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Abstract—The smooth variable structure filter (SVSF) is a 

recently proposed method that is used for estimation purposes, 

such as fault detection [1-2]. The SVSF demonstrates good 

results and robustness when it is applied to linear and non-

linear systems that are fully measured. However, the results 

differ when some of the states are not measured. In this case, 

the SVSF is combined with the Luenberger method, which has 

some limitations. In this paper, a novel form of the SVSF is 

derived using the Observability and Toeplitz matrices. The 

benefits of the proposed method are demonstrated by using a 

computer simulation that involves an electro-hydrostatic 

actuator proposed in [3-5].   

Keywords—estimation; smooth variable structure filter; 

observability; Toeplitz; electro-hydrostatic actuator. 

I.  INTRODUCTION 

The estimation process is used to extract both states and 
parameters of a system from available measurements. This 
involves a mathematical algorithm that combines the prior 
and empirical knowledge. The former involves the prior 
information regarding the system; i.e. parameters. The latter 
involves with measuring the dynamic behavior of that 
system [6-8]. The estimation process could be used for 
filtering, smoothing, and prediction. All of these categories 
involve extracting a quantity of interest from measured 
signals. However, they differ in selecting the data from those 
signals, as filtering uses the data in the past up to and 
including the current time. Smoothing uses a segment that 
contains past, current and future points. Prediction uses the 
same data as filtering but produces the quantity of interest in 
the future [8]. 

The mathematical algorithm used for estimation is 
referred to as estimator. If the measured signal contains 
noise, then the estimator is referred to as a filter, as it needs 
to remove unwanted noise. In this paper, the smooth variable 
structure filter (SVSF) is considered due to its robustness, 
stability, and estimation performance [5-7]. The paper is 
organized as follows: the SVSF in its general form is 
discussed in Section II, while in Section III, the SVSF for 
linear-system with partially ranked measurement will be 
discussed. The novelty of this paper, which is the 
Observability/Toeplitz SVSF (OTSVSF), will be formulated 
and derived in Section IV. The application of the OTSVSF 
into an electro-hydrostatic actuator is discussed in Section V. 

Section VI contains the conclusion of this work and future 
research recommendations and directions. 

Nomenclature 

Italic-upper case letters are used to denote matrices and 

vectors, while their elements are denoted by italic lower 

case letters with subscripts   and/or  . The symbols   , ^ 

and  denote the matrix’s inversion, estimation and 

transposition operators. 

SYMBOL COMMENTS SIZE 

| | Absolute value.  

  Schur product.  

  Time step value.     

      A priori estimate at time  .  

    A posteriori estimate at time  .  

  System matrix.     

  Input matrix.     

  Difference between actual and estimated values.  

   Estimation error vector for i.     

  The SVSF’s diagonal coefficient matrix.     

  Output matrix.     

     Identity matrix with dimensions of    .     

         

The SVSF’s gain for system with fully and 

partially ranked measurement matrix, 

respectively. 

    

     
 The proposed SVSF’s gain.     

  Number of measurements.     

  Number of states.     

  The Observability matrix     

   ( ) Sign function of  .  

   ( ) Sign function of  .     

  The Toeplitz matrix.     

   Sampling time.     

  Input.     

       Measurement noise vector and its upper bound.     

       System noise vector and its upper bound.     

  State vector.     

  Output vector.     

Table 1 – Nomenclature 
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II. THE SMOOTH VARIABLE STRUCTURE FILTER FOR 

SYSTEMS WITH FULLY RANKED MEASUREMENT MATRIX  

In 2007, Habibi presented the original form of the 
smooth variable structure filter (SVSF) [1]. This filter is a 
modified version of the variable structure [9] and the 
extended variable structure [10] filters (VSF and EVSF, 
respectively). The SVSF has also been extended further and 
developed in [11-14]. The SVSF is a predictor-corrector 
filter that is based on the SMC principles. It can be applied to 
both linear and nonlinear systems. In this research, its 
application into linear system is considered [1]. However, the 
findings may also be extended to nonlinear systems. 

The process of the SVSF depends on the rank of the 
measurement matrix (number of independent measurements 
compared to the number of states). If the measurement 
matrix has partial rank (number of independent 
measurements  
< number of states), the SVSF’s gain is calculated by using 
Luenberger’s reduced order technique as discussed later in 
Section III. 

If the system has a full rank measurement matrix 
(number of independent measurements = number of states), 
and it is described by equ. 1, then the process is found in Fig 
1. 

                          

           
1 

 

Fig 1: The Smooth Variable Structure Filter 

III. THE SMOOTH VARIABLE STRUCTURE FILTER FOR 

SYSTEMS WITH PARTIALLY RANKED MEASUREMENT 

MATRIX 

If the application consists of a system with a partially 
ranked matrix, then the reduced order algorithm of the SVSF 
discussed in [1] is used. This method is obtained using the 
Luenberger’s method as follows: 

- Assume the measurement matrix is linear, is time 
invariant and is defined as follows 

     [       (   )] 2 

- Defining a revised state vector    as    [
  
   
], where 

    is the hidden states. The system of equ. 1 becomes 

(assuming no modeling error occurs): 

                            

     [
     
     

]           [
    

 (   )  
]  [

  
 (   )  

] 
3 

-  The estimated states (estimated measurement as well 
considering the measurement matrix is unity) is then 
obtained as the following: 

 ̂      [
 ̂      
 ̂      

]   ̂   [
    
 ̂        

]   ̂        4 

- Subtracting equation (4) from (3) gives [1]: 

[
       
        

]  [
    ̂     
     ̂      

]   

[
       
        

]   ̂   [
    

          
]       
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Where  ̂    [
 ̂    

    ̂    
  (   )

 ̂   
(   )   ̂    

(   ) (   )
] 

and      represents uncertainties and modeling errors 
and it is defined as follows: 

                            [
    

 (   )  
]

 [
  

 (   )  
] 

6 

The Luenberger method assumes that there are no 
uncertainties;       , Therefore, equ. (7) could be 
obtained by rearranging equ. (5) as follows (assume 

   ̂   ̂  
  

): 

          
  ̂  

  
        

        
  ̂   ̂  

  
        

7 

- Using the results of equ. 7, the gain is then modified to 
be as the following, [1]: 

     [
(|       |    |         |)     (       )

(|        |    | ̂  
  
       |)     (        )

] 8 

- The rest of the process remain the same as in Fig 1. 

This method gives good results as long as the Luenberger 
conditions are valid. This limits the SVSF with the 
following: 

- The SVSF becomes more likely as an observer rather 
than a filter. Therefore, the estimate becomes sensitive 
to noise amplitude.  

- The entire method depends on the mapping function 

( ̂  ). This matrix needs to be invertible, and 

accurately estimated. Otherwise, the accuracy may be 
affected. However, the stability will not be affected as it 
depends on         which is measured.  

- The usage of the inversion operator. This increases the 
complexity of the calculation, may result in numerical 
instability, and may results is using a pseudo-inverse 

operator if the matrix  ̂   is not square. 
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To improve the performance of this filter, a novel revised 
version of SVSF referred to as the Toeplitz/Observability 
SVSF is proposed in the next section. 

IV. THE TOEPLITZ/OBSERVABILITY SMOOTH VARIABLE 

STRUCTURE 

In this section, a novel form of the SVSF is developed. 
The Observability matrix is a mathematical tool that gives an 
indication of the possibility to extract the states uniquely 
from a finite number of measurements’ data sets. Assuming 
a linear time-invariant with  -states and one-measurement, 
then the Observability matrix is defined as follows, [15-16]: 

  [       (    )   ]  9 

If the Observability matrix is of full rank, then the system is 
observable, and the states can be uniquely extracted from 
measurements. 

The Toeplitz matrix is a matrix that has zero elements on 
its diagonal and all the elements above it. Here it is referred 
to the matrix that shows the relation between an input 
segment to a measurement segment. Assuming a linear time-
invariant with  -states, one-measurement and one-input, 
then the Toeplitz matrix is defined as follows, [14-15]: 

   

[
 
 
 
 

 
  
   

 
 
  

 
 
 

 
 
 

 
 
 

   
                ]
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Both of these matrices result from taking a segment of 

length   from the measurement, writing each measurement 

equation; i.e. equ. 1, in recursive form as the following: 

    ( 
    ∑(      (      ))

   

   

)     11 

and then staking them in a vector; i.e. [

  
 

      
], as the 

following: 

[

  
 

      
]    [

  
 

      
]  [

  
 

      
]    [

  
 

      
]
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Where    is another Toeplitz matrix that maps the system 

noise to the measurements.  

By rearranging equ. 12, the states could be obtained as 

follows (assuming   [

  
 

      

]    [

  
 

      

]): 

    
  ([

  
    
 

      

]    [

  
    
 

      

]   ) 13 

The Observability matrix should be invertible, otherwise 

equ. 13 is invalid and the states or their estimation cannot be 

obtained. Using equ. 13, an estimated state vector,  ̂     

could be obtained as follows:  

 ̂     ̂
  ([

  
    
 

      

]   ̂ [

  
    
 

      

]) 14 

 

Where  ̂ and  ̂  are the estimated Observability and 

Toeplitz matrices, respectively. If the these matrices are 

well estimated, then the error in the estimated states, which 

will be referred to as the alternative measurement vector, is 

equal to the following: 

    ̂      ̂
  ([             ] 

   [             ] ) 
15 

According to [17], if the system is written in its 
Observability canonical form, and at least the first state is 
measured, then the Observability and the Toeplitz matrices 
are independent on the system parameters. The Observability 
canonical form satisfies the following conditions: 

1- The input matrix has zero elements except for the  

last row. 

2- The system matrix has the following form: 

   

[
 
 
 
 
 
 
 

  
 
 

 
  
 

 
 

 
 
 

      
         ]
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3- Each measurement is related to only one of the states. 

In this paper, the system in Observability canonical form 
is considered. Therefore, the vector  ̂    is simply extracted 

from the measurement and the input, and it contains the 
vector   ’s information blurred with measurement and 
system noise, and their derivatives. Therefore, the vector 
 ̂    can be used to compensate the missing (   ) 
measurements for the SVSF as follows: 

 ̂     ̿  ̂    17 

Where  ̂    is the alternative measurement vector and  ̿  is 

the unity matrix. This solve the issue in applying the SVSF 

into systems with partially ranked measurement matrix. The 

alternative measurement vector has dimensions of  ̂    

     (similar to measurement of a system with fully ranked 

measurement matrix).  

The proposed SVSF has the same structure as in Fig 1. 
However, the gain is calculated as the following (assuming 

 ̿      ): 

     
 (|         

|

  |           
|)     (         

) 
18 

Where        
  ̂     ̂   . 
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V. THE APPLICATION OF TOEPLITZ/OBSERVABILITY 

SMOOTH VARIABLE STRUCTURE FILTER INTO HYDROSTATIC 

ACTUATOR 

The Toeplitz/Observability SVSF has been tested on an 
electro-hydrostatic actuator proposed in [3-5]. The system is 
a third order system with the following system, input and 
measurement matrices: 

  [

    
    
    

           

] 

  [     ]
  

  [   ] 

19 

Where           ,      
 

       
 and      . The 

sampling time is          .  The measurement and the 
system noise signals are white noise with a noise-to-signal 
ratio of    with respect to the state amplitudes. The results 
obtained from the proposed method (TOSVSF) is compared 
to the original SVSF described in section III. The coefficient 
matrix   has a value of           . The input has as a 
signal is shown in Fig 2. The same simulation is performed 
again assuming that the model parameters are inaccurate and 
with values of      and   are equal to        , 

     
 

       
 and     , respectively. The modeling errors are 

almost 30% of their actual values. 

Fig 2: The input signal (rad/s
2
). 

The results of the Toeplitz/Observability SVSF compared 
to the original SVSF for a system model without 
uncertainties is presented in table 2 and the Figs 2, 3 and 4. 
These results show that both methods give similar good 
performance as long as the conditions in section III and IV 
are valid. However, once uncertainties are injected in the 
filter models, the Toeplitz/Observability SVSF gives better 
results than the original SVSF (the      of   ,    and    
obtained by the Toeplitz/Observability SVSF are smaller 
than their corresponding values obtained by the original 
SVSF as shown in table 3). Both methods show robustness 
and stability behavior. These results are shown in Figs 5, 6 
and 7. Comparing tables 2 and 3. Three distinct observations 
have been noticed: 

Table 2 – A comparison between the original SVSF 

compared to the newly proposed version when no 

modeling uncertainties occurred. 

 
- The Toeplitz/Observability SVSF does not affect with 

modeling uncertainties and the performance remains 
the same.  

- The Toeplitz/Observability SVSF and the original 
SVSF give the same performance for the first state, 
which is not sensitive to the modeling uncertainties.  

- Increasing modeling uncertainties, increases the RMSE 
for the original SVSF although it remains stable. 

 

Table 3 – A comparison between the original SVSF 

compared to the newly proposed version when modeling 

uncertainties are injected.  

 

 

Fig 3: Error in estimating the first state while no 
modeling error is present (m). 
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Fig 4: Error in estimating the second state while no 

modeling error is present (m/s). 

 

Fig 5: Error in estimating the third state while no 
modeling error is present (m/s

2
). 

 

Fig 6: Error in estimating the first state when modeling 
error is present (m). 

 

Fig 7: Error in estimating the second state when 
modeling error is present (m/s). 

 
Fig 8: Error in estimating the third state when modeling error 

is present (m/s
2
). 

 

VI. CONCLUSION AND FUTURE WORK 

This paper is concerned with the development of robust 
estimation techniques for their application to fault detection. 
Due to its robustness, the SVSF was considered. The original 
SVSF has some limitations when applied to systems that 
have measurement matrices without full rank. A novel 
algorithm referred to as the Toeplitz/Observability SVSF is 
proposed in this paper to overcome these limitations, and is 
referred to as the TOSVSF. If the system is described in its 
Observability canonical form, the measurement matrix is 
known and at least the first state is measured, then the 
proposed method gives a very good performance. It is 
independent of the modeling errors that may be present. The 
Toeplitz/Observability SVSF was tested on an electro-
hydrostatic actuator and compared to the original SVSF. It 
demonstrated superior performance in the presence of 
modeling uncertainties. Future work will include the 
application of the proposed filter on an experimental setup. 
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