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ABSTRACT 
The electrohydrostatic actuator (EHA) is an efficient type of 

linear actuator commonly found in aerospace applications. It 
consists of an external gear pump (fluid), an electric motor, a 
closed hydraulic circuit, a number of control valves and ports, 
and a linear actuator. An EHA, built for experimentation, is 
studied in this paper. Two types of estimation strategies, the 
popular Kalman filter (KF) and the smooth variable structure 
filter (SVSF), are applied to the EHA for kinematic state and 
parameter estimation. The KF strategy yields the statistical 
optimal solution to linear estimation problems. However, the KF 
becomes unstable when strict assumptions are violated. The 
SVSF is an estimation strategy based on sliding mode concepts, 
which brings an inherent amount of stability to the estimation 
process. Recent advances in SVSF theory include a time-varying 
smoothing boundary layer. This method, known as the SVSF-
VBL, offers an optimal formulation of the SVSF as well as a 
method for detecting changes or faults in a system. In addition to 
the application of the KF and SVSF for state estimation, the 
SVSF-VBL is applied to the EHA for the purposes of fault 
detection. The EHA is operated under various operating 
conditions (normal, friction fault, leakage fault, and so on), and 
the experimental results are presented and discussed. 

 
1.0 INTRODUCTION 

State and parameter estimation theory is an important area 
of study, and spans a large number of fields ranging from control 
theory to financial analysis. Essentially, states are important 
values that are used to dynamically and mathematically model a 
system. For example, the kinematic states of an aircraft (position, 
velocity, and acceleration) may be used to accurately estimate 
and track the flight path of the aircraft. In an electrohydrostatic 
actuator (EHA), states like the effective bulk modulus of the 
hydraulic fluid, actuator position and velocity, and differential 
pressure, may be used to accurately model the EHA dynamics. 
Measurements are obtained from the environment in order to 
provide estimates of the system states and parameters. However, 

these measurements typically include unwanted signals and 
disturbances such as noise. It is the goal of an estimation strategy 
to minimize the effects of the disturbances in an effort to extract 
accurate state values. These state values may then be used to 
accurately control the system or track values of interests. 

Introduced in the 1960s by Rudolph Kalman, the Kalman 
filter (KF) is one of the most popular state and parameter 
estimation strategies [1]. The filter is a predictor-corrector 
strategy, and makes use of a statistically optimal gain to correct 
predicted state estimates [2]. The KF is based on a number of 
strict assumptions. For example, the system and measurements 
functions must be linear and known, and the noise must be white 
and Gaussian-distributed [3]. If these assumptions are not 
followed, the KF may yield suboptimal or unstable estimates. 
For the case of nonlinear systems and measurements, the 
extended Kalman filter (EKF) may be implemented [4]. The 
EKF makes use of first-order Taylor series or Jacobian 
approximations to linearize the nonlinearities about a point of 
interest. The main extended Kalman filter equations are similar 
to the standard KF, except for the linearization of nonlinearities. 

Another estimation strategy, which is growing in popularity, 
is referred to as the smooth variable structure filter (SVSF). It is 
a predictor-corrector method based on sliding mode concepts. 
Essentially, it uses a corrective gain to force state estimates to 
within a region referred to as the existence subspace. Once 
within this region, defined by the uncertainties present in the 
estimation process, the state estimates are forced to switch back 
and forth across the true state trajectory. This switching effect, 
similar to the sliding mode concept, brings an inherent amount 
of stability to the estimation process. Provided the system is 
bounded input and bounded output (BIBO) stable, the SVSF will 
always yield a stable estimate. The original formulation of the 
SVSF makes use of a fixed-width smoothing boundary layer, 
which is defined by the amount of uncertainties present (e.g., 
system and measurement noise, modeling error). New 
developments have led to a time-varying smoothing boundary 
layer (VBL), which yields a more accurate state estimate. A 
byproduct of the VBL is that the width may be used to determine 
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the presence of system changes or faults. In some cases, the VBL 
widths may be used to identify the fault. 

Fault detection strategies may be classified as signal-based 
or model-based. Signal-based strategies make use of system 
measurements which are analyzed and studied against 
benchmark data. Deviations from the norms can be used to 
identify system changes or faults. A popular signal-based method 
is the artificial neural network (ANN) strategy, and is a machine 
learning technique that can be used for advanced fault detection 
and identification. Model-based strategies, such as the 
interacting multiple model (IMM) or adaptive model-based 
method, as the name suggests, makes use of system equations 
and models to identify the system behaviour. For example, the 
IMM, makes use of Bayesian theory which assigns a probability 
to each system model or mode of operation. The IMM has been 
shown to work very well, and is one of the most popular model-
based strategies. 

The purpose of this paper is to demonstrate the results of 
applying a state estimator to an electrohydrostatic actuator 
(EHA). This state estimator, referred to as the SVSF-VBL, is a 
robust estimation strategy based on the smooth variable structure 
filter (SVSF) and sliding mode concepts. In addition to providing 
accurate state estimates, the SVSF-VBL is also able to detect 
system changes or faults. In some cases, the SVSF-VBL is able 
to identify the system changes or faults. The extended Kalman 
filter (EKF) and SVSF are described in Section 2. The 
experimental setup used in this paper and results are shown in 
Sections 3 and 4, respectively. The paper is then concluded in the 
last section. 

2.0 ESTIMATION THEORY 
This section summarizes the main equations of the extended 

Kalman filter (EKF) and smooth variable structure filter (SVSF). 
The recently proposed variable boundary layer (VBL) 
formulation of the SVSF is also described. 

2.1 EXTENDED KALMAN FILTER 
The prediction stage of the EKF begins with calculation of 

the state estimates and state error covariances respectively as 
follows [4]: 

ොାଵ|ݔ ൌ ݂൫ݔො|,  ൯ (2.1.1)ݑ

ܲାଵ| ൌ ܨ ܲ|ܨ
்  ܳ (2.1.2) 

Note that the update stage is defined by the following set of 
equations [4]. The a priori measurement error or innovation is 
calculated as per (2.1.3). The measurement noise covariance 
matrix or innovation covariance is calculated as per (2.1.4). The 
KF gain is calculated by (2.1.5) and is used to provide a 
posteriori or updated state estimates as per (2.1.6). Equation 
(2.1.7) updates the a posteriori state error covariance matrix.  

݁௭,ାଵ| ൌ ାଵݖ െ ݄൫ݔොାଵ|൯ (2.1.3) 

ܵାଵ ൌ ାଵܪ ܲାଵ|ܪାଵ
்  ܴାଵ (2.1.4) 

ାଵܭ ൌ ܲାଵ|ܪାଵ
் ܵାଵ

ିଵ  (2.1.5) 

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ   ାଵ݁௭,ାଵ| (2.1.6)ܭ

ܲାଵ|ାଵ ൌ ሺܫ െ ାଵሻܪାଵܭ ܲାଵ| (2.1.7) 

Partial derivatives are used for the first-order Taylor series 
approximations as follows: 

ܨ ൌ
߲݂ሺݔሻ

ݔ߲
ቤ
௫ୀ௫ොೖ|ೖ,௨ೖ

 (2.1.8) 

ାଵܪ ൌ
߲݄ሺݔሻ

ݔ߲
ቤ
௫ୀ௫ොೖశభ|ೖ

 (2.1.9) 

The equations listed previously summarize the EKF process, 
and the process is repeated iteratively. 

2.2 SMOOTH VARIABLE STRUCTURE FILTER 
The smooth variable structure filter (SVSF) has been 

developed over the last ten years. The ‘standard’ SVSF was 
introduced in 2007, and makes use of sliding mode concepts and 
observer theory [5]. The main SVSF theory was advanced 
significantly in 2011 as described in [6]. The SVSF formulation 
is similar to the KF; however, the derivation of the gain is 
fundamentally different. The basic concept of the SVSF 
estimation process is shown in the following figure. Essentially, 
given some initial estimate, the state estimate is forced towards 
the true system state trajectory to within a region of the existence 
subspace. As previously mentioned, the existence subspace 
width is defined based on the amount of disturbances or 
uncertainties present in the estimation process (e.g., system and 
measurement noise). A switching gain is then applied which 
forces the state estimate to switch back and forth or chatter across 
the true state trajectory. This brings an inherent amount of 
stability to the estimation process. 

 

 
Figure 1.     SVSF estimation concept as per [6]. 

 
The SVSF prediction stage of the SVSF is defined as 

follows [6]. The state estimates and state error covariances are 
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predicted as per (2.2.1) and (2.2.2), respectively. The a priori 
measurement error is defined by (2.2.3). 

ොାଵ|ݔ ൌ ݂൫ݔො|,  ൯ (2.2.1)ݑ

ܲାଵ| ൌ ܨ ܲ|ܨ
்  ܳ (2.2.2) 

݁௭,ାଵ| ൌ ାଵݖ െ ݄൫ݔොାଵ|൯ (2.2.3) 

The SVSF gain is defined by (2.2.4) [6]. 
ାଵܭ
ൌ ା݀݅ܽ݃ܥ ቂቀห݁௭,ାଵ|ห௦  ห݁௭,|ห௦ቁߛ

∘ ൫ݐܽݏ ത߰ିଵ݁௭,ାଵ|൯ቃ ݀݅ܽ݃൫݁௭,ାଵ|൯
ିଵ

 

(2.2.4) 

The update stage is defined as follows [6]. The state 
estimates and the state error covariances are updated as per 
(2.2.5) and (2.2.6), respectively. The a posteriori or updated 
measurement error is defined by (2.2.7). 

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ   ାଵ݁௭,ାଵ| (2.2.5)ܭ

ܲାଵ|ାଵ ൌ ሺܫ െ ାଵሻܪାଵܭ ܲାଵ|ሺܫ
െ ାଵሻ்ܪାଵܭ

 ାଵܭାଵܴାଵܭ
்  

(2.2.6) 

݁௭,ାଵ|ାଵ ൌ ାଵݖ െ ݄൫ݔොାଵ|ାଵ൯ (2.2.7) 

The SVSF gain is a function of a priori (predicted) and 
previous a posteriori (updated) measurement errors, SVSF 
‘memory’ ߛ, and a smoothing boundary layer term ߰. The 
smoothing boundary layer term is used to reduce or smooth the 
chattering magnitude caused by the switching term (2.2.4). 

 

 
Figure 2. Smoothed estimated trajectory ሺ߰   .ሻ [7]ߚ

The SVSF estimation process is further illustrated in Figs. 
1-3. To reiterate, the existence subspace represents the amount 
of uncertainties present in the estimation process [8]. This value 
is defined in terms of modeling errors and noise. It is often tuned 
by trial and error based on designer knowledge (e.g., estimated 
amount of system or measurement noise). The width of the 
existence space ߚ is a function of the uncertain dynamics 

associated with the inaccuracy of the internal model of the filter 
as well as the measurement model, and may vary with time [5]. 
In most cases, this value is not known exactly, but an upper 
bound may be selected based on designer knowledge. 

 

 
Figure 3.  Presence of chattering effect ሺ߰ ൏  .ሻ [7]ߚ

2.3 THE SVSF-VBL 
As per [5, 6], the inherent switching or chattering effect 

caused by the SVSF gain reduces the estimation accuracy. 
However, it drastically improves the robustness and stability to 
the presence of disturbances, and modeling uncertainties [5, 6]. 
In an effort to increase the estimation accuracy, a time-varying 
smoothing boundary layer formulation of the SVSF was 
developed in [6, 7] and is referred to as the SVSF-VBL. 

The partial derivative of the a posteriori covariance (trace) 
with respect to the smoothing boundary layer term was found in 
order to obtain the VBL formulation. This is similar to the KF 
formulation and the method used to obtain a statistically optimal 
gain [1]. In this case, the smoothing boundary layer term is 
redefined and is considered to be a full square matrix, as opposed 
to one boundary layer assigned to each measurement [6]. The 
SVSF-VBL prediction stage is similar to (2.2.1) through (2.2.3). 
The time-varying smoothing boundary layer (VBL) is calculated 
using the following three equations [6]. The measurement or 
innovation covariance is calculated by (2.3.1). The error 
components and time-varying boundary layer are calculated by 
(2.3.2) and (2.3.3), respectively. 

ܵାଵ ൌ ାଵܪ ܲାଵ|ܪାଵ
்  ܴାଵ (2.3.1) 

ାଵܣ ൌ ห݁௭,ାଵ|ห௦   ห݁௭,|ห௦ (2.3.2)ߛ

߰ାଵ ൌ ൫̅ܣାଵ
ିଵ ାଵܪ ܲାଵ|ܪାଵ

் ܵାଵ
ିଵ ൯

ିଵ
 (2.3.3) 

The SVSF-VBL gain is then calculated as per (2.3.4) and is 
used to update the state estimates (2.3.5) and state error 
covariance matrix (2.3.6). The a posteriori or updated 
measurement error is calculated as per (2.3.7). 

ାଵܭ ൌ ାଵܪ
ିଵ ାଵ߰ାଵܣ̅

ିଵ  (2.3.4) 
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ොାଵ|ାଵݔ ൌ ොାଵ|ݔ   ାଵ݁௭,ାଵ| (2.3.5)ܭ

ܲାଵ|ାଵ ൌ ሺܫ െ ାଵሻܪାଵܭ ܲାଵ|ሺܫ
െ ାଵሻ்ܪାଵܭ

 ାଵܭାଵܴାଵܭ
்  

(2.3.6) 

݁௭,ାଵ|ାଵ ൌ ାଵݖ െ ݄൫ݔොାଵ|ାଵ൯ (2.3.7) 

The SVSF-VBL process is very similar to the SVSF process, 
with the main difference being the calculation of the VBL (2.3.3) 
and the SVSF gain (2.3.4). The main disadvantage of the SVSF, 
compared with the SVSF-VBL, is the fact that a conservative 
fixed smoothing boundary layer is defined which reduces the 
overall estimation accuracy [5, 6]. The SVSF-VBL calculates a 
near-optimal value for the boundary layer, in an effort to improve 
the accuracy. As described by Figs. 4 and 5, an interesting 
byproduct of the optimal or time-varying boundary layer is the 
fact that the presence of system changes or faults may be 
detected. 
 

 
 

Figure 4.  Well-defined time-varying boundary layer concept [7]. 

 
Figure 4 illustrates the case when a limit is imposed on the 

smoothing boundary layer width (a conservative value) and the 
time-varying (optimal) smoothing boundary layer per (3.22) 
follows within this limit. In the standard SVSF, the smoothing 
boundary layer width is made equal to the limit; such that the 
difference between the limit and the optimal variable boundary 
layers quantifies the loss in optimality. 

Figure 5 illustrates the case when the optimal time-varying 
smoothing boundary layer is larger than the limit imposed on the 
smoothing boundary layer. This typically occurs when there is 
modeling uncertainty (which leads to a loss in optimality) or 
when the limit on the smoothing boundary layer is 
underestimated. The width of the smoothing boundary layer is 
directly related to the level of modeling uncertainties (by virtue 
of the errors), as well as the estimated system and measurement 
noise (captured by ܲାଵ| and ܵାଵ). As per [7], the VBL creates 
another indicator of performance for the SVSF: the widths may 
be used to determine the presence of modeling uncertainties, as 
well as detect any changes in the system. 

 
 

 
 

Figure 5.  Presence of system changes or faults [7]. 

3.0 EXPERIMENTAL SETUP 
The experimental setup used in this paper is known as an 

electrohydrostatic actuator (EHA). Asa per [5], EHAs are 
commonly used in aerospace and heavy-industry applications, 
and are becoming increasingly popular due to their high force-
to-weight ratio. The EHA setup used in this paper is shown in 
Fig. 6. Further details on the EHA design and setup may be found 
in [9, 10, 11, 12]. 
 

 
 

Figure 6.  EHA experimental setup [13]. 
 

Two types of fault conditions were physically induced on 
this system: internal leakage and friction. To induce a friction 
fault, one axis was used as the driving mechanism while the 
second axis acted as a load. To implement internal leakage across 
the circuit, the first axis throttling valve is used (i.e., throttle 
blocking valve is open). The first axis throttling valve incurs 
cross-port leakage between both chambers of its corresponding 
cylinder. These two faults negatively affect the output of the 
EHA. 

The following state space equations (related to its position, 
velocity, and acceleration) represent the EHA dynamics [13]: 

ଵ,ାଵݔ ൌ ଵ,ݔ   ଶ, (4.1)ݔܶ
ଶ,ାଵݔ ൌ ଶ,ݔ   ଷ, (4.2)ݔܶ
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ଷ,ାଵ	ݔ

ൌ 1 െ ܶ
ܽଶ ܸ  ܮߚܯ

ܯ ܸ
൨ ଷ,ݔ െ ܶ

ሺܣா
ଶ  ܽଶܮሻߚ
ܯ ܸ

ଶ,ݔ

െ ܶ
2ܽଵ ܸݔଶ,ݔଷ,  ଶ,ݔ൫ܽଵܮߚ

ଶ  ܽଷ൯
ܯ ܸ

ଶ,൯ݔ൫݊݃ݏ

 ܶ
ߚாܣ
ܯ ܸ

 ݑ

(4.3) 

As per [10], the differential pressure of the EHA may be 
determined based on the actuator friction, modeled as a second-
order quadratic function related to the actuator velocity: 

ாܣܲ∆ ൌ ܽଶݔሶ  ሺܽଵݔሶ ଶ  ܽଷሻ݊݃ݏሺݔሶ ሻ	 (4.4) 
The sample rate of the EHA system is ܶ ൌ  The .ݏ݉	0.1

corresponding EHA parameter values for each case may be 
found in [6]. Based on the EHA model, there are four important 
states and parameters: actuator position, velocity, acceleration, 
and differential pressure. In this study, the actuator position and 
differential pressure are measured, and the velocity and 
acceleration were extrapolated from the position, such that the 
measurement matrix was an identity matrix of size four. 

For the EKF, the SVSF, and SVSF-VBL, the initial state 
estimate and state error covariance matrix were defined as 
follows: 

ො|ݔ ൌ ሾ0 0 0 0ሿ் (4.6) 

ܲ| ൌ ൦

1 0 0 0
0 5 0 0
0 0 10 0
0 0 0 10

൪ (4.7) 

The system and measurement noise covariance’s ܳ and ܴ 
were based on previous work on the EHA [10], and tuning: 

ܳ ൌ ݀݅ܽ݃ሺሾ10ିଵଶ 10ିଵ 10ିଽ 10ିଷሿሻ (4.8) 
ܴ ൌ ݀݅ܽ݃ሺሾ10ିଵଶ 10ିଽ 10ି 5 ൈ 10ଷሿሻ (4.9) 
In an effort to minimize the estimation error, the SVSF 

convergence rate was set to ߛ ൌ 0.1, and the layers set to ߰ ൌ
ሾ3.5 ൈ 10ିଷ 1 ൈ 10ସ 1 ൈ 10 1 ൈ 10ଽሿ்.  

 

 
 

Figure 7.  Motor input (velocity) used to actuate the EHA. 
 

 
Figure 8.  EHA state trajectory. 

 
The scenario that was studied involves the EHA operating 

normally for 2 seconds, followed by a leakage fault for 2 
seconds, and then a friction fault for the last 2 seconds. The input 
into the system is shown in Fig. 7, and the corresponding EHA 
trajectory and differential pressure are shown in Fig. 8. 

4.0 EXPERIMENTAL RESULTS 
Three estimation strategies were applied on the EHA for 

state estimation: the EKF, SVSF, and SVSF-VBL. The root mean 
square error (RMSE) for the estimation process is summarized 
in Table 1. As predicted, the SVSF-VBL was able to provide the 
best result in terms of estimation accuracy. The EKF and SVSF 
also performed well, with the SVSF performing slightly better 
when estimating the actuator position and differential pressure. 
This is most likely due to the fact that these two states were 
measured directly from the environment. The velocity and 
acceleration were obtained based on differentiation of the 
position, which introduced unwanted noise and errors. 
 
Table 1. RMSE Results for the Estimation Strategies 
 

Strategy ࢞ ሺሻ ࢞	ሺ࢙/	ሻ ࢞ ሺ࢙/ሻ ࢞ ሺࢇࡼሻ 

EKF 5.1310ିݔସ 2.8010ିݔଷ 3.3210ିݔଵ 1.6410ݔସ 

SVSF 5.0210ିݔସ 2.8110ିݔଷ 3.5110ିݔଵ 1.2510ݔସ 

SVSF-VBL 4.8110ିݔସ 2.1410ିݔଷ 3.0910ିݔଵ 1.0110ݔସ 

 
The following four figures illustrate the values of the time-

varying smoothing boundary layers. Figures 9 and 10 are the 
results for when the SVSF-VBL operates using the normal 
system model. As demonstrated, the values are distinctly 
different depending on how the EHA behaves. For example, 
notice the changes of VBL widths every two seconds, which 
aligns with the varying operating modes. This technique may be 
used to identify modeling uncertainties or system changes during 
the estimation process. Figure 11 shows the VBL results for the 
position state, when the SVSF-VBL uses the leakage model to 
model the EHA system. Figure 12 shows the VBL results for the 
differential pressure, when the SVSF-VBL uses the friction 
model. Notice these results are also unique, and provides a good 
indicator for system changes or faults. 
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Figure 9.  Time-varying boundary layer for the position state (normal model).  
 

 
 

Figure 10.  Time-varying boundary layer for the fourth state (normal model).  
 

 
 

Figure 11.  Time-varying boundary layer for the position state (leakage model).  

 
 

Figure 12.  Time-varying boundary layer for the fourth state (friction model).  
 

5.0 CONCLUSIONS 
The purpose of this paper was to demonstrate the results of 

applying a state estimator to an electrohydrostatic actuator 
(EHA). This state estimator, referred to as the SVSF-VBL, is a 
robust estimation strategy based on the smooth variable structure 
filter (SVSF) and sliding mode concepts. In addition to providing 
accurate state estimates, the SVSF-VBL is also able to detect 
system changes or faults. The results are compared with the 
popular EKF and the standard SVSF. It was determined that the 
SVSF-VBL was able to provide very accurate state estimates 
while also detecting system changes or faults. Future work will 
involve studying up to nine different EHA conditions, including 
combined degrees of faults. 
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