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ABSTRACT 
Target tracking scenarios offer an interesting challenge for 

state and parameter estimation techniques. This paper studies a 
situation with multiple targets in the presence of clutter. In this 
paper, the relatively new smooth variable structure filter (SVSF) 
is combined with the joint probability data association (JPDA) 
technique. This new method, referred to as the JPDA-SVSF, is 
applied on a simple multi-target tracking problem for a proof of 
concept. The results are compared with the popular Kalman filter 
(KF). 

I. INTRODUCTION 
The purpose of multiple target tracking is to maintain true 

tracks using noisy measurements originated from true targets or 
the clutter. This environment interpretation has many applications 
in air traffic control, road vehicle tracking, medical image 
processing, and biology [1]. A recently investigated area of 
application for target tracking methods is in automotive 
industries. The ever increasing interest in intelligent vehicles 
broadens the use and development of multiple-target tracking 
algorithms in active automotive safety systems and advanced 
driver assistance system [2, 3, 4, 5].  

In the situations where the tracking is handled in the presence 
of measurement origin uncertainty, one of the fundamental parts 
of target tracking methods is the data association algorithm, which 
differentiates the received measurements and categorizes them 
into target-originated and clutter-originated [6]. A comprehensive 
survey of several data association methods can be found in [1] and 
[7]. 

Probabilistic data association (PDA) is a widely used data 
association and tracking method [8, 9]. PDA is a type of ‘all- 

neighbour’ data association methods, which assumes several 
feasible hypotheses for the measurement to track associations and 
then calculates the association probabilities for each of them [6]. 
However, PDA is a formulization for tracking single target in 
clutter and to use it for multiple targets, simply multiple copies of 
a similar filter are employed [6]. Moreover, PDA is derived with 
assumption that the tracks are initialized and, consequently, there 
should be some other algorithms taking care of track initiation [1, 
10]. In [11], integrated probabilistic data association (IPDA) is 
proposed, which is basically a rederivation of PDA without the 
assumption of initialized tracks and therefore, provides both the 
data association and track existence probabilities [11]. An 
extension of PDA for multi-target tracking, where the targets are 
interfering, is the joint probabilistic data association (JPDA) [12]. 
In JPDA, the targets are clustered and then the association 
probabilities are calculated in a jointly manner across the targets 
in a cluster [9, 12]. A similar extension of IPDA for multiple 
targets, named joint integrated probabilistic data association 
(JIPDA), is suggested in [13]. 

The aforementioned association methods provide an 
association probability for each feasible hypothesis which is used 
to construct a combined innovation term. The combined 
innovation term substitutes the innovation term in Kalman 
filtering structure of these algorithms [9].  

Kalman filter (KF) is the most well-known filtering strategy 
because of its optimal estimation properties for linear systems [14, 
15]. Since its introduction in the 1960’s, there were some 
modifications to extent the formulation of KF for nonlinear 
systems and to cope with the issues of uncertainty and instability 
 [16, 17]. In 2007, a recursive predictor-corrector filtering strategy 
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based on the sliding mode concept [18], named smooth variable 
structure filter (SVSF) was proposed [19]. Basically, the SVSF 
owes its stability to selecting a corrective gain in a way that in 
each step decreases the error in the estimated states [19]. In order 
to achieve this, a hyper-plane as a projection of true state 
trajectory is introduced and applying the corrective gain, the 
estimations are forced to go toward this region, and then remain 
in between [19].  The main characteristic of SVSF, which 
suggests it as a useful filter in systems with modeling uncertainty, 
is its robustness against this type of uncertainties [19].  

Employing SVSF as the filtering strategy in target tracking 
algorithms is firstly proposed in [20] for single target tracking in 
clutter. This paper is an extension of that work for multiple targets 
in combination with JPDA algorithm.  

In section 2, KF and SVSF filtering algorithms are briefly 
overviewed. The basic formulation of JPDA algorithm is 
provided in section 3. Section 4 introduces the JPDA-SVSF 
tracking algorithm. In section 5 a simple multiple-target tracking 
example is studied to get a comparison between JPDA-KF and 
JPDA-SVSF. The paper is concluded in section 6.  

II. ESTIMATION STRATEGIES 
The Kalman filter is the best estimator in MMSE sense [21]. 

Indeed, KF minimizes the trace of state covariance matrix [18, 
21]. In its original form, KF is based on two models: system 
model ((2.1)) which describes the evolution of the states, and 
measurement model ((2.2)) which relates the measurements to 
states. 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑣(𝑘) (2.1) 

𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (2.2) 

where 𝑣(𝑘) and 𝑤(𝑘) are respectively zero mean white Gaussian 
process and measurement noises with covariance matrices 𝑄(𝑘) 
and 𝑅(𝑘). The KF algorithm is based on recursive prediction and 
updating the estimated states and their corresponding error 
covariance.  The prediction consists of the following steps: 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘|𝑘) + 𝐵𝑢(𝑘) (2.3) 

𝑃(𝑘 + 1|𝑘) = 𝐴𝑃(𝑘|𝑘)𝐴𝑇 + 𝑄(𝑘) (2.4) 

The Kalman gain 𝐾(𝑘 + 1) is calculated and then used to 
obtain the updated states and covariance, as follows: 

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐶𝑇[𝐶𝑃(𝑘 + 1|𝑘)𝐶𝑇 + 𝑅(𝑘
+ 1)]−1 

(2.5) 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘) + 𝐾(𝑘
+ 1)[𝑧(𝑘 + 1) − 𝐶�̂�(𝑘 + 1|𝑘)] 

(2.6) 

𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶]𝑃(𝑘 + 1|𝑘) (2.7) 

The Kalman filter in the above form is only applicable on 
linear systems. A very popular extension of KF for nonlinear 
systems is Extended KF, which linearizes the nonlinear function 
using the Jacobian matrix and then uses the same algorithm as KF 
[17, 22].  

The smooth variable structure filter (SVSF) is a relatively new 
state and parameter estimation technique based on sliding mode 
concepts [18]. The basic concept is shown in the following figure. 

 

Figure 1.  SVSF estimation concept [18]. 

The prediction stage of the SVSF is similar to the KF, and may 
be summarized by the following sets of equations. 

�̂�(𝑘 + 1|𝑘) = 𝐴�̂�(𝑘|𝑘) + 𝐵𝑢(𝑘) (2.8) 

𝑃(𝑘 + 1|𝑘) = 𝐴𝑃(𝑘|𝑘)𝐴𝑇 + 𝑄(𝑘) (2.9) 

Note that the SVSF may also be formulated to handle 
nonlinear system and measurement functions [18]. The a priori or 
predicted measurement error is also calculated by (2.10). 

𝑒𝑧(𝑘 + 1|𝑘) = 𝑧(𝑘 + 1) − �̂�(𝑘 + 1|𝑘) (2.10) 

The SVSF gain is calculated as follows [18]: 

𝐾𝑆𝑉𝑆𝐹

= 𝐶+𝑑𝑖𝑎𝑔 [(|𝑒𝑧(𝑘 + 1|𝑘)|𝐴𝑏𝑠

+ 𝛾|𝑒𝑧(𝑘|𝑘)|𝐴𝑏𝑠)

∘ 𝑠𝑎𝑡 (
𝑒𝑧(𝑘 + 1|𝑘)

𝜓𝑖

)] [𝑑𝑖𝑎𝑔(𝑒𝑧(𝑘 + 1|𝑘))]
−1

 

(2.11) 

As described in [18], the SVSF gain is a function of: the a 
priori and a posteriori measurement error vectors 𝑒𝑧,𝑘+1|𝑘 and 

𝑒𝑧,𝑘|𝑘; the smoothing boundary layer widths 𝜓𝑖  where 𝑖 refers to 

the 𝑖th width; the ‘SVSF’ memory or convergence rate 𝛾 with 
elements 0 < 𝛾𝑖𝑖 ≤ 1; and the linear measurement matrix 𝐶. 
However, for numerical stability, it is important to ensure that one 
does not divide by zero in (2.11). This can be accomplished using 
a simple 𝑖𝑓 statement with a very small threshold (i.e. 1 × 10−12) 
[18]. 

The SVSF update equations are also very similar to the KF, 
and may be defined as follows: 

�̂�(𝑘 + 1|𝑘 + 1) = �̂�(𝑘 + 1|𝑘) + 𝐾𝑆𝑉𝑆𝐹𝑒𝑧(𝑘 + 1|𝑘) (2.12) 

𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐶]𝑃(𝑘 + 1|𝑘) (2.13) 

However, note that the a posteriori or updated measurement 
error needs to be calculated as per (2.14). This value is used in the 
next time step. 

𝑒𝑧(𝑘 + 1|𝑘 + 1) = 𝑧(𝑘 + 1) − �̂�(𝑘 + 1|𝑘 + 1) (2.14) 
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III. JOINT PROBABILISTIC DATA ASSOCIATION 
PRINCIPLES 

Originally, PDAF was formulated for tracking single targets 
in clutter. In PDAF, it is assumed that all the non-target originated 
received measurements are from clutter and are of a uniform 
distribution in the validation gate [8]. This assumption is violated 
in the presence of interfering targets [6]. The extension of PDAF 
to tackle this issue in tracking multiple targets in clutter is JPDAF 
[6]. In JPDAF, it is assumed that the number of initialized tracks 
is known and the density of state vector conditioned on past data 
is approximated by a Gaussian distribution as [12]: 

𝑝[𝑥(𝑘)|𝑍𝑘−1] = 𝒩[𝑥(𝑘); �̂�(𝑘|𝑘 − 1), 𝑃(𝑘|𝑘 − 1)] (3.1) 

The JPDA and PDA algorithms utilize the same estimation 
equations. The difference is on the way the association 
probabilities are calculated [12, 6]. The association probabilities 
in PDA are calculated separately for each target, whereas in JPDA 
these probabilities are calculated in a jointly manner across the 
targets in a cluster [6]. In this sense, in JPDA algorithm the 
conditional probabilities of the following joint events are 
evaluated [6]: 

ℋ(𝑘) = ⋂ ℋ𝑗𝑡𝑗
(𝑘)

𝑚(𝑘)

𝑗=1

 (3.2) 

where ℋ𝑗𝑡𝑗
(𝑘) is the hypothesis that measurement 𝑗 is originated 

from target 𝑡, 0 ≤ 𝑗 ≤ 𝑚(𝑘) , 0 ≤ 𝑡 ≤ 𝑇, 𝑘 is the time index, 𝑡𝑗 is 

the target that measurement 𝑗 is associated with, 𝑚𝑘 is the number 
of measurements, and 𝑇 is the number of targets [12]. The 

measurements at time 𝑘 are named as 𝑧𝑗. Thus, the total available 

measurements at time 𝑘 are 𝑍𝑘 = {𝑧1, … , 𝑧𝑛𝑚} ∪ 𝑍𝑘−1. 
Assuming the number of false measurements being from a 
Poisson distribution with spatial density 𝜆, the joint association 
probabilities are calculated as (47) in [6]: 

Figure 2.  Schematic representation of JPDA-SVSF algorithm 

 

𝑃{ℋ|𝑍𝑘} = 

𝑐 ∏{𝜆−1ℒ𝑡𝑗
[𝑧𝑗(𝑘)]}

𝜏𝑗

𝑗

∏(𝑃𝐷
𝑡)𝛿𝑡(1 − 𝑃𝐷)1−𝛿𝑡

𝑡

 
(3.3) 

where  

ℒ𝑡𝑗
[𝑧𝑗(𝑘)] = 𝒩[𝑧𝑗(𝑘); �̂�𝑡𝑗(𝑘|𝑘 − 1), 𝑆𝑡𝑗(𝑘)] (3.4) 

and 𝑃𝐷
𝑡  is the detection probability of target 𝑡, 𝜏𝑗 and 𝛿𝑡 are 

respectively, the target detection and measurement association 
indicators [12].  

To carry out the estimation, the marginal association 
probabilities are needed. These probabilities are obtained from 
joint probabilities (3.3) by summing over all joint hypotheses in 
which the marginal hypothesis of interest happens as (51) in [6]: 

𝛽𝑗𝑡(𝑘) = 𝑃{ℋ𝑗𝑡(𝑘)|𝑍𝑘}

= ∑ 𝑃{ℋ(𝑘)|𝑍𝑘}

ℋ:ℋ𝑗𝑡∈ℋ

 (3.5) 

These probabilities are used to make the combined innovation 
for each target. 

IV. FORMULATION OF THE JPDA-SVSF 
This section is a generalization of the method introduced in 

[20]. Here, we propose a novel formulation of SVSF for multi-
target tracking in clutter based on JPDA method. Fig. 2 illustrates 
a schematic presentation of the method, referred to as SVSF-
JPDA. The JPDA-SVSF algorithm is outlined as follows. 

A. Gating Step 

A validation gate is constructed around the predicted 
measurement of each track, based on the statistical distance, as 
follows ((34) in [6]): 

𝒱𝑡(𝑘, 𝛾) = {𝑧: [𝑧 − �̂�𝑡(𝑘|𝑘 − 1)]′𝑆𝑡(𝑘)−1[𝑧
− �̂�𝑡(𝑘|𝑘 − 1)] ≤ 𝜗} 

(4.1) 

where 𝜗 is the gate threshold corresponding to the gate 
probability, and 𝑆𝑡(𝑘) is the covariance of the innovation for each 
track. Then, the feasible hypotheses are determined and target 
detection and measurement association indicators are obtained 
[12]. 

B. Prediction Step 

This step provides the prediction of states and measurements 
for each track, using the state and measurement models, and then 
a priori state error covariance [18, 20]. 

�̂�𝑡(𝑘|𝑘 − 1) = 𝐴𝑡(𝑘 − 1)�̂�𝑡(𝑘 − 1|𝑘 − 1) (4.2) 

𝑃𝑡(𝑘|𝑘 − 1) = 𝐴𝑡(𝑘
− 1)𝑃𝑡(𝑘 − 1|𝑘 − 1)𝐴𝑡(𝑘
− 1)′ + 𝑄𝑡(𝑘 − 1) 

(4.3) 

𝑧𝑡(𝑘|𝑘 − 1) = 𝐶𝑡(𝑘 − 1)�̂�𝑡(𝑘|𝑘 − 1) (4.4) 

The marginal association probabilities of (3.5) are used to 
calculate the combined innovation for each track as: 

�̃�𝑡(𝑘) = ∑ 𝛽𝑖𝑡(𝑘)�̃�𝑖𝑡(𝑘)

𝑚(𝑘)

𝑖=1

 (4.5) 

The a priori measurement error of each track is set to be equal 
to the corresponding combined innovation: 

𝑒𝑧𝑡(𝑘|𝑘 − 1) = �̃�𝑡(𝑘) (4.6) 

C. State Update Step 

In this step, the SVSF gain is calculated for each track and is 
used to update the states [18, 20].  

�̂�𝑡(𝑘|𝑘 − 1) = 𝐴𝑡(𝑘 − 1)�̂�𝑡(𝑘 − 1|𝑘 − 1)        (4.7) 
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�̂�𝑡(𝑘|𝑘) = �̂�𝑡(𝑘|𝑘 − 1) + 𝐾𝑡(𝑘)𝑒𝑧𝑡(𝑘|𝑘 − 1)   (4.8) 

𝐾𝑡(𝑘)
= 𝐶𝑡

+𝑑𝑖𝑎𝑔[(|𝑒𝑧𝑡(𝑘|𝑘 − 1)|𝐴𝑏𝑠

+ 𝛾𝑡|𝑒𝑧𝑡(𝑘 − 1|𝑘 − 1)|𝐴𝑏𝑠)

∘ 𝑠𝑎𝑡 (
𝑒𝑧𝑡(𝑘|𝑘 − 1)

𝜓𝑡
)][𝑑𝑖𝑎𝑔(𝑒𝑧𝑡(𝑘|𝑘 − 1))]−1 

(4.9) 

The updated state covariance associated with each track is 
calculated as (42) in [6]: 

𝑃𝑡(𝑘|𝑘) = 𝛽0𝑡(𝑘)𝑃𝑡(𝑘|𝑘 − 1)

+ [1 − 𝛽0𝑡(𝑘)]𝑃𝑡
∗(𝑘|𝑘)

+ �̃�𝑡(𝑘)   

(4.10) 

where 𝑃𝑡
∗(𝑘|𝑘) is the SVSF covariance matrix computed by [18]: 

𝑃𝑡
∗(𝑘|𝑘) = [𝐼 − 𝐾𝑡(𝑘)𝐶𝑡(𝑘)]𝑃𝑡(𝑘|𝑘 − 1)[𝐼

− 𝐾𝑡(𝑘)𝐶𝑡(𝑘)]′

+ 𝐾𝑡(𝑘)𝑅𝑡(𝑘)𝐾𝑡′(𝑘) 

(4.11) 

and �̃�(𝑘) is an added uncertainty because of the associations 
uncertainties, as [8]: 

�̃�𝑡(𝑘) = 𝐾𝑡(𝑘) [∑ 𝛽𝑖𝑡(𝑘)�̃�𝑖𝑡(𝑘)�̃�𝑖𝑡(𝑘)′𝑚(𝑘)
𝑖=1 −

z̃𝑡(𝑘)z̃𝑡(𝑘)′] 𝐾𝑡(𝑘)  

(4.12) 

A posteriori measurement error for each track is calculated in 
the same manner of [20], as: 

𝑒𝑧𝑡(𝑘|𝑘) = [𝐼 − 𝐶𝑡(𝑘)𝐾𝑡(𝑘)]𝑒𝑧𝑡(𝑘|𝑘 − 1) (4.13) 

V. ESTIMATION PROBLEM AND RESULTS 

A. Problem Setup 

A simple near constant velocity model is implemented as per 
[24]. There are four states in total, related to the target’s position 
and velocity (𝑥 and 𝑦 directions), defined as follows:  
𝑥 = [𝜉 𝜂 𝜉̇ �̇�]. Note that 𝜉 and 𝜂 are the position in two Cartesian 

directions, and 𝜉̇ and �̇� are the corresponding velocities. This 
model assumes that the accelerations of the target between two 
sequential samples are constant and are drawn from a discrete-
time zero mean white noise. The near constant velocity model is 
defined as follows: 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑣(𝑘) (5.1) 

where the system and process noise gain matrices are defined by: 

 𝐴 = [

1 0
0 1

𝑇𝑠 0
0 𝑇𝑠

0 0
0 0

1  0
0  1

] (5.2) 

 𝐵 =  

[
 
 
 
𝑇𝑠

2/2 0

0 𝑇𝑠
2/2

𝑇𝑠       0
0        𝑇𝑠 ]

 
 
 

 (5.3) 

The white acceleration noise is defined as follows: 

 𝑄 = 𝑐𝑜𝑣{𝑣(𝑘)} = [
𝜎𝑣

2 0

0 𝜎𝑣
2]      (5.4) 

The measurement function, matrix, and noise covariance are 
defined respectively as follows: 

 𝑧(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘) (5.5) 

 𝐶 = [
1 0
0 1

0 0
0 0

] (5.6) 

 𝑅 = 𝑐𝑜𝑣{𝑤(𝑘)} = [
𝜎𝑤

2 0

0 𝜎𝑤
2] (5.7) 

The JPDA-KF and JPDA-SVSF algorithms were 
implemented on two scenarios, with three targets under the 
presence of clutter. The parameter values used for the simulations 
are 𝑇𝑠 = 0.5 𝑠 and 𝑃𝐷 = 0.9. The clutter is assumed to have a 
spatial uniform distribution, and the number of cluttered 
measurements is generated by a Poisson’s distribution of 𝜆 =
10−4. The process noise variance is 𝜎𝑣

2 = 12, and the 
measurement noise variance is 𝜎𝑤

2 = 32. 

B. Estimation Results 

For the normal scenario, three targets are tracked and clutter 
occurs at 𝑇 =  229 𝑠𝑒𝑐 and 𝑇 =  294 𝑠𝑒𝑐. The total simulation 
length is 300 𝑠ec. For a well-defined smoothing boundary layer 
(i.e., implementing the time-varying boundary layer presented in 
[18]), the JPDA-SVSF is able to match the performance of the 
JPDA-KF. This is shown in the following figures. 

The RMSE errors for this scenario were computed across the 
three targets and are shown in the following table. Note that, for 
this case, the two filters yielded the same results. 

Table 1. RMSE Estimation Results – Normal Case 

 
Car #1 Car #2 Car #3 

JPDA 

KF 

JPDA 

SVSF 

JPDA 

KF 

JPDA 

SVSF 

JPDA 

KF 

JPDA 

SVSF 

𝝃 10.09 10.31 9.92 10.15 12.38 12.57 

𝜼 10.16 10.39 10.33 10.55 5.70 6.08 

�̇� 4.57 5.21 4.57 5.12 4.61 5.17 

�̇� 4.59 5.13 4.60 5.02 4.55 5.11 
 

 

Figure 3.  JPDA-KF and JPDA-SVSF estimation results (normal case) for the 
three targets. 

The second scenario looked at the case of modeling errors or 
uncertainties. To further investigate the robustness of the 
proposed JPDA-SVSF strategy, modeling uncertainty is injected 
at 𝑡 = 75𝑆 for a duration of 10 sampling times into the simulation 
in the form of changes in the state transition matrix of the model. 
Fig. 3 shows the simulation results for the level of modeling 
uncertainty of 3% (𝐴𝑢𝑛𝑐 = 1.03𝐴), where JPDA-SVSF provides 
a more stable estimate, as the results did not diverge from the true 
state trajectory. 

4 Copyright © 2014 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2014/46193/V002T26A002/4445229/v002t26a002-dscc2014-5866.pdf by U

niversity O
f G

uelph user on 27 O
ctober 2020



 

Figure 4.  JPDA-KF and JPDA-SVSF estimation results (error case) for the 
three targets. 

The RMSE under this scenario was recalculated, and is shown 
in the following table. The position RMSEs of JPDA-SVSF 
method are considerably smaller than of JPDA-KF method.  

Table 2. RMSE Estimation Results –uncertainty of 3% 

 
Car #1 Car #2 Car #3 

JPDA 

KF 

JPDA 

SVSF 

JPDA 

KF 

JPDA 

SVSF 

JPDA 

KF 

JPDA 

SVSF 

𝝃 86.88 10.31 75.21 10.23 25.79 12.49 

𝜼 21.03 10.29 28.65 10.57 18.45 6.24 

�̇� 5.88 5.91 5.43 5.41 5.61 5.77 

�̇� 5.46 5.55 4.98 5.01 5.49 5.61 

Furthermore, increasing the modeling uncertainty causes the 
JPDA-KF strategy to fail. While due to the unique switching 
action of the SVSF, the JPDA-SVSF method maintained its 
tracking capability and was able to provide a good estimate with 
up to 8% uncertainty in the system matrix. 

VI. CONCLUSION 
This paper introduced a new multi-target tracking strategy 

referred to as the JPDA-SVSF. A multi target tracking simulation 

was studied to compare the well-studied JPDA-KF algorithm 

with the JPDA-SVSF. Both methods were able to perform a good 

target tracking in normal cases. However, the proposed JPDA-

SVSF outperforms JPDA-KF in the case of modeling uncertainty 

in the system matrix, and yielded a more robust estimation 

method. Future work will build upon the results of this paper, and 

will study more challenging multi-target tracking scenarios, 

including interfering targets. Also, some unique characteristics 

of SVSF method, such as extra indicators of performance will be 

formulated to improve the data association probabilities. 
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