRrP< is known and
bounded such that:
U g IEU;; i=1,..n. 3)
It is also assumed that vectorg, and v, are mutually
independent white stochastic processes. They anadeadl by
W o andv .. as their upper limits such that:

max

n,

(4)

The dynamic Z-order SVSF is presented as follows:
i. Prediction of thea priori state estimate based on the
system’s state model as:

Xk = F Xy +Guy.

{|Wi’k ISW e | =1,

Vi k €V maxs T =1...m.

®)
whereF is an estimate of the state model Thea priori

measurement estimate is also calculated using the
estimated state vector and the measurement madel as

(6)
whereH is an estimate of the measurement meétel

ii. Calculation of thea posteriori anda priori measurement
error vectorse, prm™ ande, r™ respectively as:
K[k k+1k

()
(8)

iii. Calculation of the corrective gain for the dynanié-
order SVSFk, ,0r™ as a function of the priori and

thea posteriori measurement errors as follows:

Ky =H _1[ezk+1‘k (AZAT) 9 +y/\k+lezk,1k,1:|' (9)
where Hor™™ is a full measurement matrix,
y=Diag(y,)OR™™ is a diagonal matrix with positive
entries such thab<), <1. It represents the convergence

rate corresponding to each entry.
iv. Update thea priori state estimate into the posteriori

state estimatet, ., ., such that:

Zyap =H Xy

€ =Zk -H Xy

€, ., =Zkn—H Xy

Zy i

)ek+1|<+1:)’(\k+1|< +Kyr (10)

Sliding Manifold

; AS=0
--------- Estimated State

Existence Boundary Layer

initial estimate

Figure 1. Main concept of the dynamic 2"-order SV SF method

The dynamic P-order SVSF is formulated based on the
dynamic sliding mode theory introduced by Sira-Rami10].
Here, the vector of sliding variables1rR™! is defined as:

S¢ =e (11)
According to (9), the corrective gain representeeond-order
Markov process and updated using the measuremeot er
values at different time steps. The main advantafjehe

Zy !
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dynamic 2%-order SVSF over other approaches is the use of Since the state estimates are updated using (lyely

cut-off frequency coefficient within the correctivain
formulation. In this regard, a cut-off frequencyeffcient is
assigned to each measurement that filters out tiveanted
chattering. This coefficient is formulated into tHiéter by
defining a new dynamic sliding mode manifold asdiak:

g, =AS, +CS, (12)
wherec OR™™ denotes the manifold’s cut-off frequency. It is
also corresponding to the slope of the sliding rficdehi(12) in a
phase plane coordinated by and AS. Since the sliding
variable is equal to thea posteriori measurement error
S =e,,, » the difference of the sliding variable will beued to

_ezk—m—l

the measurement error difference as; =e . Hence,

Zi |k
by defining the sliding manifold as, =as, +cs, and proving
the stability of state estimates about it, it isuwed that the
estimation error and its difference are decreasirfqnite time.
Figure 1 presents the dynamit-Brder SVSF concept using
the linear sliding mode manifold.

STABILITY PROOF FOR THE DYNAMIC 2NP-SVSF

The Lyapunov’s second law of stability may be used
provide the stability proof of the dynamic®drder SVSF
under the corrective gain given by (9).

Theorem 1: The dynamic Z-order SVSF method with the
corrective gain of (9) is stable and preserves fite¢ and
second order sliding conditions under an idealrgidegime.

Proof: Assume a positive-definite Lyapunov function as:

Vi =0, ,k2' (14)
where g, , OR™™is an element of the linear sliding manifold
and defined asg; , =as | +c; 5, - In addition, s, , OR™™and
As  OR™ denote elements the sliding variable vector asd it

difference, respectively. The difference of thelislg variable is
obtained using the backward difference operatoremiby:
As =S =S k-1 The dynamic Z-order SVSF under the gain
(9) is stable ifav,,, =v,,,-V, <0. Substituting the Lyapunov

function into the last inequality, the differencé loyapunov
function is calculated as:

AVia =(BS ka1 ¥Ci S e —(BS ¥ S ) (15)
where As ., =5 ,,,-5  and 45, =5 —§ x4 Substituting the
above terms and rearranging thesw, ,, is formulated as:

AV 1 = (L4 )8 jot” = 2014 Cii Bi oSk =S k-1
=2, (L+Cii )5 1 ” + 24 Ci By kS joa -
For more simplicity in calculations, let element$ the

manifold’s cut-off frequency matrix be defined as:

Aii = i’ a7

1+c;

(16)

where A = Diag(4, ) OR™™ is also a diagonal matrix.
Multiplying both sides of the corrective gain forkation
(9) by H and rearranging:

-H Ky = (V+/\|<+1)(‘3‘2Hk A (18)

e .
Zi 1k k=1k-1

Kiaapr1 =Xz +Kisp it IS possible to restated the gain as:
Kt = Ricags 1~ Kics - Substituting this relation into (18) yields:

ezk+l\k -H (Xk"ﬁk*l_)’(\k*lk )= (y+/\k*])ezklk AT ?Zkflk*l' (19)
The a priori and thea posteriori measurement errors at time
stepk are obtained from (7) and (8) as: :Zk+l_|_i)zk+1|< and

CH =2y, —H Xy 141+ Subtracting the priori error from the

a posteriori error leads to:

=—H (X g1~ Risg)-

ezk+1\k+1 _ezk+1l< (20)
Let restate equality (19) based on equation (20)l&sws:
=(y+/\k+:|_)ezkk _y/\k+1ezk,1*,l' (21)

Since s, =€y, equality (21) may be expressed in terms of the

e
Zg 41k +1

sliding variable entries; , as:

Si ka1 = Wi +Ai)Si k — Vi Ai Si g-n (22)
In order to show negative definiteness of the Lymmu
candidate (14), let substitute equality (22) irtte tifference of
the Lyapunov function (18) and expand the result as

AV, = (12 =D+ A Vs o+ 0 2= 18

23

=203 2 = D)(A+ A B kS k1 o
Rearranging equality (23) results in:

BV = (12 =D @+ A s 4 - ,k—JZ : (24)

Since the convergence rate matyix Diag(y; ) OR™™ is defined
such thato< ; <1, it leads toav, ,, <0 that indicates stability

of the 2%order SVSF under the corrective gain (9). Sinee th
Lyapunov functionv, is in terms ofs, and As,, it can be

deduced from equation (24) witkv, ,, <0 that convergence is

attained for the first and second order slidingditions. o

It is important to note that due to modeling unaties,
noise, and switching imperfections, however thealidecond
order sliding motion does not occur. This resuhisai real
second order sliding mode regime in which the Bl&&bility
of the dynamic ®-order SVSF is ensured given bounded noise
and modeling uncertainties. Satisfaction of the pumov
function (14) leads toig,,|<|og, | Since g, =AS, +CS, ,

where s, =e and As, =pe, , it is deduced that the
k Zyk k Z

measurement error and its difference are decreamsiagtime
while g, >¢,. Due to measurement noise and modeling

uncertainties,g, only decreases until it reaches the existence

subspace boundeds,. However, under an ideal sliding
condition: ¢, =0. The corrective gain (9) is a linear

combination of thea priori and thea posteriori measurement
error terms. It is a second-order Markov processcauses that
the dynamic ®-order SVSF updates tha posteriori error

e based on the available information ka‘k ande

Zy k1 Zy g1

Having access to higher amount of information inses
smoothness and robustness of the filter for ststienation.
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COMPARATIVE ANALYSIS USING AN ELECTRO-
HYDROSTATIC ACTUATOR (EHA) SYSTEM

In order to study the performance of the dynanifeo2der
SVSF for state estimation, it is applied to an EmAdel (as
presented in Figure 2). Its performance is then pzoed to
other estimation methods such as the Kalman fited, the 1-
order SVSF. Two scenarios are considered for coisyras that
are the normal condition with a known model butliding
white noise, and a faulty condition with a largegee of
modeling uncertainties. The EHA system is describgda
discrete third-order model. The three state vaemldhclude the
actuator positionx, =x , velocity x, =dx,/dt , and acceleration

x5 =d?x,/dt?, with position being the only measurable state [7]

The linear state and measurement model of the HdAyaen

by (1) and (2), respectively. Numeric values of skete, control
and measurement matrixes are equal to [7]:

1 0.001 0 0

F=| 0 1 0001,G=| 0

-557.02 -28.616 0.9418

,H=[10]. (25)
557.p2

w, and v, denote the process uncertainties and measurement

noise. They are multivariate white normal randorotees with
the mean of zero and standard deviation vectoraleqyi7]:

We =[0.05 0.1 OF vy =] 0.05. (26)
In order to apply the dynamid®@order SVSF to states that
are not measured directly, it is combined with tienberger’s

observer [7]. In simulation, the corrective gaircédculated for
the case with the convergence rate equalyte[0.5]. In

simulation, it is assumed that the initial stateoeicovariance
for the Kalman filter and the dynamic™®rder SVSF are
equal. For both strategies, the process noise,urezasnt noise
and the initial error covariance are respectivelbfamed as:
Q =diag(f[L 10 100]), andP, =20Q . FurthermoreR =0.1cm? is

obtained by calculating variance of the innovatsignal for a
time period. For the storder SVSF [7], the width of the

smoothing boundary layer is set ;@:[5 5 E]T xvy,, Where

V4q is the standard deviation of the measurement ndise.

compare the robustness characteristic of these thethods, a
large degree of uncertainties is injected into thedel by
changing the state matrix after 0.5 sec of simoitatd [7]:

1 0001 O
F,=| 0 1 0.001
-240 -28 0.941

The input to the EHA system is a random signal wiité
amplitude in the range of -1 to 1, superimposea @tep input
that occurs at 0.5 sec. The initial values of state assumed to
be zero and the sampling time for discretizatio®.301 sec.
Simulations are performed using the MATLAB and untle
10° Monte-Carlo runs. Tables 1 to 3 compare a numbfer o
numerical performance indicators generated from tiee
estimation methods for the above mentioned norma a
uncertain EHA models.

(27)

In order to compare these estimators, their RMSEyell
as the bias and STD of their state estimation en®icalculated
and compared. The RMSE indicator is calculated as:

RMSE :,/7211()(i m :
n

where x; denotes the actual state valug, denotes the

estimated state value, amdis the number of time steps. The
actual state values are obtained by solving stafectories of
the EHA system with state matrices. Furthermore,lttas and
the STD of the state estimation error are obtaasefbllows:

(28)

Bia:sz%i(xi -X; ). (29)
STD =, %i(ex.i -&,)". (30)

k| S 4
Figure 2. The electro-hydrostatic actuator (EHA) prototype [7]

Table 1 presents the root mean squared error (RM&IEE
of the state estimation erre;ka for both normal and uncertain

conditions. Further to Table 1, the Kalman filteoguces the
most accurate state estimates in terms of the RNtBEhe
normal model, followed by the dynami¢®drder SVSF and
the Ftorder SVSF. This is because for a known model the
Kalman filter is optimal in terms of the RMSE. Umdéne
uncertain case, the dynami¢®drder SVSF produces more
accurate state estimates in terms of the RMSE. ddusracy is
due to preserving the first and second order glidionditions
that increases its robustness versus modeling tanuees.

Table 1: Comparison between RM SE indices of the estimation methods

Kalman Filter 1%-order SVSF Dynamic 2"9-SV SF
RMSE Normal | Uncertain | Normal | Uncertain | Normal | Uncertain
Position 0.010 0.018 0.011 0.016 0.011 0.014
Velocity 1.046 34.660 1.061 19.507 1.054 12.494
Accel. 160.240 2206.06 172.3] 1471.53 163.91 1315.18

Table 2: Comparison between Biasindices of the estimation methods

Kalman Filter 18-order SVSF Dynamic 2"9-SVSF
Bias Nor mal Uncertain | Normal Uncertain | Normal Uncertain
Position | -1.5x10* | -7.3x10° | -2.6x10* | -4.5x10% | -1.7x10* | -2.9x10*
Velocity -0.0019 9.63 -0.0048 3.78 -0.0027 1.63
Accel. 9.84 36.32 10.04 26.86 9.98 18.76
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Table 3: Comparison between STD indices of the estimation methods

EHA under the normal condition. Figure 4 comparkssé

Kalman Filter 1°-order SVSF_ Dynamic 'SV SF trajectories using the Kalman filter and the dyma@¥-order

STD | Normal | Uncertain | Normal | Uncertain | Normal | Uncertain SVSF for the EHA with modeling uncertainties. Thesiion’s

SZIS‘“,O” 0'10223 3(:)'?;(; 0.10335 2‘70229 01'010075 2'20:? estimation error signals obtained from the dynag@fféorder
ocity . . . . . ] . . . .
Accd 195.55 2867 9 15618 18539 6137 137480 SVSF and the Kalman filter are presented in Figburdt is

deduced from Figure 5 that the dynamit’-@der SVSF
produces the smoothest state estimates with thellesina

Note that satisfying the second order sliding cbodi e X
variation for both normal and uncertain cases.

instead of using the smoothing boundary layer i thain
reason why the dynamicd®order SVSF is more accurate than
the Ptorder SVSF for both normal and uncertain caseshén
1storder SVSF chattering is alleviated by definingmaoothing
boundary layer in a vicinity of the sliding hypeapk. In this
context, the signum function is replaced with a sther
function such as the saturation function. This haave :
approximates the sliding motion in a close vicinit§ the
sliding hyperplane and reduces the ultimate acguracd
robustness of the SVSF-type filtering. The secomttosliding
condition not only removes the need for approxiomtibut
also alleviates higher degrees of chattering.

Table 2 compares state estimates in terms of e (oiean
of the state estimation error) for both the norarad uncertain
conditions. Table 3 compares the state estimatterims of the
STD of the state estimation error. For the nornedec the
Kalman filter produces the smallest bias, followby the
dynamic 2%order SVSF and thesdorder SVSF. But for the
uncertain case, the dynamid“@rder SVSF generates the
smallest bias, followed by thebrder SVSF and the Kalman ‘ Rt |
filter. Following Table 3, the dynamic"@order SVSF has the
smallest values pertaining to the STD of the sttmation
error g, - The Kalman filter has the best performance in the

4
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Figure 4. State estimation using three estimatorsfor uncertain EHA system
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dynamic sliding manifoldr for both the normal and uncertain
cases. In both cases,s decreasing in time until it reaches the
existence subspace such thatj< ¢, . Figures 6 and 7 illustrate

convergence of the dynamié®drder SVSF under the dynamic
sliding manifold given bounded noise and unceriagnt

Time (sec)

Figure 3. State estimation using three estimator s for normal EHA system

Figure 3 presents the actual and estimated stajectories
using the Kalman filter and the dynamit-drder SVSF for the
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Figure 6. Phase portrait of the position error and itsfirst difference generated
by the dynamic 2"%-SV SF method
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Figure7. Profiles of the diding mode variable and the dynamic sliding
manifold gener ated by the dynamic 2™-SV SF method

CONCLUSION

This paper introduces the dynamit-@rder SVSF state
estimation method based on defining a linear dynastiding
mode manifold. This manifold is defined in termstioé sliding
variable and its first difference, where the slglinariable
represents thea posteriori measurement error (innovation).
Hence, by reaching the dynamic sliding manifold tinst and
the second order sliding mode conditions are $adisfThe
corrective gain of the dynami¢%order SVSF is obtained such
that it ensures reaching the sliding mode manifola finite
time. The Lyapunov’s second law of stability is nhesed in
order to prove the stability and convergence ofdyieamic 2¢-
order SVSF method under the proposed correctiva. giie
linear sliding manifold introduces a cut-off freqoy

coefficient matrix into the filter formulation thatleviates the
undesirable chattering effect. In order to compaceuracy,
robustness, and smoothness of the dynarfflo@er SVSF
method, it applies to an EHA system under the nbramal
faulty scenarios. Simulation results are then caegbawith
other state estimation methods such as the Kalittandnd the
1storder SVSF method in terms of RMSE, Bias, and dsath
Deviation of the estimation error. Simulation rasul
demonstrate that under the normal condition, thiniéa filter
produces the most accurate state estimates withlestna
RMSE. Besides, under the uncertain condition, theathic
2".order SVSF produces the most accurate estimatés wi
smallest STD and bias, followed by th&drder SVSF. This
confirms the superior performance of the dynaniiéo2der
SVSF for state estimation under uncertain faultiyadions.
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