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ABSTRACT 

The smooth variable structure filter (SVSF) is a state and parameter estimation strategy based on sliding mode 
concepts. It has seen significant development and research activity in recent years. In an effort to improve upon 
the numerical stability of the SVSF, a square-root formulation is derived. The square-root SVSF is based on 
Potter’s algorithm. The proposed formulation is computationally more efficient and reduces the risks of failure 
due to numerical instability. The new strategy is applied on target tracking scenarios for the purposes of state 
estimation. The results are compared with the popular Kalman filter. 
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1. INTRODUCTION  

Estimation theory is considered to be a part of statistics and signal processing [1]. The purpose of estimation is 
to extract knowledge of the true states typically from noise measurements or observations made of the system, 
and form state estimates. The name ‘filter’ is appropriate as it removes unwanted noise from the signal. In most 
estimation strategies, the estimate is updated or refined based on some gain [2]. One of the most popular 
estimation strategies is the Kalman filter (KF) [3]. It is formulated in a predictor-corrector fashion, and is 
considered to yield an optimal solution for linear estimation problems. The KF gain is optimized based on 
minimizing the state error covariance matrix [4]. As demonstrated in literature, the state error covariance matrix 
must be symmetric and positive-definite in order to properly represent the statistics for state vector components 
[5]. In linear algebra, a symmetric matrix is defined as a square matrix which is equal to its corresponding 
transpose. Consider a symmetric matrix ܲ, then the following is satisfied: ܲ ൌ ்ܲ. A symmetric matrix ܲ is 
considered positive-definite if the following is satisfied: ்ܾܾܲ  0, where ܾ is a non-zero vector with real 
entries. Essentially, the above two definitions ensure that the off-diagonal elements of the state error covariance 
matrix are equal to each other (i.e.,  ൌ  ), and that the elements along the diagonal are real and positive
values (i.e., the square of each estimation error is guaranteed to be positive). 

As described in [6], square-root (or factored-form) filters help to ensure numerical stability [7, 8, 9]. 
The square-root formulation makes use of three powerful linear algebra techniques: QR decomposition, 
Cholesky factor updating, and efficient least squares [10, 11]. The covariance matrix is broken up into factored 
terms, which are propagated forward and updated at each measurement [5]. The factors are multiplied together 
reforming the covariance matrix, thus ensuring it to be positive definite. The two most popular square-root 
filters are Potter’s square-root filter and Bierman-Thornton’s UD filter [12]. The UD filter has similar accuracy 
to Potter’s strategy, however is less computationally expensive [13]. Introduced in the late 1970s, UD filtering 
is based on transformation methods that involve an upper triangle covariance factorization (2.3.2.3) [14, 15]. 
Although the UD strategy is considered a type of square-root filter, no square roots are actually calculated; 
where the covariance ܲ is defined by: 

ܲ ൌ (1.1) ்ܷܦܷ



 
 

 

 

where ܷ is an upper triangle matrix with diagonal elements that are unity (all 1), and ܦ ൌ ݀݅ܽ݃ሺ݀ଵ, … , ݀ሻ. 
The matrices ܷ and ܦ are referred to as the UD factors of the covariance matrix ܲ. A number of different 
strategies exist to perform UD decomposition (i.e., to create ܷ and ܦ matrices) [16]. Further to the UD strategy, 
numerical stability for filtering strategies can be improved by factoring the covariance matrix into Cholesky 
factors [17]. This was discovered when attempting to improve the stability of the KF when dealing with finite-
precision arithmetic [16]. Essentially the nature of the KF remains the same; however, an equivalent statistical 
parameter is used and is found to be less sensitive to round-off errors [18]. Increasing the arithmetic precision 
reduces the effects of round-off error, which improves the overall stability of the filter. 

The paper is organized as follows. The Kalman filter (KF) and smooth variable structure filter (SVSF) 
and their equations are summarized in section 2. The square-root formulations of the KF is introduced in section 
3. The new square-root SVSF is then introduced and summarized. In section 4, the target tracking scenario is 
described. The results of implementing the square-root KF and square-root SVSF are shown and compared. 
The paper is then concluded and future work is described. 

 

2. ESTIMATION STRATEGIES 

The Kalman Filter 

The following equations form the core of the Kalman filter (KF) algorithm, and are used in an iterative fashion. 
Equations (2.1.1) and (2.1.2) define the a priori state estimate ݔොାଵ| based on knowledge of the system ܨ and 
previous state estimate ݔො|, and the corresponding state error covariance matrix ܲାଵ|, respectively. 

ොାଵ|ݔ ൌ ො|ݔܨ   (2.1.1)ݑܩ

ܲାଵ| ൌ ܨ ܲ|்ܨ  ܳ (2.1.2)

The Kalman gain ܭାଵ is defined by (2.1.3), and is used to update the state estimate ݔොାଵ|ାଵ as shown 
in (2.1.4). The gain makes use of an innovation covariance ܵାଵ, which is defined as the inverse term found in 
(2.1.3). 

ାଵܭ ൌ ܲାଵ|்ܪ൫ܪ ܲାଵ|்ܪ  ܴାଵ൯
ିଵ

 (2.1.3)

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ  ାଵݖାଵ൫ܭ െ ොାଵ|൯ (2.1.4)ݔܪ

The a posteriori state error covariance matrix ܲାଵ|ାଵ is then calculated by (2.1.5), and is used 
iteratively, as per (2.1.2). 

ܲାଵ|ାଵ ൌ ሺܫ െ ሻܪାଵܭ ܲାଵ|ሺܫ െ ሻ்ܪାଵܭ  ାଵܭାଵܴାଵܭ
்  (2.1.5)

The derivation of the KF is well documented, with details available in [19, 3, 20]. The KF gain is unique 
as it yields an optimal solution to the linear estimation problem, however it comes at a price of stability and 
robustness. Assumptions used in the derivation include: the system model is known and linear, the system and 
measurement noises are white, and the states have initial conditions with known means and variances [21, 13]. 
However, the previous assumptions often do not hold in a number of applications. If these assumptions are 
violated, the KF yields suboptimal results and can become unstable [22]. In addition, the KF is sensitive to 
computer precision and the complexity of computations involving matrix inversions [16]. However, modern 
computing power has reduced this drawback significantly. The extended Kalman filter (EKF) is a natural 
extension of the KF method. However, the EKF may be used for nonlinear systems and measurements, unlike 
the KF. Nonlinear system or measurement equations may be linearized according to its Jacobian. The partial 
derivatives are used to compute linearized system and measurement matrices ܨ and ܪ, respectively found as 
follows [23]: 



 
 

 

 

ܨ ൌ
߲݂
ݔ߲
ฬ
௫ොೖ|ೖ,௨ೖ

 (2.1.6)

ାଵܪ ൌ
߲݄
ݔ߲
ฬ
௫ොೖశభ|ೖ

 (2.1.7)

Equations (2.1.6) and (2.1.7) essentially linearize the nonlinear system or measurement functions 
around the current state estimate [3]. These values can then be used as per equations (2.1.1) through (2.1.5). 
This comes at a loss of optimality; as such, the EKF yields a suboptimal solution to the nonlinear estimation 
problem [20]. Other Kalman-based methods exist beyond the EKF, and include the unscented Kalman filter 
(UKF) and the cubature Kalman filter (CKF) [24]. Although these methods yield improvements on the EKF, a 
number of strict assumptions still apply. Modeling errors, uncertainties, and disturbances can still lead to 
unstable estimates. 

The Smooth Variable Structure Filter 

The SVSF was derived in 2007 and has been shown to be stable and robust to bounded disturbances, modeling 
uncertainties and noise [25, 26]. The basic estimation concept of the SVSF is shown in the following figure. 

 

Figure 1. The above figure illustrates the SVSF estimation concept. 

The SVSF method is model based and may be applied to differentiable linear or nonlinear dynamic 
system models [27, 28]. The original form of the SVSF as presented in [29] did not include covariance 
derivations. An augmented form of the SVSF was presented in [6, 4], which proposed a strategy for obtaining 
an error covariance matrix for the filter. The estimation process is iterative and may be summarized by the 
following set of equations. The predicted state estimates ݔොାଵ| and the error covariance matrix ܲାଵ| are first 
calculated as per the KF strategy. 

Utilizing the predicted state estimates ݔොାଵ|, the predicted measurements ̂ݖାଵ|, and the measurement 
errors ݁௭,ାଵ| may be calculated by (2.2.1) and (2.2.2) respectively. 

ାଵ|ݖ̂ ൌ ොାଵ| (2.2.1)ݔܪ

݁௭,ାଵ| ൌ ାଵݖ െ ାଵ| (2.2.2)ݖ̂



 
 

 

 

Notice how (2.2.1) and (2.2.2) are similar to the KF [30]. The SVSF process differs in how the gain is 
formulated. The SVSF gain is a function of: the a priori and the a posteriori measurement errors ݁௭,ାଵ| and 
݁௭,|; the smoothing boundary layer widths ߰; the SVSF ‘memory’ or convergence rate ߛ; as well as the 
measurement matrix ܥ. Refer to [29, 6] for a complete explanation on how the gain ܭାଵ is derived. The SVSF 
gain is defined as a diagonal matrix such that [4]: 

ାଵܭ ൌ ା݀݅ܽ݃ܥ ቂቀቚ݁௭ೖశభ|ೖቚ  ߛ ቚ݁௭ೖ|ೖቚቁ ∘ ݐܽݏ ቀ ത߰
ିଵ݁௭ೖశభ|ೖቁቃ ݀݅ܽ݃ ቀ݁௭ೖశభ|ೖቁ

ିଵ
 (2.2.3)

The smoothing boundary layer term ത߰ in (2.2.3) is defined as: 

ത߰ିଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
1
߰ଵ

0 0

0 ⋱ 0

0 0
1
߰ے

ۑ
ۑ
ۑ
ې

 (2.2.4)

where ݉ is the number of measurements. This gain is used to calculate the updated state estimates ݔොାଵ|ାଵ as 
well as the updated state error covariance matrix ܲାଵ|ାଵ, as per the KF strategy. 

Finally, the updated measurement estimate ̂ݖାଵ|ାଵ and measurement errors ݁௭,ାଵ|ାଵ are calculated, 
and are used in later iterations: 

ାଵ|ାଵݖ̂ ൌ ොାଵ|ାଵ (2.2.5)ݔܥ

݁௭,ାଵ|ାଵ ൌ ାଵݖ െ ାଵ|ାଵ (2.2.6)ݖ̂

The SVSF process results in the state estimates converging to within a region of the state trajectory 
[29, 4]. Thereafter, it switches back and forth across the state trajectory within a region referred to as the 
existence subspace, as shown earlier in Fig. 1. This switching effect brings about an inherent amount of stability 
and robustness in the estimation process, as will be demonstrated in the simulation. 

 

3. SQUARE-ROOT FORMULATIONS 

The Square-Root Kalman Filter 

The square-root formulation of the KF was developed by James Potter and Angus Andrews [13]. The method 
described in this section is often referred to as Potter’s algorithm [16]. As per Cholesky factorization, suppose 
that the square root of the state error covariance matrix ܲ is available, such that ܲ ൌ ்ܵܵ. Modifying (2.1.2) 
yields: 

ܲାଵ| ൌ ܵାଵ|ܵାଵ|
 ൌ |ܵ|ܵܨ

் ்ܨ  ܳ
ଵ/ଶܳ

்/ଶ (3.1.1)

Equation (3.1.1) is essentially (2.1.2). Modifying (2.1.3) yields: 

ାଵܭ ൌ ܵାଵ|ܵାଵ|
் ାଵ|ܵାଵ|ܵܪ൫்ܪ

் ்ܪ  ܴାଵ൯
ିଵ

 (3.1.2)

The updated state error covariance (2.1.5) then becomes: 

ܲାଵ|ାଵ ൌ ሺܫ െ ሻܵାଵ|ܵାଵ|ܪାଵܭ
் ሺܫ െ ሻ்ܪାଵܭ  ାଵܭାଵܴାଵܭ

்  (3.1.3)

Alternatively, this can be written as follows [13]: 

ܲାଵ|ାଵ ൌ ܵାଵ|ሺܫ െ ܽ߶߶்ሻܵାଵ|
்  (3.1.4)



 
 

 

 

where ܽ and ߶ are defined as: 

ܽ ൌ ൫߶்߶  ܴ,ାଵ൯
ିଵ

 

߶ ൌ ܵାଵ|
்  ்ܪ

(3.1.5)

Note that ݅ refers to the ݅௧ element of the corresponding matrix or vector. As per [13], the a posteriori 
square-root covariance matrix can be calculated as follows: 

ܵାଵ|ାଵ ൌ ܵାଵ|ሺܫ െ ሻ (3.1.6)்߶߶ߛܽ

where ߛ is given as [13]: 

ߛ ൌ ൫1  ඥܴܽ,ାଵ൯ (3.1.7)

Equations (3.1.1) through (3.1.7) can be used in conjunction with the standard KF estimation process. 
The main difference is that the update equation is used to update ܵ instead of ܲ, and the process is repeatedly 
iteratively [13]. 

 

The Square-Root SVSF 

This paper introduces the square-root formulation of the SVSF, hereafter referred as to SR-SVSF. It is based 
on the same approach as the square-root KF. For linear systems and measurements, the SR-SVSF estimation 
processed is summarized by the following set of equations. For nonlinear systems and measurements, the 
nonlinearities may be linearized as per the EKF methodology. The state estimates ݔොାଵ| and square-root 
covariance ܵାଵ| are first calculated, as follows: 

ොାଵ|ݔ ൌ ො|ݔܨ   (3.2.1)ݑܩ

ܵାଵ|ܵାଵ|
் ൌ |ܵ|ܵܨ

் ்ܨ  ܳ
ଵ/ଶܳ

்/ଶ (3.2.2)

The predicted measurement ̂ݖାଵ| and measurement errors ݁௭,ାଵ| are calculated next. 

ାଵ|ݖ̂ ൌ ොାଵ| (3.2.3)ݔܪ

݁௭,ାଵ| ൌ ାଵݖ െ ାଵ| (3.2.4)ݖ̂

Next, the gain ܭାଵ is calculated as per (3.2.5). 

ାଵܭ ൌ ା݀݅ܽ݃ܥ ቂቀቚ݁௭ೖశభ|ೖቚ  ߛ ቚ݁௭ೖ|ೖቚቁ ∘ ݐܽݏ ቀ ത߰
ିଵ݁௭ೖశభ|ೖቁቃ ݀݅ܽ݃ ቀ݁௭ೖశభ|ೖቁ

ିଵ
 (3.2.5)

The a posteriori square-root covariance matrix ܵାଵ|ାଵ is calculated next as follows: 

ܵାଵ|ାଵ ൌ ܵାଵ|ሺܫ െ ሻ (3.2.6)்߶߶ߛܽ

where ܽ ൌ ൫߶்߶  ܴ,ାଵ൯
ିଵ

, ߶ ൌ ܵାଵ|
் ߛ and ,்ܪ ൌ ൫1  ඥܴܽ,ାଵ൯. Finally, the updated measurement 

estimate ̂ݖାଵ|ାଵ and measurement errors ݁௭,ାଵ|ାଵ are calculated, and are used in later iterations: 

ାଵ|ାଵݖ̂ ൌ ොାଵ|ାଵ (3.2.7)ݔܥ

݁௭,ାଵ|ାଵ ൌ ାଵݖ െ ାଵ|ାଵ (3.2.8)ݖ̂

The SR-SVSF estimation process is summarized by (3.2.1) through (3.2.8). It is important to note that in 
this case, the gain is not affected by the square-root covariance calculation. However, the SR-SVSF formulation 
sets the framework for future work and implementation in other types of SVSF that rely on the covariance [4]. 



 
 

 

 

4. COMPUTER EXPERIMENTS 

Target Tracking Problem Setup 

The target tracking problem is based on a generic air traffic control (ATC) scenario found in [21] and is as 
described in [4]. A radar stationed at the origin provides direct position only measurements, with a standard 
deviation of 50	݉ in each coordinate. The following figure illustrates the average motion of the target. 

 

Figure 1. True target trajectory for the nonlinear estimation problem. 

As shown in the previous figure, an aircraft starts from an initial position of ሾ25,000	݉, 10,000	݉ሿ at 
time ݐ	 ൌ  The aircraft then begins a coordinated turn for a period .ݏ	for 125 ݏ/݉	and flies westward at 120 ,ݏ	0	
of 90	ݏ at a rate of 1˚/ݏ. It then flies southward at 120	݉/ݏ for 125	ݏ, followed by another coordinated turn 
for 30	ݏ at 3˚/ݏ. The aircraft then continues to fly westward until it reaches its final destination. 

In ATC scenarios, the behaviour of civilian aircraft may be modeled by two different modes: uniform 
motion (UM) which involves a straight flight path with a constant speed and course, and maneuvering which 
includes turning or climbing and descending [21]. In this case, maneuvering will refer to a coordinated turn 
(CT) model, where a turn is made at a constant turn rate and speed. The uniform motion model used for this 
target tracking problem is given by (4.1.1) [21, 31]. 

ାଵݔ ൌ ൦

1 0 ܶ 0
0 1 0 ܶ
0 0 1 0
0 0 0 1

൪ ݔ 

ۏ
ێ
ێ
ێ
ێ
ۍ
1
2
ܶଶ 0

0
1
2
ܶଶ

ܶ 0
0 ܶ ے

ۑ
ۑ
ۑ
ۑ
ې

 (4.1.1)ݓ

The state vector of the aircraft may be defined as follows: 

ݔ ൌ ሾߦ ߟ ሶߦ ሶሿߟ
் (4.1.2)



 
 

 

 

The first two states refer to the position along the ݔ-axis and ݕ-axis, respectively, and the last two states 
refer to the velocity along the ݔ-axis and ݕ-axis, respectively. The sampling time used in this simulation was 5 
seconds. When using the CT model, the state vector needs to be augmented to include the turn rate, as shown 
in (4.1.3) [21]. The CT model may be considered nonlinear if the turn rate of the aircraft is not known. Note 
that a left turn corresponds to a positive turn rate, and a right turn has a negative turn rate. This sign convention 
follows the commonly used trigonometric convention (the opposite is true for navigation convention) [21]. As 
per [21, 31], the CT model is given by (4.1.4). 

ݔ ൌ ሾߦ ߟ ሶߦ ሶߟ ߱ሿ
் (4.1.3)

ାଵݔ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
1ۍ 0

ܶ߱݊݅ݏ
߱

െ
1 െ ܶ߱ݏܿ

߱
0

0 1
1 െ ܶ߱ݏܿ

߱

ܶ߱݊݅ݏ
߱

0

0 0 ܶ߱ݏܿ െ߱݊݅ݏܶ 0
0 0 ܶ߱݊݅ݏ ܶ߱ݏܿ 0
0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
1
2
ܶଶ 0 0

0
1
2
ܶଶ 0

ܶ 0 0
0 ܶ 0
0 0 ےܶ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.1.4)ݓ

Since the radar stationed at the origin provides direct position measurements only, the measurement 
equation may be formed linearly as follows: 

ݖ ൌ ቂ1 0 0 0 0
0 1 0 0 0

ቃ ݔ   (4.1.5)ݒ

Equations (4.1.1) through (4.1.5) were used to generate the true state values of the trajectory and the 
radar measurements for this target tracking scenario. As previously mentioned, the EKF uses a linearized form 
of the system and measurement matrices. In this case, the system defined by (4.1.4) is nonlinear, such that the 
Jacobian of it yields a linearized form as shown in (4.1.6). The terms in the last column of (4.1.6) are 
correspondingly defined in (4.1.7) [21]. 

,௫ܨ௫ൣ
் ൧

்
ቚ
௫ೖୀ௫ොೖ

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
1ۍ 0

݊݅ݏ ෝ߱ܶ
ෝ߱

െ
1 െ ݏܿ ෝ߱ܶ

ෝ߱
ఠෝଵܨ

0 1
1 െ ݏܿ ෝ߱ܶ

ෝ߱

݊݅ݏ ෝ߱ܶ
ෝ߱

ఠෝଶܨ

0 0 ݏܿ ෝ߱ܶ െ݊݅ݏ ෝ߱ܶ ఠෝଷܨ
0 0 ݊݅ݏ ෝ߱ܶ ݏܿ ෝ߱ܶ ఠෝସܨ
0 0 0 0 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.1.6) 
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ఠෝଵܨ
ఠෝଶܨ
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൪ ൌ
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ێ
ێ
ێ
ێ
ۍ
ሺܿݏ ෝ߱ܶሻܶ

ෝ߱
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ሺ݊݅ݏ ෝ߱ܶሻ
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ሺ݊݅ݏ ෝ߱ܶሻܶ
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ሺെ1  ݏܿ ෝ߱ܶሻ
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ሺ݊݅ݏ ෝ߱ܶሻܶ
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ሺ݊݅ݏ ෝ߱ܶሻ

ෝ߱
ଶ ሶߟ

െሺ݊݅ݏ ෝ߱ܶሻܶߦሶ
 െ ሺܿݏ ෝ߱ܶሻܶߟሶ

ሺܿݏ ෝ߱ܶሻܶߦሶ
 െ ሺ݊݅ݏ ෝ߱ܶሻܶߟሶ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4.1.7) 

To generate the results for this section, the following values were used for the initial state error 
covariance matrix ܲ|, the system noise matrix ܳ, and the measurement noise matrix ܴ. 

ܲ| ൌ

ۏ
ێ
ێ
ێ
ۍ
ܴଵଵ 0 0 0 0
0 ܴଶଶ 0 0 0
0 0 100 0 0
0 0 0 100 0
0 0 0 0 ے1

ۑ
ۑ
ۑ
ې

 (4.1.8)
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 (4.1.9)

ܴ ൌ 50ଶ ቂ1 0
0 1

ቃ (4.1.10)

Note that ܮଵ and ܮଶ are referred to as power spectral densities, and were defined as 0.16 and 0.01, 
respectively [31]. The system and measurement noise (ݓ and ݒ) were generated using their respective 
covariance values (ܳ and ܴ). Also, when using the UM model, the fifth row and column of (4.1.8) and (4.1.9) 
were truncated. For the standalone SVSF estimation process, the limit on the smoothing boundary layer widths 
were defined as ߰ ൌ ሾ500 1,000 500 1,000 1ሿ், and the SVSF ‘memory’ or convergence rate was set 
to ߛ ൌ 0.1. These parameters were tuned based on some knowledge of the uncertainties (i.e., magnitude of 
noise) and with the goal of decreasing the estimation error. It is required to transform the measurement matrix 
into a square matrix (i.e., identity), such that an ‘artificial’ measurement is created. It is possible to derive 
‘artificial’ velocity measurements based on the available position measurements. For example, consider the 
following artificial measurement vector ݕ for the SVSF: 

ݕ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵ,ݖ
ଶ,ݖ

൫ݖଵ,ାଵ െ ܶ/ଵ,൯ݖ

൫ݖଶ,ାଵ െ ܶ/ଶ,൯ݖ
0 ے

ۑ
ۑ
ۑ
ې

 (4.1.11)

The accuracy of (4.1.11) depends on the sampling rate ܶ. Applying the above type of transformation 
to non-measured states allows a measurement matrix equivalent to the identity matrix. The estimation process 
would continue as in the previous section, where ܪ ൌ  Note however that the artificial velocity measurements .ܫ
would be delayed one time step. Furthermore, it is assumed that the artificial turn rate measurement is set to 0, 
since no artificial measurement could be created based on the available measurements. A total of 500 Monte 
Carlo runs were performed, and the results were averaged. 

Simulation Results 

Both the square-root KF and the proposed SR-SVSF were applied on the target tracking problem. The 
algorithms were applied to the aforementioned setup. The target tracking results are shown in the following 
figure. The square-root based SVSF was able to follow the target trajectory, regardless of which flight model 
was implemented. However, the square-root based EKF experienced difficulty at the presence of the aircraft 
turns. This is primarily due to the difference between the model used by the filter and the model actually 
experienced by the target. The estimation error is shown in Fig. 3. Notice how the SR-SVSF yielded relatively 
similar results, regardless of which model was implemented. This is primarily due to the robust estimation 
process inherent to the switching gain. A second case was studied, where the measurement at 50 seconds was 
increased by 1,000 times. This case further demonstrated the robustness of the SR-SVSF. The SR-EKF was 
unable to overcome the measurement error, however the SR-SVSF was able to maintain the true state trajectory. 
This is further illustrated by Figs. 4 and 5.  



 
 

 

 

 

Figure 2. True and estimated target trajectories for the nonlinear estimation problem. 

 

 
Figure 3. Estimation errors for the nonlinear estimation problem. 

 
 



 
 

 

 

 
Figure 4. True and estimated target trajectories with the presence of measurement errors. 

 

 
Figure 5. Estimation errors for the square-root filters with presence of measurement errors. 

 
 
 



 
 

 

 

5. CONCLUSIONS 

This paper introduced a new version of the smooth variable structure filter (SVSF) based on Potter’s square-
root algorithm. The new methodology, referred to simply as the SR-SVSF, was applied on a nonlinear target 
tracking problem. The results were compared with the popular Kalman filter strategy. It was determined that 
the robustness of the SVSF switching gain yielded a stable and accurate estimation of the target. The estimates 
were found to be founded to the true state trajectory. At the presence of measurement errors, the KF-based 
strategy failed to yield a good result, however the SVSF-based strategy remained stable. Future work includes 
implementing the SR-SVSF on real-life data and benchmark problems. 
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